

upcomillas

upcomillas

6-Programming Languages

Advanced Computing Tools for Applied Research (Herramientas Computacionales Avanzadas para la Investigación Aplicada)

Rafael Palacios, Jaime Boal

Advanced Computing Tools for Applied Research Contents

Implementing computational tools

- 1. Brief history of computers
- 2. Storage systems
- 3. Programming approaches
- 4. Computer architectures

Brief history of computers

First computer

- There is no global agreement on the definition of "computer".
- Several concepts: Electronic, binary, programmable, etc.
- Z3 (Konrad Zuse, Berlin 1941) is considered the first "operational computer".
 - Not fully electronic (used 2000 relays, 10Hz).
 - binary arithmetic.
 - Program code and data were stored on punched film

First computer: ENIAC

ENIAC (US Army 1946) is considered the first general-purpose, programmable, electronic computer.

- Based on previous systems (notably Atanasoff–Berry Computer (ABC))
- Used decimal arithmetic

Inflexible programming architecture which essentially required

rewiring

Storage systems

Why do we need storage?

Temporary storage

- Temporary data: Variables
- Program code

Permanent storage

- Permanent data: Databases, documents
- Applications: code, libraries
- Operating system
- BIOS

Original electronic memory

Vacuum tubes

Core memory

- The revolution in electronic storage
 - Made of electromagnetic cores (magnetic rings) and electric wires
 - Developed mainly in 1951 by Wang and Jay Forrester

1024 bit Apollo memory module

Whirlwind Computer (1949)

- General purpose digital computer developed by Forrester.
- The project originated with a contract from the U.S. Navy for MIT to develop an "aircraft stability and control analyzer" (ASCA)
- Included many innovations: 16-bit parallel, operated in real time, used video displays for output, incorporated core memory.
- Precursor of PDP-1 (Digital Equipment Corporation) (1960)

Temporary storage: RAM

- RAM=Random Access Memory
- DRAM is a type of RAM that stores each bit of data in a separate capacitor. (old SIMM modules)
- Current technology is DDR3-SDRAM

(double-data-rate 3 synchronous dynamic random access memory)

DDR transfer rates:

DDR-200 100MHz 1600 MB/s DDR2 100MHz 3200 MB/s DDR3 100MHz 6400 MB/s

SIMM (30-pin), SIMM (72-pin), DIMM (168-pin)

Temporary storage: Cache memory

- Cache is a small but very fast memory.
- It increases performance, but the final result depends mostly on the application and also on the configuration/size of the cache.
- Nowadays there is L1, L2 and L3 cache memory

Note:

The new Intel i7 Extreme also has independent L2, and L3:

L2: 4x256 kB

L3: 8 MB

Permanent Storage

- Internal storage
 - Hard drive
 - SSD (Solid-State drive)
- External storage
 - Punched Cards
 - Punched tapes
 - Magnetic tapes
 - Robotic data storage device
 - Portable: Diskettes, CD-ROM, DVD, Flash Drive
 - Server-based storage

Punched Cards

- Based on 19th century textile looms
- Applied by Hollerith to store data for the 1890 US census
- Hollerith founded Tabulating Machine Company (1896), which eventually became IBM.
- 1 byte per columns (80 characters/card)

Punched tapes

- Origins in teleprinter communications
- Storage medium for minicomputers in the 1970'
- At the time it was smaller and less expensive that cards and magnetic tapes.

FAA's Honolulu flight service station in 1964

Magnetic Tapes

Based on magnetizing ferromagnetic tape (same principle as

the core memory)

- Characteristics:
 - Sequential data access
 - Large capacity for the time
 - Fully automatic

Modern robotic data storage system Interesting off-line storage. Useful for:

- Disaster recovery
- •Slow access/long term storage

Hard drive

- Faster and more reliable than tapes.
- Random access
- Increasing storage capacity with time
- Sample access times:

Typical access times:

		Read	Latency				
4200	rpm	15	+	8.3	=	23.3	ms
5400	rpm	12	+	5.6	=	17.6	ms
7200	rpm	9	+	4.2	=	13.2	ms
10000	rpm	4	+	3	=	7 ms	5
15000	rpm	3.5	+	2	=	5.5	ms

Portable

- Diskette, or Floppy disk
- CD-ROM (640 MB)
- DVD (4.7 GB)
- Flash drive

8-inch, 51/4-inch, and 31/2-inch floppy disks

Solid-State Drive

- Based on Flash memory. SSD is also called flash storage.
- Fastest access time (same transfer speed)
- More reliable, especially for laptops

Server-based storage

- Data is stored on servers, directories are shared
- Local network protocols: NFS, SMB, AFP
- Internet: WebDAV, sshfs
- Characteristics
 - Slower than local hard-drives
 - Allows for distributed access
 - Easier to implement automated backup
 - Possible to implement high-availability

Programming approaches

Programming approaches

- Old programming(?) approaches:
 - Wired circuits.
 - Example: Relay-based elevator circuit
 - Circuits that use a set of sensors, buttons and actuators
 - Wired program
 - Apollo Guidance Computer (AGC)
 - The code was wired in read-only memory
 - It had 1K of 16 bit words of erasable (RAM) core memory and 12K of read-only memory (ROM)
- Normal computers
 - Program code
 - Real-time data
 - External communications

Programming approaches

- CPU approach
 - Single program with access to memory
 - Ex. Normal program running in a computer, phone, or microprocessor.
- Client-Server model
 - Two programs running at the same time and some sort of communication between them.
 - It is a distributed application structure
 - Ex. Database server
 - Ex. Web-based application
 - Ex. Web services
 - Ex. eMail client

Programming languages

- It is difficult to classify programming languages
- Basic Classification:
 - Compiled (usually more performance)
 - Interpreted (usually easier to implement, maintain)

Programming languages

- Compiled
 - FORTRAN (1950, now Fortran 2003). IBM, San Jose, CA
 - COBOL (1959, now Cobol 2002). Grace Hopper, US Navy
 - BASIC (1964). Dartmouth College, NH.
 - Pascal (1970). Switzerland
 - C (1972, now C99). Bell labs, NJ
 - C++ (1983, now C++ 2003). Bell labs, NJ
 - Java (1994). Sun microsystems, CA

According to languages are (in alphabetical order): **C, C++, C#, Java, JavaScript, Perl, PHP, Python, Ruby, and SQL**.

Programming languages

- Interpreted
 - Unix scripts: sh, bash, csh
 - JavaScript (AJAX=Asynchronous JavaScript and XML)
 - PHP
 - Python
 - Perl
 - Ruby
 - Matlab
 - ASP

According to languages are (in alphabetical order): **C, C++, C#, Java, JavaScript, Perl, PHP, Python, Ruby, and SQL**.

Programming language characteristics

- Modular programming
 - Programs are written in modules (functions).
 - Imposes boundaries to tasks and data.
 - Improves testing, maintainability.
- Object Oriented Programming
 - Programming paradigm based on objects.
 - Improves testing, code reuse, and collaboration.

Most modern programming languages include OOP capabilities, but maybe C and Java are the most important ones.

User Interface

 Some programming languages are more suitable to develop interactive applications.

Single CPU

- Object Oriented Programming is considered more suitable for applications with heavy user interfaces.
- JAVA is the most standard and portable language for GUI apps.
- C++ is used in most integrated development environments, such as MS Visual Studio, Anjuta, and Xcode.
- IDE are usually specific to one operating system.
- IDE may support different programming languages.

User Interface

- Client-Server model
 - Client-server model can be used to provide high performance computation, and nice & easy user interface.
 - Scalability: could be local or web based.
 - Several clients can be developed for different computer architectures.
 - Best compatibility, Mobile friendly.
 - Web services is one approach

Computer architectures

Single Task

- One CPU, memory
- Single user
- Only one program running
 - Ex. Calculator
 - Ex. Standard cell phone (event support may imitate multitasking behavior).
 - Ex. DOS operating system

Multitask/Multiuser

Multitasking

- Several processes running at the same time in a time-sharing model.
- All tasks share common components: CPU, memory and I/O devices.
- The task scheduler is in charge of controlling which process must run and how long.
- There is a false sense of parallelism.

Multiuser

- A multitasking operating system may be multiuser
- Multiuser means that several users can work on the same computer simultaneously (typically via a remote connection).

Multitask/Multiuser

• Some examples

Operating System	Multitasking	Multiuser
MS-DOS	No	No
Windows	Yes	No
Windows Server	Yes	Yes
Unix (Solaris, HP-UX, Linux, MacOS)	Yes	Yes

Real-Time

- Real-time operating systems must ensure execution in a predefined time
- Real-time systems involve a capable hardware, RT operating system, and RT algorithms
 - Some computing algorithms cannot guaranty a fixed execution time. Maximum execution time must be limited.
 - Some hardware/operating systems/drivers may not return control on time (too long time-outs)
- Real-Time operating systems
 - RTLinux. Linux based, GPL2 license (RTLinuxFree.com)
 - VxWorks. Designed for embedded systems. (windriver.com)
 - QNX. Also mainly for embedded systems. (qnx.com)

Parallel systems

- Systems in which several programs run in parallel
- Shared memory architectures
 - Multi-core processors
 - Multi-processor computers
 - Computer clusters
- Distributed memory
 - Grid computing
 - Cloud computing
 - GPU computing

Instituto de Investigación Tecnológica C/ Santa Cruz de Marcenado, nº 26

C/ Santa Cruz de Marcenado, nº 26 28015 Madrid Tel +34 91 542 28 00 Fax + 34 91 542 31 76 info@iit.upcomillas.es

