UNIVERSIDAD 89%@ PONTIFIcy,
| CAI wgfes ICADE

COMILLAS ADVANCED COMPUTING TOOLS

M D R I D

Lab 3. Introduction to Git version control

Introduction

In this lab session you will become familiar with the basic Git workflow. You will learn to create and
manage a source code repository, hosted in GitHub, both through the web page interface and a desktop
client. In addition, if you have some spare time you will also have the opportunity to practice with the
command line.

Objectives
By the end of the session, the student should:
* Understand the importance of using a version control system in software development.

¢ Be comfortable with the GitHub flow.

1. Git using GitHub’s web interface

Start by signing up for a free account in GitHub (https://github.com). Once you have logged in,
complete the Hello World tutorial (https://guides.github.com/activities/hello-world) that will
guide you through your first steps with a distributed version control system.

2. Git with a GUI desktop client

Now that you know how to perform the most common operations, it is time to move to your computer.
Download and install the official GitHub desktop client for Windows from https: //windows.github.com
(there is also a Mac version available at https://mac.github.com) and sign in with your username
and password. Afterwards, click on the plus sign in the upper left hand corner and select to
download the hello-world repository to the directory of your choice (Figure 1).

Add Create

I8 socaim Fie reposiores

I hello-world

ted by adding a repository.

¥) Clone hello-world

Figure 1. Cloning a repository in GitHub for Windows.

Lab 3. Introduction to Git version control 1
Academic year 2014/2015

https://github.com
https://guides.github.com/activities/hello-world
https://windows.github.com
https://mac.github.com

VERSIDAD 3 &5 PONTIFIC)
ICAI %57 ICADE

CoMILLAS

D R | D

UNY

ADVANCED COMPUTING TOOLS

At this point, you should have a local copy of your project that you can freely edit, so go ahead
and do it! You can modify the content of README . md, create new folders inside the project’s folder, or
add files. For example, you could create a folder named MATLAB and include the code from Lab 2.
Remember to create a branch before editing! You do not want to break production code!

When you are done, go back to the desktop client and you should see something similar to Figure 2.
The Uncomitted changes section shows the modifications you made. Select the files you want to commit
(this is equivalent to adding them to the staging area), type a comment, and commit the changes.

+v
Filter repositories

hello-world

new-files v

Uncommitted changes Hide (») Files to commit

MATLAB\Lab02.m

‘‘‘‘‘‘ 8@ -0.0 +1,3 60

8+ % Test script for GitHub
P+ % This is just a sample file
El: - -1+ 2;

History

Merge pull request #2 from jboalml/readm...
Jaime Boal

Finish README
Jaime Boal

Initial commit
Jaime Boal

Figure 2. Uncommited changes.

However, the files have not been synced to the GitHub server yet. To do so, click in the
upper right hand corner (Figure 3). If the branch already existed in the server, the button would
appear instead. You should now be able to see the updates in your browser.

+ - new-files ¥ [Publish | &*
Filte repositories)
Unsynced changes Add Lab 02 files
hello-world boalml 0- 41b686c D Revert a* Collapse al
ot m Add Lab 02 files m.
& minutes ago by jboalmi MATLAB source code from Lab 02.
History MATLAB\Lab02.m
Merge pull raquest #2 from jboalml/readm... e -0.0 +1,3 @@
Jaime Boal 1 + %% Test script for GitHub
2 +% This is just s sample file
Finish README BRI
e Boal 1 4 No newline at end of file

Initial commit
Jaime Boal

Figure 3. Unsynced commit.

Finally, try to modify the same line of code in different ways both in the web interface and in your
local copy without syncing. When you try to sync, the desktop client should display a message stating
that it encoutered conflicts that need to be manually resolved before proceeding (Figure 4).

2 Lab 3. Introduction to Git version control
Academic year 2014/2015

UNIWERSIDAD

ICAI‘

CoMILLA

PONTIF(, A
ICADE

S

ADVANCED COMPUTING TOOLS
LABORATORY

Sync conflicts

Please resolve all conflicted files, commit, then try syncing again.

@OK

Figure 4. Conflict error message.

Update the conflicting parts marked between “<<<<<<< HEAD” and “>>>>>>>” (Figure 5), commit the
changes, and sync. Congratulations, you have successfully solved your first merge conflict! You already
know all the fundamentals to continue experimenting with version control systems!

v new-files v < Sync GIER)
1

Filter repositories

Uncommitted changes Hide @ [Files to commit #* Collapse all
1] hello-werld - — —

Merge remote-tracking branch ‘origin/new-fles'into nev | [] \ATLAB\Lab0Zm Aconrucr

Comfis e [ee-1,3 1,860

MATLAB/Lab0Zm 1 1 %% Test script for GitHub

2+ <£<L<£<<< HEAD
2 3 % This is just a sample file
3| |-c-144+23;
4 4\ No newline st end of file
S +c=1.44+ 2.3;
6 + =======
Unsynced changes 7+ % This is just a sample file that I modified in GitHub
8+ b =2.54+3.2;
Update Lab02.m 9+ 5555555 origin/new-files
18 minutes ago by jooalml

History

Add Lab 02 files
55 minutes ago by jbealml

Merge pull request #2 from jboalml/readm...
2 hors age by Jaime Boal

Finish README
2 hours age by Jaime Boal

Initial commit
2 hours ago by Jaime Boal

Figure 5. Merge conflict example.

3. Git through the command line (Optional)

Git was originally conceived to be used with a CLI (Command Line Interface). For this reason, many
everyday commands are run much faster through the terminal than with a GUI, and some complex
operations can still only be performed using the command line. If you have some time left, there is a
brief interactive tutorial at https://try.github.io where you can practice with the basic commands.
A more extensive Git cheat sheet can be downloaded at https://training.github.com/kit.

Lab 3. Introduction to Git version control 3
Academic year 2014/2015

https://try.github.io
https://training.github.com/kit

	Introduction
	Objetivos
	1 Git using GitHub's web interface
	2 Git with a GUI desktop client
	3 Git through the command line (Optional)

