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RESUMEN 

 

 

La red de transporte es la estructura básica responsable del suministro de electricidad a 

larga distancia. Interconecta los centros de generación con las subestaciones desde donde 

la red de distribución alimenta los núcleos de demanda. Por tanto la red de transporte 

tiene un papel esencial en el sistema de energía eléctrica. 

Introducción 

La Planificación de la Expansión de la red de Transporte (TEP) aborda el problema 

estocástico que determina las líneas óptimas y otros equipos a añadir en la red eléctrica 

para satisfacer la demanda estimada a largo plazo. El objetivo es definir cuándo y dónde 

deben instalar nuevos circuitos con un coste mínimo sujeto a un conjunto de restricciones. 

La penetración de las renovables en la generación y la liberalización del mercado 

eléctrico introducen complicaciones. Por esto, TEP debe incorporar las incertidumbres 

inherentes a la generación y expansión de la red y anticipar los nuevos desarrollos. 

Motivación 

Los intentos de solucionar la cuestión de la expansión del transporte se han basado en 

modelos simplificados debido a la complejidad del problema. Para resolver TEP se 

emplean dos grandes grupos de métodos: clásicos y no clásicos. La Descomposición de 

Benders (BD) es uno de los métodos clásicos más importantes aplicados en el campo de 

la Optimización Estocástica. Permite resolver grandes problemas dividiéndolos en un 

problema maestro que propone nuevas soluciones y un subproblema que las evalúa y 

devuelve al maestro para las siguientes propuestas. Este proceso se resuelve 

iterativamente hasta convergencia. La resolución del maestro es lenta en el problema de 

TEP, debido a una cuestión de tamaño, condiciones de integrabilidad o por la adición de 

un gran número de cortes que complican la resolución del problema maestro [LUMB12]. 

La falta de adecuadas herramientas computacionales hace que investigar metaheurísticos 

sea atractivo para la generación de propuestas para TEP. Un metaheurístico es una técnica 

de resolución que proporciona una solución suficientemente buena para un problema de 

optimización, especialmente con capacidad de computación limitada. El Algoritmo 

Genético (GA) es un metaheurístico extendido en el campo de TEP. 
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Metodología 

El primer objetivo de este proyecto es diseñar un GA adecuado para resolver TEP. El GA 

genera propuestas que son evaluadas por el subproblema, y usa la información de costes 

proporcionada por el subproblema para definir la función fitness. Después se aplican los 

operadores genéticos tradicionales sobre la población: cruce y mutación. Otros 

operadores añadidos son la conservación el mejor individuo (reina) y la introducción de 

inmigrantes. Para realizar el ajuste de los parámetros genéticos y así poder obtener 

mejores soluciones para TEP, el GA es incluido en TEPES (Transmission and Expansion 

Planning for an Electric System, un modelo desarrollado en el IIT que lleva a cabo TEP 

usando BD) y su correcto funcionamiento es comprobado en varios casos de estudio: 

9BUS, 46BUS y un caso basado en el sistema español. Otro objetivo del proyecto es 

obtener soluciones óptimas para TEP. Finalmente, el GA es contrastado con la resolución 

con BD. 

Resultados 

Para resolver pequeños problemas el tamaño de población debe ser similar al número de 

nudos que configuran la red de transporte. El caso de estudio basado en el sistema español 

está compuesto por 1084 nudos y 294 plantas de generación. La red de transporte 

existente está formada por 1505 líneas y transformadores y la red candidata por 153 

líneas. Se han construido 3 casos a partir de éste, considerando diferente número de líneas 

candidatas. Para estos 3 casos el mejor tamaño de la población es de 10 individuos. La 

tasa de mutación más adecuada es 1%. Las ejecuciones llevadas a cabo con el GA tardan 

menos de 20 minutos en alcanzar soluciones un error inferior al 0,3%. La introducción de 

inmigrantes no resulta ventajosa para obtener soluciones. La mejor forma de generar la 

población inicial es con una probabilidad de éxito en la distribución binomial ligeramente 

superior a la proporción de líneas instaladas en el plan óptimo. 

BD alcanza la solución óptima o una muy similar con importantes ahorros de tiempo en 

los casos de estudio 1 y 2. En el caso más grande la resolución con BD queda se 

estancada con un error del 0,4% y el GA alcanza una solución con solo un error del 

0.05% en un tiempo razonable. 

Conclusiones 

BD resuelve el subproblema una vez por iteración, pero el GA lo resuelve tantas veces 

como individuos forman la población, por lo que el número de individuos está 

directamente relacionado con el tiempo de ejecución. Para grandes problemas es 

adecuado usar un tamaño de población suficientemente bajo para reducir el tiempo de 

ejecución. 

Los clusters de soluciones con costes similares están relacionados con la tasa de 

mutación. Una mutación suficientemente baja actúa como un filtro de clusters, con la 

población perdiendo diversidad rápidamente.  
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Una población inicial con buenas cualidades ayuda al GA a alcanzar mejores soluciones, 

pero la introducción de inmigrantes generados de la misma manera que la población 

inicial no aporta beneficios al algoritmo. 
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SUMMARY 

 

 

The transmission grid is the basic infrastructure responsible for long-distance 

transferring electricity. It connects the generation plants with the substations from where 

the demand nucleuses are feed by the distribution grid. So transmission plays an 

essential role in the power systems of the future. 

Introduction 

Transmission and Expansion Planning (TEP) is a combinatorial stochastic problem that 

determines the optimal lines and other equipment to be added to a power network for 

supplying the forecasted demand in a long-term horizon. Its objective is to define when 

and where new circuits should be installed at minimum cost subject to a set of 

constraints. 

The introduction of renewable generation and the liberalization of generation markets 

introduce further complications. Thus, TEP must incorporate the uncertainties inherent 

to generation expansion and anticipate new developments. 

Motivation 

Attempts to solve the transmission expansion problem have been made based on 

simplified models because of the complexity of the problem. Two types of methods 

have been used to solve TEP problem: classical and non-classical. Benders’ 

decomposition (BD) is one of the main classical methods applied in the Stochastic 

Optimization domain. It allows solving large problems by dividing them into a master 

problem which proposes new solutions and a subproblem which evaluates them and 

sends feedback to the master for the next proposals. This process is solved iteratively 

until convergence. Master problem resolutions are slow. This can be a result of size, 

integrality conditions or the addition of a large number of cuts that complicate master 

problem resolution [LUMB12]. 

The lack of adequate computational tools becomes metaheuristics research an attractive 

issue for generating proposals for TEP. A metaheuristic is a solution technique that 

provides a sufficiently good solution to an optimization problem, especially with limited 

computation capacity. A extended metaheuristic in the TEP domain is the Genetic 

Algorithm (GA). 
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Methodology 

The first objective of this project is to design a suitable GA for solving TEP. The GA 

generates proposals that are evaluated by the subproblem, and uses the cost information 

provided by the subproblem to define the fitness function. Then the traditional genetic 

operators are applied over the population: crossover and mutation. Other operators are 

added: saving the best individual and introducing immigrant individuals. In order to 

adjust the genetic parameters to obtain better results for TEP, the GA is included in 

Transmission and Expansion Planning for an Electric System (a model developed at the 

IIT that performs TEP using BD) and it is tested in several case studies: 9BUS, 46BUS 

and a Spain-based case. Another objective of this project is to obtain optimal solutions 

for TEP. Finally the GA is contrasted with BD resolution. 

Results 

For solving small problems the best population size is similar to the number of nodes 

that configured the transmission network. The Spain-based case study is composed of 

1084 nodes and 294 power plants. The existing transmission network is configured by 

1505 lines and transformers. The candidate transmission network consisted of 153 

power lines. Three case studies have been constructed from the Spain-based case, 

considering different number of candidate lines. For the three case studies the best 

population size is 10 individuals. The most suitable mutation probability is 1%. The GA 

executions spent less than 20 minutes for reaching solutions with less than 0.3% error. 

The introduction of immigrants does not provide any advantage for obtaining solutions. 

The best way of generating the initial population is with a success probability in the 

binomial distribution slightly higher to the proportion of installed lines in the optimal 

plan. 

BD reaches the best solution or a very similar one with important time savings in case 

studies 1 and 2. In the biggest case study BD gets stagnant with a 0.4% error and GA 

reaches a solution with only 0.05% error in a reasonable time. 

Conclusions  

BD solves the subproblem once per iteration, but GA solves it as many times as 

individuals that are in the population, so the number of individuals is directly related 

with the execution time. For large problems is suitable to use a population size low 

enough for reducing the execution time. 

The mutation rate is related with the number of clusters. A mutation rate low enough 

acts as a filter of clusters. Higher mutation rates provide a faster response of the GA at 

the beginning of the iterative process, but contribute to stagnancy in the last iterations. 
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A good quality initial generation helps the GA for reaching better solutions, but the 

introduction of immigrants generated in the same way as the initial population is a 

useless operator for solving TEP. 
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1. INTRODUCTION 

 

Transmission Expansion Planning (TEP) plays an important role in the power systems 

due to the electric energy industry restructuring that is being implemented worldwide.  

The introduction of renewable generation far from the existing transmission system and 

the liberalization of the markets are introducing further complications in TEP. 

In nowadays globalized markets, since the competitiveness is dreadfully increasing 

supply chain design has been gaining attention. Companies have to, at least, keeps the 

same customer service level, while the market’s competitiveness forces them to reduce 

the overall costs to maintain their profit margins. Transportation network design provides 

a remarkable potential to reduce the overall costs and also to improve the service level. 

Consequently, it is necessary to develop methods to generate future power network 

proposals that contribute to an efficient transmission of the electric power, subject to 

electric, economic, social, environmental constraints and incorporating the uncertainties 

inherent to generation. 

The transportation problem is considered as a NP-hard problem. The objective is to find 

the combination of candidate power lines that minimizes the total variable and fixed costs 

while satisfying the supply and demand requirements of each origin and destination. The 
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problem has a dynamic nature so the requirements of transmission facilities should be 

defined over a time within a given horizon. 

Because of the inherent complexity of the problem and the lack of adequate 

computational tools, attempts to solve TEP have been made based on two generic 

simplified models pertaining to whether the stochastic and dynamic aspects of the 

problem are considered or not [LUMB14]. 

Researchers have turned to heuristic algorithms because the methods are constrained by 

limits on computer time. Optimization approaches based on metaheuristcis have 

demonstrated the potential of finding high quality solutions. 

 

1.1. State of the Art 

1.1.1. State of the Art: Transmission Expansion Planning 

Transmission Expansion Planning (TEP) is a combinatorial optimization problem. This 

strategic planning evaluates the future network needs, determining the optimal 

transmission lines and other equipment to be added to a power network in the long-term 

horizon. Its objective is to define when and where new circuits should be installed to 

supply the forecasted demand at minimum cost subject to a set of electrical, economic, 

financial and environmental constraints and with an adequate level of reliability. 

Decisions related to TEP must be taken considering different stages, scenarios and 

assumptions as many factors have an impact. Attending to the modeling assumptions of 

the TEP problem, it could be classified as stated below.  

Traditionally, power system planning has been studied considering the investment cost as 

the only objective taken into account in the optimization, monocriterion. Therefore, other 

factors are added to investment cost. In a centralized operation context this factors could 

be the operation cost for the scenarios considered, penalties that avoid solutions where 

expected loads cannot be satisfied, and the expected energy not supplied and other 

reliability indices. Social welfare and competition are the main factors considered in a 

generation market context. The multicriteria study includes several variables in the 

objective function such as environmental impact, flattening of nodal prices, geopolitical 

risks, financial resources required and renewable generation integration. 

Regarding the dynamic complexity of the TEP problem, most studies aim for simplifying 

it, allowing the next classification. The majority of the research studies solve the problem 

according to the forecasted future at a particular moment in the time; this is known as 



 

 

 
3 

static planning. The sequential static planning considers several future horizons ensuring 

that intermediate solutions are consistent with the long-term goal. This planning admits a 

forward approach or a backwards starting with the final year. Due to the difficulty and 

computational complexity of the dynamic issue, it has been applied to small case studies 

with direct resolution with classical methods. In order to incorporate the dynamic 

dimension into larger case studies, metaheuristic solution methods have been introduced. 

Uncertainties can be classified in random and nonrandom. Random uncertainties arise 

from repeated deviations of parameters and are explained by a probability distribution and 

positive and negative observations compensate. Nonrandom uncertainties only happen a 

single time with no possibility of compensation and cannot be modeled exactly based-on 

past data. As far as the treatment of uncertainties is concerned the main techniques of 

resolution can be classified into three categories. Robust optimization minimizes the 

maximum regret focusing on a worst-case scenario analysis. Fuzzy decision analysis 

studies the outcomes of the different scenarios considered and the relevant importance of 

non-dominated solutions working with the decision maker. The stochastic paradigm 

incorporates random uncertainties directly in the decision process minimizing the 

expected cost over the average of futures. 

In view of market considerations and regulatory implications most regulations use 

centralized planning: the regulator approves the plans proposed by the TSO 

(Transmission System Operator) or give transmission licenses. In some cases centralized 

planning is complemented with mixed planning in collaboration with market agents (i.e. 

proposals of users approved by the regulator) or coexists with market planning where 

market agents decide expansion on price signals. Most works carry out centralized TEP 

with centralized cost-based operation (to minimize operation cost); in a medium-term 

expansion some references consider centralized TEP with a generation market. 

Referring to technical grid modeling options, simple models that only take into account 

Kirchoff´s first law reduce computational requirements of the optimization. Second 

Kirchoff´s law requires linearized DC power flows or hybrid models. More sophisticated 

grid modeling options incorporate the nonlinearities of the AC power flow when 

evaluating a transmission plan.  

A simple classified of solution techniques appears below [LUMB14]. Two types of 

methods have been used to solve TEP problem [LUMB12]: classical and non-classical, 

such as the metaheuristics. Other non-classical method is the sensitivity analysis, which 

guides the local search of candidate solutions, or expert systems that apply complex rules 

from specialist knowledge in larger contexts. 

An important range of classical techniques are those based on mathematical 

programming. Linear programming (LP) assumes important simplifications but it requires 

low computational effort, which makes it practical when large power systems are 

regarded. For settling this computational problem, this technique assumes some 
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simplifications, as a DC power flow model, and ignores the discrete nature of investment 

variables. Quadratic programming (QP) has been applied so as to approximate losses 

from a DC power flow. Mixed Integer Programming (MIP) takes into care the discrete 

nature of investment decisions. 

Also Non Linear Programming (NLP) and Mixed Integer Non Linear Programming 

(MINLP) have been used to shape TEP problem with the full AC power flow assumption. 

Incorporating market considerations has promoted the appearance of equilibrium 

formulations of the problem.  

CLASSICAL METHODS NON- CLASSICAL METHODS 

MATHEMATICAL 

PROGRAMMING 

STOCHASTIC 

DECOMPOSITION 

EQUILIBRIUM 

FORMULATION 

SENSITIVITY 

ANALYSIS 

METAHEURISTICS 

LP 
NLP 

QP 
EXPERT 

SYSTEMS MINLP 
MIP 

Table 1: TEP solution methods classification[LUMB14]. 

 

In order to solve TEP problem incorporating uncertainties directly in the decision process, 

stochastic decomposition techniques have earned special interest. Since Benders 

Decomposition (BD) has been applied in a wide variety of fields with notable success, it 

has earned a central part in the Stochastic Optimization domain. It has become one of the 

most important techniques for solving the TEP problem [LUMB12]. 

BD allows solving large problems by dividing them into two stages: a master problem 

which proposes new solutions and a subproblem which evaluates them and sends 

feedback to the master for the next proposals. The master problem represents the first 

stage plus some conditions, known as cuts, derived from the second stage. The 

subproblem represents the second stage for the solutions provided by the master problem. 

The process is repeated iteratively, alternating master and subproblem resolutions. This 

method is used in the TEPES (http://www.iit.upcomillas.es/aramos/TEPES.htm) model 

developed at the Institute for Research in Technology of ICAI (IIT). As master resolution 

requires expensive computational burden, this research project explores the possibilities 

of combining BD with metaheuristics. 

 

http://www.iit.upcomillas.es/aramos/TEPES.htm
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1.1.1.1. Transmission Expansion Planning for an Electric System (TEPES) 

As explained previously, TEP determines the investment plans for new facilities (lines 

and other network equipment) for supplying the forecasted demand at minimum cost. 

Tactical planning is concerned with time horizons of 10-20 years. Its objective is to 

evaluate the future network needs. The main results are the guidelines for future structure 

of the transmission network. The Institute for Research in Technology of ICAI (IIT) has 

developed a model for evaluating the future network needs in a tactical level, the 

Transmission Expansion Planning for an Electric System (TEPES), which has been 

carried out in a GAMS environment. 

Long-term 

TEPES model presents a decision support system for defining the transmission expansion 

plan of a large-scale electric system at a tactical level. A transmission expansion plan is 

defined as a set of network investment decisions for future years. 

Two-stage stochastic optimization 

The optimization method used is based on a functional decomposition between an 

automatic transmission plan generator (based on optimization) and an evaluator of these 

plans from different points of view (operation costs for several operating conditions, or 

reliability assessment for N-1 generation and transmission contingencies). The model is 

based on BD where the master problem proposes network investment decisions and the 

operation subproblem determines the operation cost for these investment decisions and 

the reliability subproblems determine the not served power for the generation and 

transmission contingencies given that investment decisions. 

Objective function 

The problem is modeled with and objective function which minimizes transmission 

investment and variable operation costs. The operation cost includes generation and 

emission costs. Also a reliability cost associated to N-1 generation and transmission 

contingencies is considered. 

DCLF 

The operation model (evaluator) is based on a DC load flow although a simpler 

transportation representation is allowed for some or all the lines. Network losses are 

disregarded in the case studies that are going to be studied in this research project, but the 

model has the option of also considering them. 

 

 

Variables 
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By nature the transmission investment decisions are binary although can also be treated as 

continuous ones. The current network topology is considered as the starting point for the 

network expansion problem. 

1.1.2. State of the Art: The Genetic Algorithm 

A metaheuristic is a solution technique that provides a sufficiently good solution to an 

optimization problem, especially with limited computation capacity. 

Metaheuristics are used for combinatorial optimization in which an optimal solution is 

sought over a search-space. These methods, as well as sensitivity analyses, have faster 

computational ability than mathematical programming [YOSH95]. Several metaheuristics 

have been proposed in the last decade to solve the TEP problem [YOSH95, ALTA12, 

SILV00]. Optimization approaches based on metaheuristics have demonstrated the 

potential of finding high quality solutions with a faster time-response. 

Among metaheuristics we can bright light: Tabu Search, Swarm Intelligence and 

Evolutionary Algorithms [SILV10]. 

Tabu Search is an optimization technique that obtains a first solution from a global 

exploration mechanism. The algorithm uses a flexible memory of the previous states, 

performing neighbour research. It generates a list of useless information and this memory 

guides the process avoiding the saved elements until there are no movements that 

improve the current solution. 

Swarm Intelligence is based on the interaction of organized agents with each other and 

with the environment. A global intelligence behavior is observed although there is no 

control structure guiding the agents. Ant Colony Optimization and Artificial Bee Colony 

algorithms are important examples of this category.  

Finally Evolutionary Algorithms are a family of computational models inspired by 

biological evolution. They are robust optimization methods that work with a set of 

candidate solutions (individuals) named a population. In these algorithms, the population 

of individuals is modified along the evolution of generations by the application of 

operators such as: selection, recombination and mutation. The most extended 

evolutionary algorithm is the Genetic Algorithm (GA). Artificial Immune System (AIS) 

can be included in this category as they are based on the same ideas that lie behind the 

Evolutionary Algorithms, discarding the recombination operator. Considering TEP 

problem, several works can be found in the literature using AIS [ALTA12] and GA with 

good results [RUDN96, SILV00, DEB02, SILV06, MAGH09, SILV10, MAGH11, 

OTHM11]. 
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METAHEURISTICS 

INSPIRED BY EVOLUTION TRAJECTORY 

EP 
AIS SI 

TABU SEARCH GA 

ANN SA 
GP 

Table 2: Metaheuristics classification [LUMB14]. 

 

GA were first introduced by Holland in 1975. An implementation of the GA begins with 

an initial population (typically random). The population is a set of candidate solutions 

encoded on a chromosome data structure over which we apply selection, recombination 

and mutation. There are several possibilities of codifying the population. In a decimal 

one, the chromosome represents the number of circuits being added in each right-of-way. 

Although the decimal codification is being adopted in some studies with good results 

[SILV00, SILV06], the binary one is the most extended way of representing an individual 

[YOSH95, RUDN96, DEB02, ALTA12]. For multi-stage problems each member is 

represented by a matrix. In the particular case of considering a one-stage problem, the 

representation becomes a vector. 

In most cases the initial population is generated randomly [ALTA12, MAGH11, 

SILV11], but some studies point out the importance of using a procedure to build initial 

good quality sequences for a better performance of the GA approach [RUDN96, SILV06, 

SILV00]. 

Once the initial generation is constructed, the population is modified by the application of 

the genetic operators. First, it is necessary to evaluate and assign a fitness value to each 

member that provides a measure of performance into an allocation of reproductive 

opportunities. This fitness value can be either directly [SILV06] or inverse [MAGH11] to 

the fitness value.  

Recombination starts with the selection of the parents. Selection is applied to the current 

population to create an intermediate population. There are different methods of selecting 

this intermediate population. Ranking Selection consists on ranking the individuals 

according to their fitness value, and choosing randomly the best ones [RUDN96]. In the 
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Tournament Selection a random permutation of the current population is obtained. The 

members are then split up into a definite number of groups and the individual is selected 

randomly with a probability based on their fitness of each group [SILV00, SILV06]. In 

the Roulette Wheel Selection the members are selected by spinning a roulette wheel with 

slots sized according to the fitness function, so the probability of choosing a member is 

proportional to its fitness value [YOSH95, SILV11, GUPT12].  

 

Figure 1: Roulette Wheel Selection. 

 

The process continues with the crossover of the parents obtaining the offspring. The most 

extended recombination operator is the one-point crossover, so as each offspring has a 

piece of each parent [MAGH11, SILV11]. It is possible to use more than one 

recombination point, so the offspring is constructed with the segments of the parent 

strings between these points, but it has been proven that it does not provide improvements 

over the one-point crossover [WHIT94].  

 

Figure 2: One-point crossover applied in TEPES_9BUS. 

46,187%

46,164%

7,648%

ind 1

ind 2

ind 3

prans 1

0

Node_1 . Node_2 . cc1 0 1 0 1

Node_1 . Node_4 . cc1 1 1 1 1

Node_2 . Node_3 . cc1 1 1 1 1

Node_2 . Node_4 . cc1 0 0 0 0

Node_2 . Node_5 . cc1 0 0 0 0

Node_2 . Node_6 . cc1 0 1 0 1

Node_3 . Node_5 . cc1 1 0 1 0

Node_3 . Node_8 . cc1 0 0 0 0

Node_4 . Node_6 . cc1 0 1 1 0

Node_5 . Node_6 . cc1 0 0 0 0

Node_5 . Node_8 . cc1 0 1 1 0

Node_6 . Node_7 . cc1 1 1 1 1

Node_6 . Node_9 . cc1 0 0 0 0

Node_7 . Node_9 . cc1 1 1 1 1
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As a neighbour research strategy, mutation is then applied. It is an important process of 

any GA [MAGH11] that provides richness to the members’ sequences, contributing to 

global optimality. The offspring is slightly modified with a low probability [RUDN96, 

DEB02]. The mutation can also be applied by the inversion of two randomly selected 

chromosomes from an offspring [OTHM11]. In reference [SILV00], a Simulated 

Annealing mechanism is developed for improving the mutation operator. It is based on 

the fact that nature performs an optimization of the total energy or a crystalline solid 

when it is annealed under a slow cooling schedule. It is a nice way to increase the 

mutation rate in order to enhance the local search around the optimum solution. 

 

Figure 3: Mutation applied in TEPES_9BUS. 

 

Some interesting improvements have been applied to the classic GA. In [YOSH95] it is 

observed that saving the best individual, named the queen, of each generation and 

preserving it along the evolution contributes to a faster search of near optimal solutions. 

Another way of avoiding the lack of diversity in the population is the introduction of 

immigrants that consists on creating an external population that can fight a duel with the 

indigenous population [DEB02]. Unlike the traditional GA, the genetic process developed 

in [SILV06] substitutes, in each step, only the worst member of the population, in such a 

way that all the population individuals may be different. This substitution preserves the 

best created topologies. 

The process is repeated until a convergence criterion is reached. The most common and 

easiest criterion is to limit the total number of generations [YOSH95, SILV00] but other 

criteria, such as stopping the process when the best solution found does not improve after 

a specified number of iterations, has been implemented in [SILV06], or finishing when all 

the members have an identical genetic code [RUDN96]. 
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1.2. Motivation 

Despite the efficiency of BD resolution for solving TEP 

problem, a large size of the problem, integrality 

conditions or the addition of a large number of 

constraints (cuts) that complicate the master problem 

could cause slow master resolutions. 

Owing to the simple implementation of heuristic 

optimization algorithms, using them for solving hard 

optimization problems like TEP should be suitable. 

These algorithms have a better chance of finding better 

solutions than those obtained by mathematical 

approaches based on decomposition techniques for large 

problems. Results show that the GA is not only suitable, but a promising technique for 

solving such a problem, proposing new solutions to be evaluated by the subproblem 

[SILV00] and preserving the discrete nature of investment. 

 

1.3. Objectives 

The aim of this final project is to introduce a GA based on the canonical one, in the 

TEPES model, as the master problem of BD to propose new candidate solutions to be 

evaluated by the subproblem. The first step in the implementation of a GA is to generate 

an initial population; in the canonical GA each member of this population will be a binary 

string. The fitness of each string is always defined with respect to other members of the 

current population. This canonical algorithm consists of three main operators: selection, 

crossover and mutation. 

The most important objectives are to carry out an adequate experimental adjust of the 

genetic parameters in order to obtain optimal solutions for the TEP problem in Spain and 

to contrast the efficiency of the GA with BD in public case studies. 

A field of improvement could be the modification of the canonical genetic algorithm. 

Saving the best individual of each generation could be interesting as a mechanism of 

leading the population while the best topologies are preserved so as to avoid losing the 

good qualified genetic information. Several studies discuss the importance of generating 

an initial good quality population [SILV10]. The introduction of immigrants in the 

population could be also interesting as a way of avoiding local optima [MAGH09]. 
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2. THE GENETIC ALGORITHM 

Evolution has lead to specialized living beings that in some way are optimum for their 

specific environments. These adaptation methods can be explored in order to develop new 

optimization techniques. This creative idea was first introduced by John Holland 

[HOLL75] for solving parameter optimization problems. GA has proven to be a robust 

method, it is able to provide good quality solutions in a wide range of problems and it can 

be easily implemented. 

 

It all starts with an initial population, and then, generation after generation, the 

individuals, or members of the current population compete with each other. Darwinian 

selection is the main concept, fitter members of the population are more likely to mate 

with each other and have an offspring in the next generations. This crossover leads to a 

recombination of the genetic materials and to a sequence of generations that is 

successively fitter. 

In addition to the crossover operator, nature introduces random modifications with a low 

probability in order to increase diversity among the population, avoiding homogeneity. 

This mechanism is known as mutation. 
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2.1. The problem encoding and the evaluation function 

Usually there are only two main components of most genetic algorithms that are problem 

dependent: problem encoding and the evaluation function. 

Problem encoding is necessary to translate each possible solution, namely individual or 

'chromosome' in the GA literature, to a string of symbols. Each element of the string is 

called 'gene' and the symbol that represents it is known as 'allele'. Binary codification is 

frequently used in general problems because of its simplicity. This means that the 

variables are discretized in an a priori fashion, and that the range of the discretization 

corresponds to some power of 2. If the parameters are actually continuous then this 

discretization should provide enough resolution to make it possible to adjust the output 

with the desired level of precision. 

The notion of evaluation and fitness are sometimes used interchangeably. However, it is 

useful to distinguish between the evaluation function and the fitness function used by a 

GA. The evaluation function provides a measure of performance with respect to a 

particular set of parameters and constraints. The fitness function transforms that measure 

of performance into an allocation of reproductive opportunities. The evaluation of a string 

is independent of the evaluation of any other string. The fitness value of that string, 

however, is defined with respect to the other members of the current population. 

 

2.2. The Schema Theorem 

The schema theorem [HOLL75] is the main mathematical support for the GA theory.  

A schema is a template that identifies a subset of strings with similarities at certain string 

positions. Given an initial alphabet   and considering an extended alphabet    constituted 

by the alphabet   plus a new element    , a schema is any of the strings formed by the 

extended alphabet. 

The symbol     represents any of the other symbols of the alphabet. The length of a 

schema is the distance of the last fixed character and the first one and its order is simply 

the number of defined bits. 

The number of members of the population that belong to a given schema in each 

generation evolves according to its fitness. The fitness is defined with respect to the 

remaining individuals, its length and order. The GA biases future samples towards 

schemas that are estimated to have above-average fitness. 
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        the proportional representation of the schema H at time t. 

      average fitness of the population at time t. 

        fitness of members of the schema H at time t. 

    crossover probability. 

    mutation probability. 

      defining length of the schema H associated with one-point crossover. 

      the order of the schema H. 

 

2.3. Selection methods 

It is helpful to understand the execution of the genetic algorithm as a two stage process. It 

starts with the current population. Selection is applied to the current population to create 

an intermediate population. Recombination and mutation are applied to the intermediate 

population to create the next population. The process of going from the current population 

to the next population constitutes a generation. 

 

Figure 4: Current, intermediate, next population and generation concepts. 

Selection Recombination

Individual 1 Parent 1 Offspring 1

Individual 2 Parent 2 Offspring 2

Individual 3 Parent 3 Offspring 3

Individual 4 Parent 4 Offspring 4

… … …

Individual n Parent n Offspring n

Current Intermediate Next

population population population

Generation ++
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The fittest members of the population will be selected to be a part of the intermediate 

population, and therefore will have an offspring. There are two main methods to replicate 

this operator. The first one is called the Roulette Wheel Selection and is based on Inverse 

Transform Sampling. It consists on making a number of copies of each individual in the 

intermediate population proportional to its fitness. The selection process can be carried 

out by constructing a wheel with N slots, each of one corresponding to a member of the 

population and with an angular width proportional to its fitness. The wheel is spun as 

many times as the population size for selecting the individuals of the next generation. 

The second one is the Tournament Selection, which is a random permutation of the 

current individuals. They are then differentiated into a definitive number of groups and 

finally the fittest member of each group, with a random probability based on their fitness, 

is selected to generate the intermediate population. 

 

2.4. Crossover operators 

After selection has constructed the intermediate population, recombination can occur. 

Recombination generates the next population from the intermediate one; this operator 

returns two children out of a pair of parents by recombining their genetic information. 

The most common recombination technique is the one-point crossover which consists in 

interchanging genetic information of the two parents from a randomly chosen point 

within the string length. 

 

2.5. Mutation 

Mutation consists in introducing random changes in 

some members of the population with a very low 

probability. This mutation rate can be constant or 

follow a variation rule, such as a simulated annealing 

mechanism [SILV00]. 

Mutation, therefore acts as a background operator, 

occasionally changing bit values and allowing alternative alleles to be retested. The main 

contribution of this operator is that it reduces the risk of getting trapped in a local 

optimum. A variation of this mechanism includes immigration [DEB 02], which consists 

on the introduction of a definite number of new individuals in the population, replacing 

the worst ones. 
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3. BENDERS’ DECOMPOSITION 

Benders’ Decomposition has been applied in a wide variety of fields where problem 

characteristics mean that an application of this method can result in considerable time 

savings. 

BD has earned a central place as one of the most important techniques applied in the 

Stochastic Optimization domain. It has been used for solving problems as diverse as 

generation expansion planning, transmission expansion planning, distribution system 

design, hydrothermal coordination or the unit commitment problem. 

BD is also known as primal decomposition because the master problem fixes variables in 

the subproblem, L-shaped decomposition because that is the shape of the constraint 

matrix or recourse decomposition because the master assigns directly the resource 

decisions to the subproblem. 

The two-stage stochastic linear problem is defined in its complete form as follows: 

               (1) 

     (2) 

     (3) 

          (4) 

       (5) 

 

where     represent the first-stage and second-stage variables and      are their 

respective costs in the objective function. The equation (2) represents the first-stage 

constraints, the equation (3) the second-stage constraints and the equation (4) are the 

constraints that link both stage. The stochastic scenarios are referred to as index ω. 

BD allows solving large problems by dividing them into two parts: a master problem 

which proposes new solutions and a subproblem which evaluates them and sends 

feedback to the master for the next proposals. 

The master problem represents the first stage plus some conditions derived from the 

subproblem, known as cuts. The subproblem represents the second stage for fixed values 

of the first stage variables provided by the master resolution. The solution given by the 

subproblem provides an upper bound for the optimal value. In addition the information 
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obtained by the subproblem is used to improve the description of the master problem by 

including a new cut. Both problems are solved iteratively until convergence is reached. 

Then the problem can be interpreted as: 

The complete master problem 

                  (6) 

     (7) 

    (8) 

 

where       represents the recourse function, that is, the second-stage objective function 

as a function of the first-stage decisions. This can be expressed as: 

The relaxed master problem 

              
    (9) 

     (10) 

                                          (11) 

     (12) 

 

where    represents the recourse variable, that is, the second-stage objective function as 

a function of the first-stage decisions, equation (11) is the expression of the cuts provided 

by the subproblem and     represents the optimal second-stage cost for the first-stage 

   proposed by the master problem evaluated in scenario  . The optimal second-stage 

cost for iteration   is obtained by solving the subproblem: 

The subproblem 

              (13) 

     (14) 

                                               (15) 

     (16) 

 

where    represent the dual variables of the constraints.  



 

 

 
17 

 

Figure 5: Graphical representation of Benders’ Decomposition [LUMB14]. 

 

BD is likely to yield time savings in the resolution of a problem when the following 

conditions are fulfilled: 

 First stage variables increase the difficulty of the problem. The problem could 

become considerably easier when fixing temporarily the first-stage variables. The 

number of first-stage variables should be smaller than the second-stage variables 

 

 The master problem and the subproblem have a different nature. Decomposition 

allows the use of the most suitable technique for each problem, which results in 

improved efficiency. In the TEP problem, first-stage deals with investments that 

are integer variables. The second-stage holds power flows that have a linear 

nature. 
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4. A GENETIC ALGORITHM FOR THE TEPES 

The aim of this research project is to design an evolutionary algorithm and explore the 

possibilities of combining the GA with BD in the TEPES model so as to solve the TEP 

problem in an efficient way. 

As introduced in section 1, GAs are a family of computational models that imitate the 

mechanisms of evolution to solve complex optimization problems. The range of problems 

to which GAs have been applied is quite broad. 

GAs have been applied to a wide range of problems and have proven their high capacity 

for obtaining quality good solutions in affordable computation times. 

In a broader usage of the term, GA is any population-based model that uses selection and 

recombination operators to generate new sample points in a search space. 

The GA developed in this final project is based on the canonical one. This section 

explains each of the operators used for the construction of this GA. 

The goal of the project is to develop a GA for TEP and to compare the results with the 

solutions obtained with BD. The GA works as the master problem and constructs 

candidate solutions for the TEP problem. The GA sends this information to the 

subproblem. Then the subproblem calculates the cost of these candidate lines and sends 

feedback to the GA. The process is repeated until the convergence criterion is reached. 

 

Figure 6: GA as the master problem of BD. 
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According to this approach, the first stage variables are the candidate solutions for the 

TEP problem, codified in the genetic population and the second stage variables are the 

costs of each individual. The subproblem calculates the operational and investment cost 

for each individual, so for one resolution of the master problem, the subproblem needs to 

be solved as many times as the number of individuals which form the population. 

 

4.1. The Initial Generation 

4.1.1. Codification 

It all starts with the creation of the first generation, a set of new individuals. In this GA 

each member of the population will be a binary string of length   , which corresponds to 

the number of  power lines. Installing a candidate line in the possible solution will be 

represented with a ‘1’ and not considering connecting that line will be symbolized with a 

‘0’. 

This way of encoding the chromosomes or alleles of each member of the population 

results in a simple codification of the genetic operators. 

 

Figure 7: Example of the population codification in TEPES9BUS.  

 

Node_1 . Node_2 . cc1 0

Node_1 . Node_4 . cc1 1

Node_2 . Node_3 . cc1 1

Node_2 . Node_4 . cc1 0

Node_2 . Node_5 . cc1 0

Node_2 . Node_6 . cc1 0

Node_3 . Node_5 . cc1 1

Node_3 . Node_8 . cc1 0

Node_4 . Node_6 . cc1 0

Node_5 . Node_6 . cc1 0

Node_5 . Node_8 . cc1 0

Node_6 . Node_7 . cc1 1

Node_6 . Node_9 . cc1 0

Node_7 . Node_9 . cc1 1
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4.1.2. Initial generation 

The initial population is generated randomly following a binomial distribution. The fact 

that the optimal plan installs few candidate lines means that it could be interesting to 

connect less than a half of candidate lines at the beginning. Thus so the initial population 

will be closer to the optimal individual and it is reasonable to think that it will be 

necessary to carry out a lower number of iterations for obtaining the optimal solution. The 

algorithm has been tested with binomial success probabilities for the initial generation of 

30, 40, 50 and 60%.  

 

4.2. Selection 

4.2.1. Fitness construction 

The next genetic operators are applied over an intermediate population. The intermediate 

population is constructed from the current population. For constructing the intermediate 

set of members it is necessary to assign each individual a measure of its performance, a 

fitness value. 

The fitness function is constructed from the evaluation function. In the TEPES case the 

evaluation function is the total cost provided by the subproblem. The subproblem gives 

the operation and investment cost of each planning and the fitness function is constructed 

to be inversely proportional to the total cost. Let it be   the index for iterations, referred as 

to generations in the genetic algorithm’s literature. The individuals are referred to as 

index  . 

 

             
                                   

                                             
                 

                       
            

              
                                                             

 

A security band is defined above the highest cost of the generation, whose task is to 

prevent the best individual having the 100% probability of being chosen to fulfill the 

intermediate population. In addition another security band is defined under the lowest 

cost of the generation so as to avoid always eliminating the worst individual of each 

generation. 
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Figure 8: Fitness construction. 

 

Once the fitness function is defined, then it is normalized with respect to the addition of 

all the fitness values in that generation so as to obtain the distribution fitness function. 

That is a necessary step to obtain measures of performance of each individual between 0 

and 1, so the distribution fitness function represents directly the probability of each 

individual for having an offspring. 

 

4.2.2. Roulette Wheel Selection 

The technique used for selecting the intermediate population is the Inverse Laplace 

Transform. This method involves computing the cumulative distribution fitness function 

In the GA literature it is known as the Roulette Wheel Selection, because the members are 

selected by spinning a roulette wheel with slots sized according to the fitness function, so 

the probability of choosing a member to create the intermediate population is proportional 

to its fitness value. 

 

Figure 9: Example of Roulette Wheel Selection. 
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All the GA literature agrees in the suitability of using Roulette Wheel Selection. The 

Tournament Selection, although it has one more parameter to adjust, does not provide 

better results than the Inverse Transform Sampling. 

 

4.3. Recombination: 1-Point Crossover 

Once the intermediate population is constructed then the traditional genetic operators for 

generating the next generation are applied. 

In order to maintain the population size constant along the algorithm evolution, two 

children are obtained from each pair of progenitors. The probability of crossover in this 

case is 100%. 

The progenitors are two consecutive members of the intermediate population. Then the 

crossover point is generated randomly between 1 and the total number of candidate lines, 

or genes. 

 

Figure 10: Example of 1 Point Crossover in IEEE 9BUS system. 

 

4.4. Mutation 

The motivation for using mutation is to prevent the permanent loss of any allele or bit. 

After several generations it is possible that selection and crossover drive all the bits in 

some position to a single value. This fact can lead to a premature. 

Mutation acts as a background operator, occasionally changing some bit values, 

reintroducing missing information and contributing to global optimality. 
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The mutation operator developed in this project consists on disconnecting a candidate line 

if it is connected in the proposal solution, or connecting it if it is not considered to be 

installed in the candidate solution. A random number is assigned to each line. The 

numbers are generated by means of a uniform distribution between 0 and 1 and they are 

compared with the mutation probability. Mutation is applied independently to each one of 

the candidate lines or alleles of each individual of the population. 

This exchange is carried out with a mutation rate defined at the beginning of the 

resolution and it stays constant during the generations. The adjustment of the mutation 

probability is carried out empirically; the optimal values for the TEP problem are between 

of 1% and 5%. 

 

Figure 11: Example of mutation in TEPES 9BUS. 

 

The previous figure shows how the mutation has been applied to an individual. The line 

between buses 4 and 6 has been connected and the line between nodes 6 and 7 has been 

disconnected. 

 

4.5. The Queen 

One extended strategy for not losing the best found topologies until this moment is to 

save the best individual in each generation and inserting it in the next population. This 

member is called the queen. 

The strategy developed in this project for conserving the best individual is to insert it in 

the next generation. The queen individual will place the individual of the current 

generation which takes up the first position after the crossover and the mutation in the last 

population. 
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Figure 12: Queen individual. 

This way of replacing any member of the population by the queen individual, instead of 

the worst one, do not contributes to an accused elitism. 

 

4.6. Immigrants 

Sometimes the use of the mutation is not enough to avoid premature convergence so it is 

arisen a new evolutionary operator, the introduction of immigrants in the next population. 

The immigrants are generated randomly in the same way as the initial population and they 

are inserted in the next generation. These immigrant individuals are inserted in the 

population with a low fixed probability. The size of the immigrant population is a 

parameter defined at the beginning of the resolution; it should be a relatively low 

proportion of the population. 

 

Figure 13: Introduction of immigrants. 
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4.7. Definitive Structure 

To summarize, the genetic operators explained previously are applied over the population 

iteratively using the information provided by the subproblem of BD. With all the 

operators developed in the last section, the definitive structure for the problem resolution 

used stays as follows: 

 

 

Figure 14: Definitive GA structure. 

 

First of all, the initial generation is created randomly as explained in section 4.1. Then, 

this first population is sent to the subproblem, and the subproblem calculates the cost of 

each individual. The subproblem is run as many times as individuals are in the 

population. 

The next step is to calculate the fitness from the total cost provided by the subproblem. 

Roulette Wheel Selection is applied in order to construct the intermediate population. 

Then, crossover and mutation are used to obtain the next population, and after that, the 

best individual (the queen) is included in the next population in the place of any other 

individual randomly chosen. 
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A predefined number of immigrant individuals are randomly generated, in the same way 

than the initial population, and they are included in that next population. Last, this group 

of individuals is sent to the subproblem in order to calculate the total cost of each 

individual. The process is repeated until the convergence criterion is reached or the 

maximum number of total generations is finished. 
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5. RESULTS 

5.1. TEPES2020BUS 

The purpose of this chapter is to test the Genetic Algorithm and adjust the parameters in 

order to achieve a suitable resolution for TEP. The case study is based on the Spanish 

power system. The transmission data was taken of 2008 from publicly available ENTSO-

e REE E-SIOS cases [LUMB14]. The system is composed of 1084 nodes and 294 power 

plants (nuclear, coal, CCGTs, hydro, wind and solar). The existing transmission network 

is configured by 1505 lines and transformers. The candidate transmission network 

consisted of 153 power lines. 

Three cases study have been constructed from the original one. The case study 1 

considers 33 candidate power lines, the case study 2, 90 and the case study 3 takes into 

account all the candidate transmission lines of the case study based on Spain. 

 

5.1.1. Case study 1 

The candidate transmission network of the case study 1 is configured by 33 lines. In this 

case the optimal plan installs 16 candidate lines with a total cost of 19850.241 M€. This 

solution has been obtained solving the complete problem. 

The following figure shows the distribution of the initial population. The Y axis 

represents the frequency and the X axis the total cost (the operation cost plus the 

investment cost) in M€. The graphic has been constructed with a sample size of 1000 

individuals. Figure 15 represents the 99% of the members of the initial generation, 

avoiding outliers. 

In this first graphic the initial population has been constructed connecting a half of the 

candidate lines. That corresponds with a binomial success probability of 50% in the initial 

generation. 

The population distribution of this case study has three modal points, 35207 M€ with a 

frequency of 187; 53118 M€ with a frequency of 339; and 71217 M€ with a frequency of 

85. This last point is related with energy not supplied of 4.9 MW which produces a higher 

operation cost. 
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Figure 15: Candidate lines distribution in case study 1. Success probability of 50% in the initial population. 

 

Figure 16 shows a comparison between generating the initial population with different 

success probabilities in the binomial distribution. 

 

Figure 16: Candidate lines distribution in case study 1. Comparison with different success probabilities in 
the initial population. 

 

The three functions have three modal points. Although the optimal plan installs 45% of 

the candidate lines, it can be seen that connecting 60% of the candidate lines in the initial 

generation has a better cost distribution, the costs are nearer to the optimal cost. This fact 

is due to the increment of operation cost related with the energy not supplied that appears 

if connecting less than a half of the candidate power lines. 
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5.1.2. Case study 2 

The candidate transmission network of this case study is configured with 90 lines. The 

optimal solution, provided by the resolution of the complete problem, has a total cost of 

19741.229 M€ and installs 19% of the candidate lines. The following graphic represents 

the density distribution of the initial generation with 50% probability of installing each 

candidate. 90% of the initial population belongs to the interval of costs from 19760M€ to 

19780M€. The remaining 10% of the members has been omitted to eliminate outliers. 

 

Figure 17: Candidate lines distribution in case study 1. Success probability of 50% in the initial population. 

 

Figure 18 represents the initial generation distribution varying the probability of installing 

candidate lines. In the three first functions, it is represented the 90% percentile of the 

population. In the distribution with 30% of success probability the 35 percentile has been 

used for illustrating the relevant range of costs. 

It can be observed that as the success probability decreases the distribution moves to a 

lower costs region. However a lower probability of installing candidate lines entails a 

more accused dispersion of costs, although the modal point is nearer to the optimal cost. 

 

Figure 18: Candidate lines distribution in case study 2. Comparison with different success probabilities in 
the initial population. 
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5.1.3. Case study 3 

The third case study considered has been constructed with 156 candidate power lines. The 

complete problem has been solved for obtaining the optimal plan. This optimal solution 

installs 45% of the candidate lines and has a total cost of 16853.906 M€. 

In the following figure, where the Y axis represents the frequency and the X axis 

represents the total cost in M€, it can be observed that the density distribution of this 

problem is nearly triangular. The following figure represents the initial population 

distribution obtained installing a half of the candidate power lines. The mode is 17245M€ 

with a frequency of 95. This value is 2.32% higher than the optimal total cost. 

 

Figure 19: Candidate lines distribution in case study 2. Success probability of 50% in the initial population. 

 

Figure 19 represents the 90% percentile. It can be observed that the interval of costs 

where the individuals are situated is quite narrow, 90% of the 1000 randomly generated 

individuals have total costs between 17000 M€ and 17600 M€. 

 

Figure 20: Candidate lines distribution in case study 2. Comparison with different success probabilities in 
the initial population. 
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The previous figure shows the variation of the initial distribution with different success 

probabilities. The distribution which installs 60% of the candidate lines represents the 

95% of the initial generation and the distribution with 40% success probability represents 

the 85% of the initial population. 

Just as the installation rate increases, the interval of costs in where the majority of the 

initial population is located decreases. As in case study 2, a lower probability of installing 

candidate lines means more dispersion in costs, although the modal point is nearer to the 

optimal cost. 

 

5.2. Influence of the population size 

The aim of this section is to find the most suitable value of the population size for the 

resolution of this case study and to study its influence for obtaining a good solution. 

Several cases with different population sizes have been executed. The mutation 

probability was fixed at 1%. The convergence criterion consisted in fixing the total 

number of iterations at 150 or 200. In all these simulations the initial population has been 

generated with a success probability of 50%. 

5.2.1. Case study 1 

Population size of 100 

This first execution has been carried out with a mutation probability of 1% and a 

population size of 100 individuals. Figure 21 shows all the individuals within the 150 

iterations. With a red line the optimal plan cost is represented and the queen individual 

appears in blue.  

 

Figure 21: Evolution of case study 1 with 100 individuals. 
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Although the population stays reasonably homogeneous along the iterations, it can be 

observed that the best individual does improve. 

It is interesting to observe that there are two clearly differentiable clusters, the one nearer 

the queen individual and the other one defined between 19888M€ and 19877M€. 

 

Figure 22: Queen individual in case study 1 with 100 members. 

 

In Figure 22, the optimal solution calculated with the complete problem resolution and an 

optcr of 1e-4 is represented in red. The minimum cost found by the GA is 19850.5 M€, 

0.001% higher than the optimal total cost. The GA achieves 0.046% for improvement 

since the beginning of the resolution process. This resolution has spent 5 hours and a half 

for running 150 iterations.  

As the population does not actually improve in the last iterations, then it will be 

interesting to carry out the same simulation with a slightly higher mutation rate, in order 

to provide new genetic information. 

 

Population size of 20 

The next resolution has been carried out with the same parameters than in the previous 

case but with a population size of 20 individuals. All the population within the 200 

iterations can be seen in the following figure. 

The same cluster with costs between 19875 M€ and 19885 M€ that was shown in the case 

of using 100 individuals can be seen also in Figure 23. 
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Figure 23: Evolution of case study 1 with 20 individuals. 

 

The simulation spent 33 minutes for constructing 200 generations. At the beginning of the 

resolution the queen individual decreases with a steep slope. Since the generation 104 the 

problem gets stuck in 19851 M€. The percentage for improvement in this case is 10.78%. 

 

Figure 24: Queen individual in case study 1 with 20 members. 

 

Population size of 10 

The simulation with a fixed mutation rate of 1% was last tested with 10 individuals. Once 

more the cluster is manifested in Figure 24, where the simulation using a population size 

of 10 members is represented. 
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Figure 25: Evolution of case study 1 with 10 individuals. 

 

The GA execution lasted for 31 minutes. Within the 200 generations the algorithm 

achieves an improvement of 10.78%. The best solution obtained installs one power line 

more than the optimal solution and its total cost is 0.005% higher than the cost of the 

optimal plan which was obtained solving the complete problem. 

 

Figure 26: Queen individual in case study 1 with 20 members. 

 

Figure 26 shows that the best solution obtained by the GA is found in the iteration 128. In 

the first 55 generations the cost evolution is more notable. Then the algorithm stagnates, 

and does not improve in the last 78 iterations. 

 

Comparison 

Figure 27 displays a comparison of the queen individuals obtained with different 

population sizes in the case study to test its influence in the problem resolution. The 

mutation probability is 1% in all the represented cases. 
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Figure 27: Comparison of the population size with mutation rate of 1% in case study 1. 

 

The best solution is obtained with a population size of 100 individuals, even though in the 

case of using 10 individuals the solution reached is only 0.004% higher than with 100 

individuals. Moreover, in the case of using 10 individuals the improvement achieved 

since the beginning of the simulation to the end is 10.73% higher than in the case of 100 

members. In conclusion it is suitable to use a population size of 10 individuals. 

The same comparison than in the previous graphic has been made in Figure 28, but with a 

mutation probability of 5% in all the represented resolutions. 

 

Figure 28: Comparison of the population size with mutation rate of 5% in case study 1. 

 

In this case the best solution is achieved with a population size of 10 individuals. So with 

a mutation rate of 5% is clearly better to use a population size of 10 members than a 

higher one. 
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5.2.2. Case study 2 

Population size of 100 

The influence of the population size was then tested in case study 2. The mutation 

probability was also 1%. The number of iterations was limited to 150. The optimal 

solution in this case study, obtained with the complete problem resolution,  installs 17 

power lines with a total cost of 19740.97 M€. 

 

Figure 29: Evolution of the problem in case study2 with 100 individuals. 

 

In Figure 29 a cluster appears between 19880 M€ and 19850M. Within the 150 iterations 

the population keeps relatively constant. 

 

Figure 30: Queen individual in case study 2 with 100 members. 

 

The queen individual experiments a gradual decrease, less accused in the lasts 

generations. After 3 hours and 47 minutes the queen individual has only reached 0.06 % 

for improvement with respect to the first generation. The final solution has a total cost of 

19749.6 M€, with an error of 0.04 %. 
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Population size of 20 

 

Figure 31: Evolution of the problem in case study 2 with 20 individuals. 

 

Figure 31 is obtained solving case 2 with a population size of 20 individuals and a 

mutation rate of 1%. The cluster represented when fixing the population size at 100 

individuals is also manifested in this figure. In the first 40 iterations a global decrease of 

the individuals’ total costs is noticeable, following the queen individual trajectory. Then 

the population remains relatively constant. 

 

Figure 32: Queen individual in case study 2 with 20 members. 

 

A notable decrease of the cost of the queen individual can be appreciated in the previous 

figure in the first 50 iterations, but this accused tendency is diminished in the next 

generations, getting stagnant in iteration 129. The execution spent 35 minutes for 

constructing the 200 generations, and the best solution obtained, with a total cost of 

19745.6 M€, was 0.02 % higher than the optimal one. The improvement capacity reached 

in this simulation was 0.08 %, slightly better than with a population size of 100 

individuals. 
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Population size of 10 individuals 

The resolution of the same case study has been executed fixing the population size at 10 

members. Figure 33 shows a slight total cost decrease of the whole population within the 

200 generations. The cluster previously mentioned in the simulations of case study 2 with 

population sizes of 100 and 20 can also be seen in the following figure with 10 members. 

 

Figure 33: Evolution of the problem in case study 2 with 10 individuals. 

 

The queen individual experiments a downspout trend within the 200 generations as it can 

be observed in Figure 34. In contrast with using population sizes of 100 and 20 members, 

in this case the queen individual does not get stagnant in the last generations. The GA 

obtained a solution with a cost of 19745.03M€ after 29 minutes, 0.02% more expensive 

than the optimal solution cost and 0.1% cheaper than the best cost found in the initial 

generation. 

 

Figure 34: Queen individual in case study 2 with 10 members. 
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Comparison 

As in the previous section, the following figures show a comparison of the use of 

different population sizes in case study 2. In Figure 35 the mutation probability has been 

defined as 1%. 

The worst case is the one which considers 100 individuals and it is also the one which 

spent more time in the execution of the model. Not only its solution is the most expensive 

of all the represented but also is the case with worst improvement capacity, within the 200 

iterations it only reaches 0.06% for improvement. On the other side using a population 

size of 10 or 20 individuals seems to be more suitable for this problem because they 

found chipper solutions with time savings and also they manifest a higher improvement 

capacity. 

 

Figure 35: Comparison of the population size with mutation rate of 1% in case study 2. 

 

In Figure 36, as in the previous graphic, a comparison between the queen individuals 

when using different population sizes has been represented but with a mutation 

probability of 5%. A great similarity between the three queen individuals can be seen in 

this figure. When using 100 members, the queen individual decreases in the first 

iterations for then staying slightly constant, contrasting with using 10 or 20 members. In 

these cases with a lower population size the queen individuals evolve more gradually to 

lower costs. 
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Figure 36: Comparison of the population size with mutation rate of 5% in case study 2. 

 

5.2.3. Case study 3 

Finally the same study that has been carried out in the previous case studies has been 

made with the third one. This case study composed of 1084 nodes and 294 power plants. 

The transmission network is configured by 1505 lines and 156 candidate lines. The 

mutation probability has been fixed at 1%. 

 

Population size of 100 individuals 

The Figure 37 has been constructed with a population size of 100 individuals. A global 

cost decrease tendency is observed in the population, following the queen individual 

trajectory. 

 

Figure 37: Evolution of the problem in case study 3 with 100 individuals. 
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In the following figure a gradually decrease, of the total cost of the best individual is 

shown. The solution obtained has a cost 0.2% more expensive than the optimal solution 

given by the resolution of the complete problem, which has a cost of 16853.9 M€. 

Running the simulation spent 7 hours with a convergence criterion of stopping at the 

iteration 200. The improvement achieved since the beginning to the end of the resolution 

amounts for 0.7%. 

 

Figure 38: Queen individual with 100 members in case study 3. 

 

Population size of 20 individuals 

The evolution of the population fixing its size at 20 members is represented in Figure 39. 

The decrease of the whole population total cost can be observed, following the queen 

individual evolution. 

 

Figure 39: Evolution of the problem with 20 individuals in case study 3. 

 

The gradual decrease of the queen individual total cost finishes with a solution 0.3% more 

expensive than the optimal one that provides the resolution of the complete problem. The 

capacity for improvement amounts to 0.7%, that means that the cost of the queen 

individual in the initial iteration is 16896.9 M€ and in the 200 generation is 17013.8 M€. 

16850 

16870 

16890 

16910 

16930 

16950 

16970 

16990 

17010 

17030 

0 20 40 60 80 100 120 140 

Queen ind 

Optimum 

time: 7,03 h 

16850 

17050 

17250 

17450 

17650 

17850 

18050 

0 20 40 60 80 100 120 140 160 180 200 

To
ta

l c
o

st
 [

M
€]

 

Iterations 

To
ta

l c
o

st
 [

M
€]

 

Iterations 



 

 

 
42 

 

Figure 40: Queen individual with 20 members in case study 3. 

 

Two parts in the queen individual evolution can be observed. Since the beginning to the 

generation 100 the queen individual cost decreases with a steeper slope than in the second 

part. The simulation of the 200 generations lasted for 33 minutes. 

 

Population size of 10 individuals 

For finishing the study of the influence of the population size in the case study that 

considers 156 candidate power lines, a population of 10 individuals has been defined for 

obtaining the simulation represented in the following figure. 

 

Figure 41: Evolution of the problem with 10 individuals in case study 3. 

 

 

In the first generations a decrease of the total cost is observed, but since the 20 iteration 
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cost evolution. In the first iterations the queen undergoes more accused changes than in 

the lasts generations. 

The simulation lasted for 16 minutes and the solution cost amounts for 16873.8 M€, 0.1% 

higher than the optimal cost calculated by the complete problem. The improvement 

capacity in this case is 0.8%, higher than when using population sizes of 20 or 100 

individuals. 

 

Figure 42: Queen individual with 10 members in case study 3. 

 

Comparison 

To conclude with the study of the influence of the population size for the solution 

obtaining a comparison of all the simulations carried out in the case study 3 is represented 

in the following figures. The first figure has been constructed with a mutation rate of 1%, 

and the second one defining a mutation probability of 5%. 

The queen individual when using a population size of 20 members is significantly 

different from the other two, as it can be seen in Figure 43. The best cost obtained with 

the simulation of the GA with 20 members is 0.3% higher than the optimal cost. 

The queen evolution and the solutions provided by the resolutions with 10 and 100 

individuals are very similar, 0.17% more expensive than the optimal plan. 
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Figure 43: Comparison of the population size with mutation rate of 1% in case study 3. 

In contrast with the gradual evolution of the costs in the previous figure, in this one 

irregular decrease of the costs is shown. In this case study, instead of what the mutation is 

thought to do, it causes cost stagnation in the queen individual evolution. 

 

Figure 44: Comparison of the population size with mutation rate of 5% in case study 3. 

 

5.3. Influence of the mutation rate 

The aim of this section is to study the influence of the mutation rate in the GA simulation. 

For fulfilling this task the three case studies have been simulated with different mutation 
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a successful probability of 50% in the binomial distribution. 
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5.3.1. Case study 1 

A population size has been fixed in the case study with 53 candidate power lines while 

the mutation rate has been modified in order to study its influence within the generations. 

 

Population size of 100 individuals 

First the GA has been tested with a population size of 100 individuals. In Figure 45 the 

evolution of the population within the generations is represented for different mutation 

rates, from top to the bottom: 1%, 5% and 10%.  

 

Figure 45: Evolution of the population in case study 1 with 100 members and mutation rates of 1,5,10%. 
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As the mutation rate increases new clusters appear. Moreover the clusters also acquire 

more density of population. 

In the two last graphic four clusters are clearly identified, the one which is nearer to the 

optimal cost region, 2985 M €, 4985 M€ and the last one with a cost of 69850 M€. In the 

first representation of the generations the second cluster is not appreciable, because the 

mutation rate is not high enough. 

All the clusters first appear in the initial generation regardless of whether mutation rate is 

defined. Figure 46 shows the population evolution when using a mutation rate of 10% 

with the distribution function with a success probability of 50% in the initial population. 

Then the higher ones disappear once the genetic process is being carried out and the 

mutation rate is low enough. In this way the mutation probability acts as a filter of 

clusters. A lower mutation rate diminishes the clusters apparition. So it seems that the 

clusters are not only related with the nature and topology of the case study but directly 

related with the mutation probability. 

Figure 46: Clusters in case 1 with 100 members. 

 

The next figure shows the rising of the total cost average of the population, which is 

another significant effect that comes with the mutation rate increase.  

 

Figure 47: Cost average with a population of 100 individuals in case study 1. 
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When defining a mutation rate of 10% the cost population average amounts to a mean 

value of 32072.84 M€, while when using a mutation probability of 1% the main cost 

value is 21013.5 M€. Moreover the standard deviation of the costs average also decreases 

when the mutation rate do the same. 

Figure 48 shows that when the mutation probability raises, the mean value of the costs 

average and its dispersion do the same. 

 

Figure 48: Relationship between the cost’s mean average and the mean standard deviation with the 
mutation rate. Population size of 100 members in case study 1 

 

Population size of 10 individuals 

Figure 49 displays the same clusters that appeared in the resolution with a population size 

of 100 members. It is interesting to note that the number of clusters and its density are 

closely related to the mutation rate and not to the population size. 
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Figure 49: Evolution with 10 members and mutation rates of 1;5;10% in case study 1. 

 

In this case the mean of the costs average of the population and its standard deviation also 

rise with the mutation rate increase. 

 

Figure 50: Relationship between the cost’s mean average and the mean standard deviation with the 
mutation rate. Population size of 10 members in case study 1. 
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Comparison 

To show how the mutation rate influences in the best solution obtained by the GA, a 

comparison varying the mutation rate while keeping the population size constant has been 

represented in Figure 51. The best solution is found using a mutation rate of 1%, which 

has been enough to avoid a premature convergence to a local optimum. 

The queen individual in the last generation when using a mutation rate of 1% has a total 

cost of 19850.5 M€ only 0.001% higher than the optimal cost given by the resolution of 

the complete problem. The total costs found when using a mutation rate of 5% or 10% 

amounts to 19851M€. In the case of using a mutation rate of 10% at the beginning of the 

simulation the queen individual cost decreases more quickly than when using lower 

mutation rates, but unlikely to what it could be thought, the population gets stagnant since 

the 20 iteration.  

 

Figure 51: Comparison of the mutation rate with a population size of 100 in case study 1. 

 

Figure 52 represents the same comparison but with a population size of 10 individuals. As 

in the previous figure, using a mutation rate of 10% is not suitable for this problem 

because the queen individual gets relatively stuck since the 10 generation. In this case 

using a mutation rate of 5% provides the best result when using a population size of 10 

members. This solution is very similar to the best solution provided by the GA with 100 

individuals and a mutation probability of 1%. 
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Figure 52: Comparison of the mutation rate with a population size of 10 in case study 1.  

 

5.3.2. Case study 2 

In order to test the mutation rate influence in the genetic resolution, the same analysis has 

been carried out in the second case study based on the spanish one and constituted by 90 

candidate power lines. 

 

Population size of 100 individuals 

 

Figure 53: Evolution with 100 members and mutation rates of 1 and 5% in case study 1. 
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The previous figure confirms that the clusters become thicker with higher mutation rate. 

The figure on the left shows the resolution process with a mutation probability of 1%, and 

on the right with a mutation rate of 5%. 

Figure 54 shows the population costs average with the queen individuals obtained in the 

resolution of case study 2. To the extent that the mutation rate grows the costs average 

does the same. 

 

Figure 54: Total costs’ average with a population size of 100 members and different mutation rates in 
case study 1. 
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Figure 55: Evolution with 10 members and mutation rates of 1 and 5% in case study 2. 
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The clusters density grows with the mutation probability. In the previous figure is shown 

another effect of the mutation rate. The population gets closer to the queen individual. 

This can be clearly seen in the figure on the bottom-left. 

 

Comparison 

Figure 56 represents the queen individuals when using different mutation rates. At the 

beginning of the iterative process, a higher mutation rate provides a faster response of the 

algorithm, nevertheless using a mutation rate of 1% gives a better solution at the end of 

the 150 generations. 

 

Figure 56: Comparison of the mutation rate with a population size of 100 in case study 2. 

 

When using a population size of 20 individuals with a mutation rate of 1% there is a 

faster decrease of the queen individual total cost. It provides a better solution than when 

using a mutation rate of 5%, only 0.02% more expensive than the optimal planning cost. 

 

Figure 57: Comparison of the mutation rate with a population size of 20 in case study 2. 
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Figure 58 represents the same comparison as in the previous graphics but with a 

population size of 10 individuals. As in the case of using a population size of 100 

members a faster response in the queen individual cost can be observed when using a 

mutation rate of 5%. However, in the last 45 iterations this tendency gets stagnant. The 

best cost is obtained with a mutation rate of 1%, which is 0.02% more expensive than the 

optimal cost provided by the resolution of the complete problem. 

 

Figure 58: Comparison of the mutation rate with a population size of 10 in case study 2. 

 

5.3.3. Case study 3 

Finally to test the influence of the mutation rate in the GA resolution, case study 3 has 

been carried out keeping the population size constant. 

The transmission network of this study case is configured with 156 candidate lines, and 

the plan obtained by the complete problem resolution installs 72 lines with a total cost of 

16853.906 M€. 

 

Population size of 100 individuals 

The following figure shows the evolution of the 100 individuals within 150 iterations 
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clusters can be observed. Nevertheless, when using a mutation rate of 5% the clusters are 

thicker, as it can be seen in the graphic on the top-right. 
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Figure 59: Evolution with 100 members and mutation rates of 1 and 5% in case study 3. 

 

It is interesting to observe how the population closely follows the queen individual 

trajectory within the generations when using a mutation rate of 1% in contrast with the 

population costs in the case of using a mutation probability of 5%. That is shown in the 

figure on the bottom-right. 

Figure 60 confirms this. The costs average of the population with a mutation probability 

of 1% is lower than with a mutation rate of 5%. 

 

Figure 60: Total costs’ average with a population size of 100 members and different mutation rates in 
case study 1. 
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Population size of 20 individuals 

As in the simulation with 100 individuals, two clusters appear when using a mutation rate 

of 1% or 5% in the case of using 20 individuals, as it can be observed in the following 

figure, in the two pictures on the top. 

 

Figure 61: Evolution with 20 members and mutation rates of 1 and 5% in case study 3. 

 

On the bottom-left, the genetic resolution with a mutation rate of 1% is showed and on 

the bottom-right with a mutation probability of 5%. The population clings to the queen 

individual evolution when using a mutation rate of 1%, unlike with a mutation probability 

of 5%, in which the population costs are more disperse. 

 

Population size of 10 individuals 

The evolution of the population with a mutation probability of 1% can be seen on the left 

in Figure 62. On the bottom-left it can be seen how the population follows the queen 

individual, a global decrease of the total cost of the population within the generations is 

reached and the whole population tightens the queen individual tendency. 

 

On the right it is represented the evolution of the population for a mutation rate of 5%. It 
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mutation probability of 1%. On the bottom-right, a dispersion of the population costs with 

respect to the queen individual cost can be observed. 

 

 

Figure 62: Evolution with 10 members and mutation rates of 1 and 5% in case study 3. 

 

Figure 63 shows the other effect of the mutation, the population in the case of defining a 

mutation rate of 1% is nearer to the optimal plan than with a mutation of 5%. 

 

Figure 63: Total costs’ average with a population size of 10 members and different mutation rates in case 
study 3. 
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Figure 64 shows a comparison between queen individuals when using different mutation 

rates and a population size of 10 individuals in the case study 3. The electric system has 

153 candidate lines, and the optimal plan provided by the complete problem resolution 

installs 72 power lines with a  total cost of 16853.906 M€. The best solution is reached 

with a mutation probability of 1% for a population size of 10, but the same occurs with 

higher population sizes. The queen individual gets stagnant between iterations 40 and 60 

and also at the end since iteration 130. A mutation rate of 5% is not able to introduce new 

valuable genetic information and slows the cost evolution of the queen individual. 

 

Figure 64: Queen’s comparison with a population size of 10 and mutation rates of 1, 5 and 10% in case 
study 3. 
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Figure 65: From the top to the bottom case studies 1, 2 and 3. Resolution with immigrants. 
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For contrasting both resolution methods, the comparison has been made with a GA with a 

population size of 10 individuals, a mutation probability of 5% and without including 

immigrants. These parameters have been chosen because, as it was showed in the 

previous sections, they provide a good solution in a reasonable time. 

Convergence criterion Initial generation Population size Mutation probability 

350 generations 60% 10 individuals 5% 

Table 3: GA parameters for solving case study 1. 

 

After 27 minutes and 127 generations the GA finds a solution with a total cost of 19850.6 

M€ installing 17 candidate lines. On the basis of these results, pure BD resolution is 

clearly better than the GA one, BD provides the optimal solution and with important time 

savings. The following figure compares BD iterations with GA generations. 

 

Figure 66: Contrasting GA generations with BD iterations in case study 1. 
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METHOD TIME [s] ITERATIONS LINES 

INSTALLED 

TOTAL 

COST [M€] 

ERROR [%] 

BD 31.12 333 16 19850.214 0 

GA 1757.51 309 17 19850,600 0.0020 

Table 4: Contrasting GA efficiency with BD in case study 1. 

 

5.5.2. Case study 2 

In the problem that has 90 candidate power lines, the solution achieved by pure BD 

installs 16 lines with a total cost of 19741 M€. This solution is very similar to the optimal 

one except for the fact that it installs one less line, and installs one with a slightly higher 

fixed cost than the substitute proposed in the optimal plan. The resolution of the problem 

with BD lasted for 562 seconds with a tolerance of 10e-9. 

The GA that provides the best result has carried out for contrasting its efficiency with BD, 

so the GA parameters have been chosen consistent with the previous parameter’s study. 

The algorithm executed is defined with the following parameters: 

Convergence criterion Initial generation Population size Mutation probability 

450 generations 40% 10 individuals 1% 

Table 5: GA parameters for solving case study 2. 

 

Figure 67 represents BD iterations with GA generations. The queen individual evolves 

gradually to finally getting stagnant with a total cost of 19742.295 M€. BD iterations 

suffer abrupt changes to finally converge with 0.003% error. 
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Figure 67: Contrasting GA generations with BD iterations in case study 2. 

 

GA is able to construct 120 generations in the time that BD converges. After 120 

generations the solution given by the GA is 0.03% higher than the optimal one. The 

following table illustrates the main measures of both resolutions processes. 

METHOD TIME [s] ITERATION LINES 

INSTALLED 

TOTAL 

COST [M€] 

ERROR [%] 

BD 562.00 420 16 19741.032 0.0003 

GA 2115.90 386 17 19742.295 0.0067 

Table 6: Contrasting GA efficiency with BD in case study 2. 

 

5.5.3. Case study 3 

Finally the efficiency of the GA resolution is contrasted with BD in case study 3. The 

electric system is constituted by 1084 nodes and 294 power plants. The existing 

transmission network is configured by 1505 lines and transformers and there are 156 

candidate lines in this case study. 

The optimal plan provided by the complete problem resolution installs 72 candidate lines 

with a total cost of 16853.906 M€. 

The GA implemented in this case study is defined by the following parameters: 
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Convergence criterion Initial generation Population size Mutation probability 

450 generations 60% 10 individuals 1% 

Table 7: GA parameters for solving case study 3. 

 

BD resolution is not able to converge with a tolerance lower than 4%, it gets stagnant 

with a cost of 16919.330 M€. This cost value is found in the second iteration after 37.02 

seconds. 

The GA method reaches a cheaper solution than BD. This solution has a cost of 

16863.197 M€, only 0.0551% error, installing 13 more power lines than the optimal plan. 

The GA resolution spends 2392 seconds and 450 generations.  

METHOD TIME [s] ITERATION LINES 

INSTALLED 

TOTAL 

COST [M€] 

ERROR [%] 

BD 37.02 2 156 16919.330 0.3882 

GA 2414.70 446 85 16863.197 0.0551 

Table 8: Contrasting GA efficiency with BD in case study 3. 
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6. CONCLUSIONS 

6.1. Generating the initial population 

The transmission network in case study 2 is configured by 90 candidate power lines. The 

optimal plan installs 17 lines, 19% of the total. In the light of this result it seems suitable 

to generate an initial population installing a similar percentage of candidate lines, to start 

the iterative process relatively close to the optimal solution. However the success 

probability in the binomial distribution for generating the initial population that better 

results achieved is 40%. Installing less than 40% of the candidate lines has resulted not to 

be a good idea. Despite of finding few individuals in low costs region, the remaining part 

of the population has high total costs, because of the power not supplied. Therefore, 

generating proposals with fewer lines installed in the initial generation involves an 

accused dispersion on the costs distribution function, not contributing to improve the GA 

resolution process.  

In cases 1 and 3 the optimal plan provided by the complete problem resolution installs 

over 50% of the candidate power lines. However generating the initial population with a 

success probability of 60% in the binomial distribution has the best costs distribution and 

provides the best solution. 

In conclusion the best success probability in the initial generation for case study 2 is 40% 

and for cases 1 and 3 is 60%, slightly higher than the proportion of lines installed in the 

optimal plan of each case study, to avoid a cost increment due to power not supplied. 

 

6.2. Population size 

As already stated in the number of individuals should be similar to the number of nodes 

that configured the transmission network for obtaining the best results in small problems. 

However this proportion gets stagnant with larger problems, so for the case study 

considered the most appropriate population size has resulted to be 10 individuals, 

independently of the number of candidate lines regarded. 

A population size of 10 individuals has provided better solutions than defining population 

sizes of 20 or 100 members. Moreover the improvement capacity achieved by GA has 

also been higher in all the resolutions carried out when using 10 individuals and the time 

spent in the resolution process has been considerably lower. The population size is 
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directly related with the time spent for reaching a solution. The subproblem is solved in 

each generation as many times as individuals are in the population. The genetic operators 

are very simple and they do not spend much time but the subproblem does. The 

population size should be high enough for not losing important genetic information along 

the algorithm resolution process, but low enough for no increasing the execution time 

unnecessarily. 

 

6.3. Mutation probability 

The mutation operator has demonstrated its importance in the resolution process of the 

GA. A mutation rate of 1% has provided the best results in the three case studies 

regarded, which is consistent with most of the literature.  Higher mutation rates seem to 

be better at the beginning as they achieve lower costs in the first iterations, but then the 

population get stagnant, so the final solution provided is worst than with lower mutation 

probabilities. 

The formation of clusters is a significant effect of the mutation rate. Clusters are high cost 

regions in the distribution function inherent to the case study. The number of clusters is 

directly related to the mutation probability, higher mutation rates involves more clusters. 

Furthermore the density of each cluster also grows as the mutation probability increases. 

In case study 1 there are 4 clusters. At the beginning of the genetic resolution process we 

can see the 4 clusters, independently of the mutation rate defined, but after a few 

iterations some clusters disappear as consequence of a low mutation rate. Only 2 clusters 

are visible with a mutation rate of 1%. While the mutation probability grows, more 

clusters appear in cost increasing order and with a mutation rate of 10% all the clusters 

can be seen. Case studies 2 and 3 have two main clusters, but the same as in case study 1 

happens. In this way the mutation rate can be thought as a filter of clusters, lower 

mutation rates block the apparition of higher cost clusters. 

A higher mutation probability also causes a costs average increment in the population due 

to the costs dispersion caused by the creation of clusters. We can also state that the 

standard deviation of the costs average also grows with the mutation probability in the 

three case studies. 
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6.4. Introduction of immigrants 

The introduction of few immigrants generated randomly as the same way than the initial 

population has resulted not to be a successful operator in the resolution process. The 

solutions obtained are all worse than the ones resulted of the genetic resolution without 

immigrants. 

 

6.5. GA efficiency 

The GA has been able to find good quality solutions in all the case studies, with errors 

under 0.3%. The selection of a suitable mutation rate is very important for finding better 

solutions. Three main operators have helped the GA to obtaining cheaper expansion 

plans: saving the queen individual, generating the initial population with a suitable 

binomial distribution, and an appropriate mutation. The introduction of immigrants has 

not been useful for solving the TEP problem in these case studies. 

BD is a better resolution method for solving case studies 1 and 2, as it is illustrated in the 

previous section. It is able to provide the optimal solution or a very similar one with 

tremendous time savings. 

However in case study 3, the GA seems to be a promising solution method. BD gets 

stagnant, while GA is able to find better solutions in a reasonable time. 

 

6.6. Future Research 

In the light of these results, we can conclude that the GA (with an appropriate exploitation 

of the information provided by the BD subproblem) is a promising method for solving 

large problems. A suitable selection of parameters contributes to reach a better solution 

with time savings. The optimal genetic parameters depend on the type of problem and 

initial data, so they have to be specifically chosen for each one. 

The best final solution is provided by defining a mutation probability of 1% but in the 

first iterations a higher mutation rate reaches lower total costs, so it could be interesting to 

vary the mutation probability  according to the population evolution phase. It would be 

useful to define the mutation rate by means of decreasing laws, such as a heat law of 

decreasing temperatures [SILV00]. 

Another possible ways to put into practice the mutation operator would be: 
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 To fix different mutation rates for the individuals of each cluster, so as to 

maximize the probability of being in a low-cost cluster. 

 

 To define different mutation probabilities for each candidate line (allele) 

depending of its contribution to the individual fitness value in order to achieve a 

decrease in the total cost. 

A good initial generation is very important in the development of the algorithm. To study 

the concrete characteristics of each area of the population distribution function would 

provide useful information to generate the initial set of individuals in a profitable way. 

Generating immigrants by means of binomial distribution does not provide any 

advantage. However we could also create immigrants using the information provided by 

the initial population distribution function. 

Another promising technique could be to start the process of the solution research with 

GA, and when a certain tolerance is reached continue the resolution with pure BD. As we 

have seen in the section which contrasts GA efficiency with BD, in the first iterations the 

GA is able to reach good quality solutions, while BD starts its research process with very 

high costs. However the BD capacity for improvement seems to be better than the 

provided by the GA. 
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8. APPENDIXES 

8.1. Codification of the TEPES-Genetic Algorithm in GAMS 

SETS 

l   iterations 

y   year 

nd   node (bus) 

cc    circuit 

lc (nd,nd,cc)  candidate lines 

[…] 

* GENETIC ALGORITHM SETS 

i  individuals proposed by master problem based on optimization or on 

GA/ ind001*ind010 / 

pp(i,i) selector of individuals in the intermediate population 

pqueens (i) selector of the queen individual 

 

PARAMETERS 

pInstalCap_L  (l,y,nd,nd,cc) first stage variables valuesin iteration l 

[…] 

* GENETIC ALGORITHM PARAMETERS 

pqueen (l,i)     queen selector parameter 

pFitnessmax (l)    max fitness 

pm      mutation probability  /0.01/ 

pCardlc     cardinal of lc 

pOrdlc (nd,nd,cc)    ordinal of lc 

pInstalCapGA_L (l,i,y, nd,nd,cc) first stage variables values in iteration l 

solved by GA 

pInstalCapGA_L_inter (l,i,y, nd,nd,cc) intermediate population 

pInstalCapGA_L_cross (l,i,y, nd,nd,cc) population after cross 
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pCost (l,i)    individuals' total cost(vTotalMCost) 

pmaxcost (l)    max cost in iteration l 

pmincost (l)    min cost in iteration l 

pFitness (l,i)   population'sfitness 

pFitnessa (l,i)   population'sprevious fitness 

pRoulette (l,i)   cumulate fitness 

ptotal (l)    addition of the previous fitness 

prans (l,i)    random number for selection 

ppmt (l,i, nd,nd,cc)  random number for mutation 

ppc (l,i)    cross point 

ppm (l,i)    mutation point 

pGenInit success probability for generating the initial 

population     /0.6/ 

pNumImm    number of immigrants   /0/ 

pOptImm    OPTION OF IMMIGRANTS (0 NO   1 YES) /0/ 

pOptQueen    OPTION OF QUEEN      (0 NO   1 YES) /1/ 

 

VARIABLES 

vInstalCap (y,nd,nd,cc)  indicator of cumulat candidate line   [0-1] 

vTotalOCost (y,p)   total system variable        cost     [M€] 

vTotalGCost (y,p)   total system gen reliability cost     [M€] 

vTotalMCost         total system master          cost     [M€] 

 

[…TEPES MODEL...] 

 

loop (l $[[abs(pC_Aux) > pTol or (pIteratOptcr>pBdTol and pInexactMaster)] and 

pConverged = 0 and ord(l) <= pBdIter], 

[…] 

* GENETIC ALGORITHM CODE 

   elseif pMasterOpm = 2, 

       pCardlc=0 ; 

    loop (lc, 
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             pCardlc    = pCardlc + 1 ; 

             pOrdlc(lc) = pCardlc     ; 

       ); 

   if (card(ll) = 0, 

*           INITIALIZATION 

             pFitness  (lll,iii) = 0 ; 

             pFitnessa (lll,iii) = 0 ; 

             pRoulette (lll,iii) = 0 ; 

             pInstalCapGA_L_cross(lll,iii,y,lc) = 0 ; 

   else 

             pRoulette(l-1,i) $[ord(i)=1] = pFitness(l-1,i) $[ord(i)=1] ; 

loop (i $[ord(i)>1], 

               pRoulette(l-1,i) = pRoulette(l-1,i-1) + pFitness(l-1,i) ; 

          ) ; 

***         SELECTION 

          prans(l,i) = Uniform(0,1) ; 

          pp(i,ii) = no ; 

          pp(i,ii) $[pRoulette(l-1,ii) >= prans(l,i) and pRoulette(l-1,ii-1) < 

prans(l,i)] = yes ; 

            pInstalCapGA_L_inter(l-1,i,y,lc) = sum[pp(i,ii), pInstalCapGA_L(l-

1,ii,y,lc)] ; 

***         CROSSOVER 

   loop ((i,iii) ${(floor(ord(i)/2))*2 +1 = ord(i) and ord(iii) = 

ord(i)+1 and ord(iii) <= card(i)}, 

            ppc(l,i) = UniformInt(1,pCardlc) ; 

            pInstalCapGA_L_cross(l,  i,y,lc) $[(pOrdlc(lc)<=ppc(l,i))] = 

pInstalCapGA_L_inter(l-1,  i,y,lc) ; 

            pInstalCapGA_L_cross(l,  i,y,lc) $[(pOrdlc(lc)> ppc(l,i))] = 

pInstalCapGA_L_inter(l-1,iii,y,lc) ; 

            pInstalCapGA_L_cross(l,iii,y,lc) $[(pOrdlc(lc)<=ppc(l,i))] = 

pInstalCapGA_L_inter(l-1,iii,y,lc) ; 

            pInstalCapGA_L_cross(l,iii,y,lc) $[(pOrdlc(lc)> ppc(l,i))] = 

pInstalCapGA_L_inter(l-1,  i,y,lc) ; 

            ) ; 

***         MUTATION 
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            ppmt(l,i,lc)=Uniform(0,1); 

            pInstalCapGA_L(l,i,y,lc) $[(ppmt(l,i,lc) <= pm) ] = 1 - 

pInstalCapGA_L_cross(l,i,y,lc) ; 

            pInstalCapGA_L(l,i,y,lc) $[(ppmt(l,i,lc) >  pm) ] =     

pInstalCapGA_L_cross(l,i,y,lc) ; 

***         QUEEN 

      if(pOptQueen=1, 

               pqueen(l,i)=0; 

               pFitnessmax(l-1) = smax(i,pFitness(l-1,i)); 

               pqueen(l,i)$[pFitness(l-1,i)>=pFitnessmax(l-1)]=1; 

               pqueens(i)=no; 

  loop(i, 

     if(sum [ii$(ord(ii)<=ord(i)),pqueen(l,ii)]<=1, 

                      pqueens(i)$[pqueen(l,i)=1]=yes; 

     ); 

               ); 

               pInstalCapGA_L(l,'ind001',y,lc) = 0 ; 

pInstalCapGA_L(l,'ind001',y,lc) = sum[pqueens(i),pInstalCapGA_L(l-1,i,y,lc)]; 

            ); 

***         IMMIGRANTS 

     if( pOptImm = 1, 

               pInstalCapGA_L(l,iii,y,lc)$[(ord(iii) > 1) and (ord(iii) < 

(pNumImm + 2))] = 0; 

               pInstalCapGA_L(l,iii,y,lc)$[(ord(iii) > 1) and (ord(iii) < 

(pNumImm + 2))] = UniformInt(0,1); 

            ); 

   ); 

*        END OF GENETIC ALGORITHM CODE 

[…] 

   loop (i $[(ord(i) = 1 and pMasterOpm = 1) or pMasterOpm = 2], 

*  GENETIC ALGORITHM INITIAL GENERATION 

       pInstalCapGA_L('it0001',i,y,lc)$[pMasterOpm = 2] = 

randBinomial(1,pGenInit); 

*     Communication master and subproblem 
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vInstalCap.l (  y,lc) $[pMasterOpm = 2] = pInstalCapGA_L(l,i,y,lc) ; 

pInstalCap_L (l,y,lc)                   = vInstalCap.l(y,lc) ; 

  vInstalCap.fx(  y,lc) $[pOptCmplt = 0]  = vInstalCap.l(y,lc) ; 

*     As the master problem is not solved, fixed costs are input separately 

vTotalFCost.fx $[pMasterOpm = 2] = alpha * sum[(y,lc), (card(y)-

ord(y)+1)*pFixedCost(lc)*[pInstalCap_L(l,y,lc) - pInstalCap_L(l,y-1,lc) ]] ; 

[…SUBPROBLEM...] 

* GENETIC ALGORITHM FITNESS 

       pCost(l,i) $[pMasterOpm = 2] = vTotalMCost.l ; 

   ); 

*  FITNESS CONSTRUCTION 

   if (pMasterOpm = 2, 

   option pCost:5;    display pCost; 

      pmaxcost (l)   = smax(i, pCost(l,i))* 1.1 ; 

      pmincost (l)   = smin(i, pCost(l,i))* 0.9 ; 

      pFitnessa(l,i) = [pmaxcost(l)- pCost(l,i)]/[pmaxcost(l)- pmincost(l)] ; 

      ptotal   (l  ) = sum[i, pFitnessa(l,i)] ; 

      pFitness (l,i) = pFitnessa(l,i)/ptotal(l) ; 

*     Show generation in console 

      put CONSOLE   putclose'Population in iteration ' l.tl / 

      put SUMMARYSL put'Population in iteration ' l.tl / 

      loop (i, 

         pAux = pCost(l,i); 

         put CONSOLE   putclose'   Ind ' i.tl ' ' pAux:10:3 

         put SUMMARYSL put'   Ind ' i.tl ' ' pAux:10:3 

      ) ; 

   ) ; 

[…] 


