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Abstract 
Thermoelectricity theory has stated that both, heat 

absorbed and rejected at the cold and hot sides of a 
thermoelectric pair by Peltier effect only depends on the 
thermoelectric properties of the semiconductors, the absolute 
temperature in the unions, and the electrical current through 
the pair. However, the irreversible phenomena, Joule and 
Fourier effect, are volumetric effects. That is to say, they can 
be affected by the geometry of the pellets, and furthermore, 
they have an influence on the temperature at the surfaces 
where the Peltier effect takes place. As consequence, the net 
heat power pumped by a thermoelectric pair can be modified 
when non-constant cross section pellets are used. 

In this paper, variable cross section pellets are studied, 
analysing the influence on the heat power absorbed, and on 
the coefficient of performance. Firstly the study of the effect 
just on the irreversible phenomena, and secondly, taking into 
account the influence on the irreversible effects together with 
Peltier effect. 

This problem has been conveniently studied fixing the 
volume of the pellets and when the lateral surfaces of pellet 
are not adiabatic. In this paper the problem has been analysed 
on a different way. Different geometrical characteristics of the 
pellets are analysed in order to improve the exchange of heat 
power at the ends of the pellets evaluating the effect produced 
in other variables, specially in the volume of the pellets. The 
lateral surfaces are considered adiabatic taking into account 
the efforts done by the manufactures of commercial 
thermoelectric modules to reduce these thermal losses. The 
results are compared with typical values obtained using 
constant cross sections. 

The conclusions obtained in this work can be of interest in 
the design of thermoelectric pairs in applications where the 
size of the pellets allows for the use of variable cross sections, 
or the thermolectric properties are extremely sensitive to 
temperature variations. 

Introduction 
Being a(x) the function which defines the cross section 

variation of the pellet respect to the axis where the thermal 
gradient takes place, the optimum a(x) will minimise the 
effect of irreversible phenomena under the same functional 
conditions: temperature difference (∆T), electrical current (I); 
material properties, and volume of the pellet. 

In this paper the influence of this function a(x) is studied 
in two ways: firstly considering just only the irreversible 

phenomena in the pellet: Joule and Fourier effect; and 
secondly taking also into account the Peltier effect. 

The study was carried out using an element with the 
geometry shown in figure 1, and the following characteristics: 
• The electrical current flows along the x axis. 
• There is a thermal gradient between its ends (Th=Tx=L and 

Tc=Tx=0). 
• Its cross section varies along the x axis following the 

function a(x). 
• The lateral surfaces are considered adiabatic. 
• The problem is considered one-dimensional, that is, 

temperature is constant in all the points of a same section, 
T(x)=T. 

• Isotropic material with constant thermoelectric properties: 
ρ, λ, and σ. 
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Figure 1. Scheme of the analysed pellet  

1. Influence of the pellet geometry on the irreversible 
phenomena 

The temperature distribution along x, when Fourier and 
Joule effect are studied, is given by the following differential 
equation, [1]. 
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Equation {1} can be expressed using the variable change 
µ=dT/dx as: 
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The most important geometric parameter of a pellet is the 
ratio between its length and its cross section, E=L/A, called 
from now “slimness”. This concept can be extended for the 
case of a non-constant cross section thermoelement in the 
following way: 
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Using {3}, equation {2} can be rewritten as: 
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The thermal power between two sections a(x) and a(x+dx) 
at temperatures T and T+dT respectively, is: 
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then, the product µa can be expressed as a function of the 
thermal power: 
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Substituting {8} in {2} 
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Integrating equation {9}, the temperature distribution 
along the pellet is obtained. As a=a(x) is unknown, equation 
{3} can be substituted in {9} getting the following equation: 
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Equation {10} can be integrated between e=0 
(corresponding to x=0, T=Tc) and e=E (corresponding to x=L, 
T=Th) obtaining that: 
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reordering equation {11} 

 20

2
1 IE

E
TQ

⋅⋅⋅+
∆

=
λ
ρ

λ
&  {12} 

and substituting {12} in {9}, the following expression is 
obtained: 
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The temperature distribution as a function of e(x) is 
obtained integrating equation {13} between x=0 and x 
(generic distance): 
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Using {6}, the thermal power which crosses any section 
would be: 
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In {15}, the first term on the right represents the thermal 
power by Joule effect ( JQ& ), while the second term is due to 
Fourier effect ( FQ& ). From now, the thermal power expressed 
in {15} is designated as JFQ& . 

Notice that both, the temperature distribution and the 
thermal power do not depend directly on the function a(x), 
although it is included in the definition of e(x). The thermal 
power interchanged with the ambient at x=0, where e=0 is: 
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This thermal power is minimised when the geometry of 
the pellet is: 
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and the minimum thermal power, with this geometry, at x=0 
would be: 
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The thermal power at x=L, where e=E is 
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This function is monotonous increasing respect to E. The 
thermal power at x=L increase with E due to the raise in the 
generation of thermal power by Joule effect. 

Comparing equations {16} and {19} the following 
conclusions are obtained: 
• The total slimness E is the unique geometric variable 

which influences on the value of the thermal power at the 
ends of the pellet. 

• The thermal power by Fourier effect has the same value 
and sign ( ET λ⋅∆− ) at both ends, (flows to the inner part 
at x=L and to the outside at x=0). 

• The thermal power by Joule effect has the same value 
( EI ⋅⋅ 22ρ ) at both ends, being the middle of the total 
power generated by Joule effect inside the pellet, 
independently of the geometry, and if there is or not a 
symmetry respect to the ends of the thermoelement. Notice 
that the thermoelectric properties of the pellets are 
considered constant with temperature, and the model is 
one-dimensional, and these are the conditions to obtain this 
result. 

• Using the value of E which optimises the thermal power at 
x=0, the thermal power at x=L is null. In this case the 
thermal powers due to Joule and Fourier effects achieve 
the same absolute value but with different signs at x=L. 

2. Influence of the pellet geometry on Peltier effect and 
irreversible phenomena at the same time 

In a thermoelectric pair, the Peltier effect is always joined 
to the irreversible phenomena. In this section, the influence of 
the geometry of the pellet on the net value of the thermal 
powers, and the cooling efficiency is analysed. 
2.1. Influence on the thermal powers 

The thermal power at the ends of a pellet considering the 
Peltier effect is given by the following expressions: 
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Taking into account that PQ&  is independent from E, Eopt 
optimises also 0=xQ&  being the maximum: 
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By the same reason, LxQ =
&  does not have neither a 

maximum nor a minimum respect to E, as it was commented 
in the previous section. 
2.2. Influence on the cooling efficiency 

The cooling efficiency in the pellet is expressed by the 
following expression: 
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Analysing equation {23} respect to E, the value which 
optimises the efficiency is given by: 
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being the maximum efficiency 
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In the case studied, with adiabatic lateral surfaces, the 
maximum efficiency is independent from both, the functions 
e(x) and a(x). It is only a function of the total E; the 
temperatures at the ends of the pellet; and the thermoelectric 
properties, supposed constant. This conclusion contradicts at 
first view the result obtained by Thacher in [2]. This author 
studied the entropy generated inside a pellet, and deducted a 
expression for the efficiency as a function of the entropy. 
Applying variational calculation to that expression, Thacher 
demonstrated that the maximum efficiency is achieved when 
the cross section of the pellet is constant (a(x)=cte). 

However, this unreal contradiction between Thacher´s 
conclusion and the results stated in this article roots in the fact 
that Thacher includes the hypothesis of considering all the 
thermoelements with the same volume, that is: 
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This restriction is not included in this study. So, the main 
conclusion obtained in this section is that the maximum 
efficiency can be obtained with any geometry whose total 
slimness E was equal to the value obtained in {24}. It is clear 
that each geometry will have a different volume. In the next 
section, it will be proved that the minimum volume 
correspond with the function a(x)=cte. 

Notice also, that the relation between the value of E which 
optimises the cooling power and the cooling efficiency is 
independent of the electrical current, it is just only a function 
of the thermoelectric properties, and the temperatures at the 
end of the pellets. 
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3. Analysis of pellet geometry 

The idea of optimum geometry of a pellet must take into 
account the interaction between the pellets and the rest of 
elements which compound a thermoelectric module. For this 
reason, it is necessary to consider other “tertiary factors” of 
the geometry of the pellets, considered in the previous 
formulations, and which can influence, direct or indirectly, on 
the values of the efficiency, and the thermal power 
interchanged between the cold and hot sides of the module. 
These tertiary factors are the following: 
• Volume of the pellet. Its value must be reduced, taking 

into account the singularity of the materials used, and the 
complex processes to obtain them. 

• Contact surfaces with the electric bridges. Peltier effect 
takes place on this surfaces. The value of the area influence 
on the temperature and as a consequence in the thermal 
power generated or absorbed by Peltier effect. Hence, an 
additional thermal power is generated in the electrical 
bridges by Joule effect, and the thermal resistance (Fourier 
effect), which influence on heat pumping, can vary 
depending on the design of the pellet. 

• The structural resistance of the pellet. Not all the shapes 
of the pellets and configurations are valid from the point of 
view of obtaining robust thermoelectric modules, which 
support mechanical efforts. 

• Fabrication cost. This cost can be affected by the proper 
geometry, although it will depend on the size of the series 
fabricated. 

• The distance between the heat source and the heat sink. 
This distance influence on the thermal bypass through the 
material which insulates the free space between the pellets. 

• Maximum temperature inside the pellet. This 
temperature can be higher than the temperature at the ends 
of the pellets. This can be positive or negative depending 
on the behaviour of the material properties (thermal 
conductivity, λ and electrical resistivity, ρ) with the 
temperature. If dλ/dT<0 or dρ/dT<0, an increment in 
temperature improves the thermoelectric characteristics of 
the pellet, and as consequence, for a fixed E, an electrical 
current higher than: 
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can maintain and even improve the value of  
maxcQ& . The 

opposite effect can be produced if dλ/dT>0 or dρ/dT>0. 

3.1. Geometry with minimum volume 
Being the infinitesimal volume dv=a(x)dx, the total 

volume of the pellet would be: 
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Using the criteria established in the previous section, the 
total slimness E and the length of the pellet L are fixed in 
order to reduce the thermal power transferred from the hot to 
the cold side through the material which imbibed the pellets. 

However, the two conditions previously mentioned can be 
satisfied by any function a(x), obtaining infinite volumes for a 
pellet. In this section, the function a(x) which minimises the 
total volume of the pellet is deducted. 



Being a(x) the function which defines the generic area of a 
pellet (continuous and derivable and with existence 
(0<a(x)<∞) in the interval 0≤x≤L), see figure 2, and L the 
length of the pellet, the ratio E and the total volume can be 
expressed as: 
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where u(x)=1/a(x) 
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Figure 2. Generic functions: a(x) and u(x) 

If U is the mean value of u(x) in the interval 0≤x≤L, 
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and x0=M is the value of the abscissa where u(M)=U, the 
straight line x=M  intersect the function a(x) in the point 
(M,A’) so that A’=a(M)=1/u(M)=1/U. Then, it is possible to 
define the functions: 
 ( ) ( ) 'Axaxq −=        ( ) ( ) Uxuxp −=   
and the total volume of the pellet would be: 
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furthermore 
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substituting equation {30} in {29} 
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The integral on the right term of {31} can be expressed as: 
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using the Cauchy-Schwartz inequality, it is possible to 
demonstrate that: 
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and substituting {33} in {31} the following expression for the 
volume of the pellet is found: 
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Equation {34}means that V=A’L is the minimum value of 
the volume of any pellet with a length L and a slimness E. 
This minimum volume correspond with p(x)=0. In this case, 
a(x)=A’, that is, a pellet with a constant cross section. The 
condition for minimum volume for given values of L and E is 
a pellet with a prismatic constant cross section 
(a(x)=L/E=A’). 

This assumption allows for demonstrating that A’≤A, see 
figure 2, being A 
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and the value of A is equal to A’ when a(x)=A. 

3.2. Maximum temperature inside the pellet 
The temperature distribution along the pellet is given by 

differential equation {13}. Equalling to zero dT/dx, the value 
of the function e(x) which maximises the temperature inside 
the pellet would be: 
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and the maximum temperature : 
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Analysing equation {36}, the maximum temperature value 
inside the pellet depends on: 
• The electrical current, I 
• Temperatures at the ends of the pellet, Tc, and Th, or the 

temperature difference, ∆T. 
• The thermoelectric properties of the material, ρ and λ. 
• The value of E. 

So, geometrically distinct pellets will have the same 
maximum temperature if the rest of characteristics (I, ∆T, Tc, 
ρ and λ) have the same value, although the function e=e(x) 
was different. Remember that L and E are fixed. The point 
inside the pellet where the temperature is maximum will have 
the same value of 

maxTe  for any geometry, although the 
coordinate x will be different. 

However, the temperature distribution in the 
thermoelement is affected by its geometry a=a(x), and as 
consequence the performance of the pellet, taking into 
account that the thermoelectric properties in fact are 
dependent on temperature. 

4. Detailed study of some geometries 
In spite of some characteristics of the performance of the 

pellet are independent on the specific geometry (a(x)), just 
only depend on the total value of E. It is profitable to analyse 
the behaviour of some specific geometries, which can 
improve the results obtained with constant cross-section 
pellets, taking into account some tertiary factors. In this work, 
the tertiary factor considered was the area at the ends of the 
pellet. The highest areas, the best heat dissipation of the 
thermal powers, and as consequence, lower temperature 



difference in the pellet will be achieved. The geometries 
studied maintained volumes close to the minimum value but 
increasing the areas at the ends with the same values of L an 
E of the constant cross section. 

Four different geometries were analysed and compared: 
• Constant cross-section: a(x)=A 
• Linear variation of the cross-section: 
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• Quadratic variation of the cross section 
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• Exponential variation of the cross-section 
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The parameters A, G, and H must be positive, 0≤M≤L and 
with values such as E and L have the same value in all cases. 

All the geometries studied have a contraction located at a 
certain distance (M) from the origin, the area of this 
contraction is A, see figure 3. 
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Figure 3. Scheme of non-constant cross section pellet 

The mean thermoelectric properties used were 
σ=200µV/K, λ=1.59 W/mK, and ρ=0,00887 Ωmm. The 
length of the pellet was L=1,6 mm and E=0,816 mm-1; the 
temperature at the cold side Tc=273 K, the temperature at the 
hot side Th=293 K, ∆T=20 K. 

The pellets were analysed working with three different 
values of electrical current: current which optimises the 
cooling power, 

1 3 281 A,
cQ max

I I= =&
; current  which 

optimises the cooling efficiency, 
2 1 613 A,

max
I Iφ= = ; and 

3 2 6 563 A,
cQ max

I I I∗= = ⋅ =&
. 

Table 1. Thermal powers at the ends of the pellet 
  I1, A I2, A I3, A 

  3,2815 1,6130 6,5631 
QPx=0 W 0,1792 0,0881 0,3583 
QFx=0 W -0,0390 -0,0390 -0,0390 
QJx=0 W -0,0390 -0,0094 -0,1559 
Qx=0 W 0,1012 0,0397 0,1635 
QPx=L W 0,1923 0,0945 0,3846 
QFx=L W -0,0390 -0,0390 -0,0390 
QJx=L W 0,0390 0,0094 0,1559 
Qx=L W 0,1923 0,0650 0,5015 
QF W -0,0390 -0,0390 -0,0390 
QJ W 0,0779 0,0188 0,3118 
φ  1,1116 1,5695 0,4837 

Due to all the assumptions, the thermal powers, and the 
cooling efficiency will have the same values for all the 
geometries, see table 1. 

4.1. Constant cross section 

In this case, a(x)=ax=0=ax=L=A=cte, the function e is given 
by e=x/A, and the volume by V=Ax. Considering the 
complete pellet (x=L), e=L/A=E and V=AL, and taking into 
account the fixed values, A=1,96 mm2 and V=3,136 mm3. 

Applying equation {14}, the temperature distribution 
along the pellet is given by: 
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Temperature difference along the pellet working with the 
three electrical currents mentioned above is shown in figure 4. 
Notice, that for I*, the maximum temperature inside the pellet 
(Tmax=Tc+31,6 K) is higher than the temperature at the hot 
side end (Th=Tc+20 K). 
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Figure 4. Temperature difference along the pellet (Th-Tc) for 
different electrical currents, Tc=273 K, constant cross section. 
4.2. Linear variation of the cross section 

This geometry is modelled by the following equation: 
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The inverse of the geometric factor is: 
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The cross sections at the ends of the pellets: 
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with the following limit values: 
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The volume of the pellet is given by: 
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With these geometric relations, the variation of the cross 
section of the pellet for different positions of the contraction 
(0<M<1,6 mm) taking H=G=1 is shown in figure 5 and the 
variation of the pellet volume respect to M in figure 6. 
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Figure 5. Cross section of the pellet when G=H=1 for 
different positions of the contraction, linear variation. 
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Figure 6. Volume of the pellet, linear variation. 
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Figure 7. Temperature difference (Th-Tc), linear variation, 
Tc= 273 K, G=H=1, 
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Figure 9. Temperature difference (Th-Tc), linear variation, 
Tc= 273 K, G=H=1, ∗I  

The temperature distributions for the mentioned three 
values of electric currents and different contraction positions 
are shown in figures 7-9. 
4.3. Quadratic variation of the cross section 

The geometry studied is modelled by the following 
equation: 
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Using the same procedure as in section 4.1, the following 
values were obtained: 
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with the following limit values: 
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4.4. Exponential variation of the cross section 

The studied geometry is modeled by the following 
equation: 
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In this case B=C=1 and G, and H were equal to number 
“e” (2,718). 

Similar graphs to the ones represented in figures 5-9 were 
obtained for the quadratic and exponential variation of the 
cross section. 
4.5 Comparative analysis of the different geometries 

The most relevant characteristics of the different 
geometries (linear, quadratic, and exponential variation) are 
compared with the results for the constant cross section, 
considering the contraction in the middle of the pellet 
(M=0,8). The results are shown in figures 10-15, and 
geometry characteristics are summarised in table 2. 

 

Table 2. Geometric characteristics of pellets compared. 

L=1.6 mm, 
E=0.816 mm-1 

AM 

(mm2) 
A0=AL 

(mm2) 
V 

(mm3) 

Constant 1.961 1.961 3.137 
Linear 

(H=G=1, M/L=0.5) 
1.538 2.388 3.181 

Quadratic 
(H=G=1, M/L=0.5) 

1.765 2.405 3.165 

Exponential 
(B=C=1; G=H=2.718) 

1.349 3.005 3.308 
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Figure 10. Variation of the cross-section for  different 
geometries. 
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Figure 11. Variation of the volume of the pellet with M for 
different geometries 
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Figure 12. Temperature difference, (Th-Tc), Tc= 273 K, 
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Figure 13. Temperature difference (Th-Tc), Tc= 273 K,
max

Iφ
 

The following conclusions were extracted: 
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Figure 14. Temperature difference (Th-Tc), Tc= 273 K, ∗I  
• The sections at the ends of the pellet increase their values 

in 21,78 %, 22,65 %, and 53,24 % respect to the constant 
cross section pellet. 

• The total volume of the pellet also is increased in 1,38%, 
0,89%, and 5,46%. 

• The temperature differences achieves maximum increments 
of 1,64%, 1,15% and 3,12% when 

maxQc
I &

 is applied and 

2,99 %, 2,16 %, and 5,78 % for 
max

Iφ
. 

• In all cases, the thermal powers interchanged and the 
cooling efficiency have the same values. 

Conclusions 
This study allows for showing the enormous possibilities 

of using a pellet geometry distinct to the constant cross 
section. For example, the use of the exponential variation 
cross section allows for an increment of the areas at the ends 
of the pellet of 53,24 % using just only a 5,46 % more 

thermoelectric material that with the constant cross section 
pellet. This area increment at the ends of the pellet can favour 
the heat transmission to the ceramic plates. 

It was not an objective of this work to find an optimum 
geometry because in order to achieve this aim it is necessary 
to include the rest of elements of the thermoelectric module 
and the heat dissipation systems. Furthermore, the 
methodology used in this work has some restrictions to take 
into account in the analysis of the results obtained. 

The thermal and electrical flows were considered one-
dimensional, that is, with only x component inside the 
thermoelement. This is only exact with the constant cross-
section. In the rest of geometries, where da(x)/dx≠0, there are 
y and z components of the electrical density, and the thermal 
flow which can obtained variations in the results obtained. 

At the same time, the existence of electrical bridges at the 
ends of the pellet will produced in any cross-section, and 
particularly in the closest to the ends, modifications in the 
electrical current and temperature distributions. These 
variations will modify the fact that changes in the geometry of 
the pellet do not influence on the values of the interchanged 
thermal powers and the efficiencies associated, if the total E 
remains constant. 

To solve the restrictions mentioned above, it would be 
necessary to use three-dimensional, or at least two-
dimensional models. The use of numerical methods, such as 
finite element techniques would allow for evaluating not only 
the accuracy of the one-dimensional method explained in this 
work, but also the gain, which from the point of view of 
specific applications, can cause an increment of the areas at 
the ends of the pellet. 
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