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Abstract 

Pricing rules in wholesale electricity markets are usually classified around two major groups, namely linear (aka 
non-discriminatory) and non-linear (aka discriminatory). As well known, the major difference lies on the way non-
convex costs are considered in the computation of market prices. 

According to the classical marginal pricing theories, the resulting market prices are supposed to serve as the key 
signals around which capacity expansion revolve. Thus, the implementation of one or the other pricing rule can have 
a different effect on the investment incentives perceived by generation technologies, affecting the long-term efficiency 
of the whole market scheme. 

The objective of this paper is to assess to what extent long-term investments incentives can be affected by the pricing 
rule implemented. To do so, we propose a long-term capacity expansion model where investment decisions are taken 
based on the market remuneration. We use the model to determine the optimal mix in a real-size thermal system with 
high penetration of renewable energy sources (since its intermittency enhances the relevance of non-convex costs), 
when alternatively considering the aforementioned pricing schemes.  

1 INTRODUCTION 

Wholesale electricity markets restructuring has been constant since the original liberalization processes 
of electric power sectors started back in early eighties in Chile. Yet, the unavoidable complexities of 
electricity generation have led to many different market designs and many associated regulatory questions 
(many of which remain open). In general, each design includes various markets to represent different 
timescales in which energy and ancillary services are traded (Batlle, 2013). This sequence of markets could 
be classified into long-term markets, day-ahead markets (DAM) and intraday plus balancing markets (in 
the EU) or real-time markets (in the US). 

The core of wholesale markets is commonly the DAM, whose purpose is to match generators’ offers and 
consumers’ bids to determine electricity prices for each time interval of the following day. However, this 
can be achieved in a number of different ways and, as mentioned, DAMs evolved very differently in each 
system. An essential difference lies in the way generators can submit their offers. As explained in detail 
in Batlle (2013), in the majority of European Power Exchanges, market clearing is built upon simple bids 
(i.e. generators submit quantity-price pairs per time interval). Although some additional semi-complex 
conditions can be added to the bids (as for instance block bids linking bids in consecutive time intervals), 
this approach does not reflect either the real generation cost structure (e.g. the start-up costs) or many of 
the plants operation constraints (e.g. the start-up trajectory). These features can be explicitly declared in 
the markets run by US ISOs, where generation agents submit offers representing the parameters and 
costs that define their generating units’ characteristics. 

In principle, auctions based on simple bids have the advantage of applying a more straightforward and 
transparent clearing process to compute prices, but this is obtained at the expense of the efficiency of the 
economic dispatch1. In contrast, complex auctions resort to a traditional centralised unit commitment 
                                                      

1 However, while it is true that the schedule resulting from the clearing of the simple bids in the DAM is often not close to the 
one that in principle would result from solving a unit commitment problem with perfect information, intraday markets provide 
market agents with an opportunity to partly correct these potential inefficiencies. 
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(UC) algorithm (security constrained economic dispatch optimization), with the only difference from the 
traditional UC problem solved in the non-liberalized context being that the data considered are market 
agents’ bids instead of costs. The downside of complex auctions is that finding a way to compute short-
term prices has no obvious solution. 

In a complex auction, a uniform2 price computed as the marginal cost of the economic dispatch solution 
cannot guarantee total production cost recovery for all generation agents. The marginal cost reflects the 
variable costs components of the offers but not the non-convex costs (start-up, no-load cost). This led to 
different approaches to calculate market-clearing prices that can sufficiently compensate generators for 
their non-convex costs; these approaches can be classified into two large groups: non-linear and linear 
pricing rules. 

Non-linear pricing rules (also known as discriminatory) obtain a uniform marginal price (marginal cost) 
from the unit commitment model and, on top of it, additional side-payments are provided on a 
differentiated per generation unit basis. Side-payments account for the non-convex costs that the 
generation units could not recover solely through uniform prices3. 

On the other hand, linear pricing rules (or non-discriminatory) produce a uniform price that includes in 
it the effect of non-convex costs such. In the short term, the most important reason given in favour of 
linear pricing rules are based on efficiency implications. In particular, linear prices should bring 
generators’ short-term offers closer to their real costs. See for example Hogan and Ring (2003) for further 
details. 

Both of these two pricing approaches support the optimal short-term operation of DAMs but prices also 
have to serve as the key signal for new investments. Prices do not only compensate for operations costs, 
in the long run, prices resulting from a well-designed and well-functioning market should allow 
generators to recover the investment costs. For all inframarginal units, the difference between market 
prices and their operation costs should be considered a payment to finance their capital costs. Given that 
the uniform price perceived by all units differs from one pricing rule to the other, so does the remuneration 
aimed at compensating investment costs and therefore, different investment decisions should in principle 
be expected under each pricing rule. This long-term consideration should help to discern which of the 
pricing approaches is more appropriate (Vázquez, 2003). Nonetheless, it has been profusely pointed out 
by some of the most reputed academic experts in the field that the full long-run incentive effects of these 
pricing rules are not well understood (Hogan and Ring, 2003), (Ring, 1995). 

This paper further analyses the long-term impact of different pricing rules in an energy mix if investment 
is driven by short-term market prices. In particular, we follow the evidence presented by Vázquez (2003) 
who compared various pricing rules and stated the following: “Although, when exclusively studying 
operation decisions, it seems that only variable costs need to be considered (in the price formation); when 
the impact of the price on investment decisions is considered it is observed that it also has to partially 
include non-convex operation costs. When including in the price the corresponding part of start-up and 
no-load cost of the marginal unit, a larger remuneration is given to inframarginal units. These 
inframarginal units will find a greater long-term incentive to invest, and as a consequence will partially 
substitute the marginal technology.” 

Moreover, intermittent renewable energy sources (RES-E) which are expected to reach larger penetration 
levels in the next decades, can make this discussion more relevant. We build on the foundations of Veiga 
et al. (2013), who already exposed how RES-E penetration increases conventional thermal plants 
cycling -augmenting the share of non-convex costs (mainly start-up costs) in total operation costs- and 
therefore increases the differences in remuneration perceived under each of the pricing rules, especially 
for the case of base-load plants. This article, in the light of the increasing share of RES-E in generation 
                                                      

2 “Uniform” indicates that all generating agents are compensated using the same price regardless of their offer. 

3 Note that side-payments resemble a “pay-as-bid” system for non-convex costs, bringing along all its inefficiency issues (Baldick 
et al., 2005). 
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mixes, considers a system with a large deployment of intermittent generation and analyses the impact of 
pricing rules on investments through the application of a very detailed capacity expansion optimization 
model. 

The paper is organized as follows. The general methodology is described in Section 2. A brief revision of 
necessary background and a mathematical formulation are included in Section 3 in order to complement 
the description of the method and to detail some calculations. Section 4 presents the results obtained, 
which are discussed in Section 5, and Section 6 summarizes the outcomes of this research. 

2 MATERIAL AND METHODS 

The approach developed in this paper aims at calculating the perfectly adapted generation mix to be 
installed in a market context under different pricing rules. We base our analysis on a very detailed long-
term greenfield capacity expansion optimization of a real-size case example. Three different thermal 
generation technologies (Nuclear, CCGT and OCGT) and their detailed costs and operation constraints 
are considered in the simulation (overnight costs, fuel variable costs, start-up costs, minimum stable load, 
ramps, etc.). These three technologies are chosen to represent base-load, mid-load, and peak-load plants. 
The mix is optimized to supply the chronological hourly demand of Spain for 2012 (assumed to be 
perfectly inelastic). This mix includes a fixed level of RES-E penetration assuming its remuneration is not 
provided by the DAM but through some additional payment mechanism. The effect of renewable energy 
sources is represented by means of a high penetration of solar photovoltaic (PV). The exogenous PV 
production profile has been scaled from the 2012 hourly production profile in Spain and in the short-term 
simulation the PV power output can be curtailed when needed for optimized operation. 

Figure 1 aims at illustrating the different stages of the implemented methodology, while the following 
sections detail the operation of each element of the model. 

 
Figure 1. Methodology summary diagram. 

2.1 Module 1: Reference generation mix 

Module 1 calculates the least-cost energy mix using a traditional capacity expansion model as in a 
centralized planning case4. This energy mix is used only as initial reference for the subsequent search of 
the perfectly adapted mix corresponding to each of the pricing rules. Since in principle market prices are 
                                                      

4 The model used in this step includes a detailed representation of both expansion and operation. The formulation is similar to 
that of presented later in Section 3.1, but the number of units available of each technology is in this case variables to be determined 
by the problem itself. To do so, obviously associated investment costs are included in the objective function. 
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believed to drive investment towards the least cost generation mix, we assume that the market-based 
mixes to be obtained later will not deviate substantially from this reference, although as it is right next 
described, we explore up to around 4000 different alternatives. 

We build a set of possible mixes by considering all combinations of the three thermal generation 
technologies which amount to n3 possibilities (where n is the maximum number of units considered for 
each technology). In a real size example this produces a number of possibilities in the order of 106. We 
reduce the search by excluding those mixes that significantly deviate from the initial reference to handle 
some thousand combinations only. This way, the computation time5 in following modules is minimized 
while maintaining an extensive set of possible solutions, so that an optimum can be found. 

Each possible solution is evaluated separately in modules 2 and 3. Module 4 will find an optimum once 
the whole set of possible solutions is fully characterized. 

2.2 Module 2: Short-term Unit Commitment 

Module 2 takes as an input a given energy mix and simulates the day-ahead market outcome for a full 
year. The output of this module includes the detailed economic dispatch and the hourly marginal costs. 

We consider a single node system, so no locational marginal prices (LMP) are produced. This way prices 
will have the same impact on each investment decision regardless of the location of power plants. In turn, 
price influence on investment behaviour will be easier to analyse. We assume perfect competition, so 
generators are supposed to declare their true marginal and non-convex costs. The UC formulation is 
detailed in section 3.1. 

2.3 Module 3: Price and remuneration calculation 

Module 3, from the dispatch and marginal costs given by module 2, calculates the remuneration of each 
of the generation units committed, computing first the corresponding hourly prices and as a result the 
side-payments needed for the units to recover their full short-term operation costs under two different 
pricing rules. 

The computation of prices and side-payments is detailed in Section 3.1 and 3.2. No reserves or other 
ancillary services are considered in this simulation since our interest is on differences produced exclusively 
by the aforementioned pricing rules on the day ahead energy-only market6. 

2.4 Module 4: Market-based mix search 

Module 4 compares all the previously evaluated generation mixes to obtain, for each of the pricing rules, 
the best adapted mix. This direct search approach is similar to that of Shortt et al. (2013), who, to calculate 
a least cost portfolio, evaluated all possibilities separately and then chose the optimal solution by direct 
search. In our case the desired energy mix for each pricing rule is not the one minimizing total costs, 
instead, we consider as optimal the mix that a competitive market would choose to invest on. The 
corresponding market-based optimality conditions are based on the condition that all agents are break-
even. In other words, an agent would choose to invest if and only if short-term market remuneration fully 
ensures the recovery of both investment and operation costs. On the other hand, a perfect competitive 
market will ensure that the short-term remuneration exactly recovers the previous costs7. The details are 
provided in Section 3.3. 

                                                      

5 It took 2h and 37 min to analyze the real-size case example presented in this paper. The model was run using CPLEX on GAMS 
on an Intel Core i7@ 2.8 GHz, 3.5 GB RAM. 

6 This is also the scope of some well-known references on the topic like Hogan et al (2003) and Baldick et al (2005). 

7 If the market remuneration was above these costs, competitors would enter de market and depress prices down to the break-
even point. 
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3 THEORY/CALCULATION 

3.1 Unit Commitment formulation  

An accurate short-term simulation is necessary to obtain precise results in the long term. Our first attempt 
was to use a complete UC as the one presented in Morales-España et al. (2013) to simulate the short-term 
operation of the day-ahead market for a whole year. This approach made the problem computationally 
intractable so our next step was to reduce the number of variables by considering only a few representative 
weeks instead of a year. This approach could have been successful for other purposes but it was not 
appropriate for ours. This is because important discontinuities that affect the long-term problem are 
introduced when this simplification is applied. 

For example, the amount of time intervals with scarcity of capacity is a key issue to determine the long-
term adequacy of an energy mix. When generation capacity is insufficient the market price is set at the 
so-called non-served energy (NSE) price. If properly determined (i.e. if turns to be a good proxy of 
demand’s utility), this price is the required remuneration to promote the properly adapted investment in 
capacity, and it is crucial to allow for the investment cost recovery of all units in general and peak-load 
units in particular. If only a few weeks are considered in the problem a discontinuity is introduced in the 
number of time intervals in which the price is at the NSE level. For example, if four weeks were considered 
and the result was then scaled to a year, the number of intervals with NSE price in a week would be 
multiplied by thirteen. This discontinuity produces big differences in the remuneration of all units when 
small changes are made in the mix yielding unrealistic results. Therefore, a full year representation is 
needed. 

To accurately represent the short-term dynamics of power plants and still being able to run this 
simulation for a whole year with a computationally tractable problem we based our model on the clustered 
UC formulation proposed for example in Gollmer et al. (2000) and later applied by Palmintier and 
Webster (2011). This means technically identical units are grouped representing commitment decision 
with integer variables instead of binary variables. Clustering units speeds computation and still allows for 
a very accurate representation of the UC. 

3.1.1 Nomenclature 

Indexes and sets 

g G  Generating technologies 

t T  Hourly periods 

 MRg G  Must-run generating technologies 

Parameters 

LV
gC  Linear variable cost of a unit of technology g [$/MWh] 

NL
gC  No-load cost of a unit of technology g [$/h] 

NSEC  Non-served energy price [$/MWh] 
SD
gC  Shut-down cost of technology g [$] 

SU
gC  Start-up cost of a unit of technology g [$] 

tD  Load demand in hour t [MWh] 

tPV  Solar photovoltaic available production in hour t [MWh] 

gP  Maximum power output of a unit of technology g [MW] 

gP  Minimum power output of a unit of technology g [MW] 
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gRD  Ramp-down rate of unit g [MW/h] 

gRU  Ramp-up rate of unit g [MW/h] 

gN  Number of units installed of technology g  

Variables 

tnse  Non-served energy in hour t [MWh] 

,g tp  Power output at hour t of all technology g units above the minimum output gP  [MW] 

spill
tpv  Solar photovoltaic energy spill in hour t [MWh] 

,g tu  Number of units of technology g committed at hour t 

,g tv  Number of units of technology g starting-up at hour t 

,g tw  Number of units of technology g shuting-down at hour t 

3.1.2 Formulation 

  
 

         
  , , , , ,min NL LV SU SD NSE

g g t g g g t g t g g t g g t t
t T g G

C u C P u p C v C w C nse  (1) 

 , ,. . spill
g g t g t t t t t t

g G

s t P u p PV pv D nse t


          (2) 

 1    , , , , ,MR
g t g t g t g tu u v w g G t  (3) 

     , , ,MR
g t g g g tp P P u g G t  (4) 

 1    , , ,MR
g t g t gp p RU g G t  (5) 

 1    , , ,MR
g t g t gp p RD g G t  (6) 

 0    , , , , , ,, , , , , ,MR
g t g t g t g g t g t g tu v w N u v w g G t  (7) 

 0   , , ,, , ,MR
g t g g t g tu N v w g G t  (8) 

     , ,MR
g t g g gp N P P g G t  (9) 

  spill
t tpv PV t  (10) 

 0  , ,, , , , , ,spill spill
g t t t g t t tp nse pv p nse pv g t  (11) 

Equation (1) shows the objective function to be minimized which is a sum of all operation costs (no-load 
cost, linear-variable cost, start-up cost and shut-down cost) and the value of the non-served energy. 
Restriction (2) equals production (allowing solar PV production to be reduced by a certain amount if 

needed) with demand minus non-served energy. As well-known, its dual variable t 	 represents the 

marginal cost of the system for each time interval. As shown in equation (7), binary variables are here 
integer with the upper bound being the number of units installed. In this model we consider a must-run 
restriction for nuclear power plants so the constraint (9) fixes the power output to its maximum. For an 
extensive description of a UC model see Morales-España et al. (2013). 
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3.2 Non-linear (discriminatory) pricing rules 

Non-linear pricing rules are the most extended alternative in markets with complex auctions. This is the 
case of most US markets such as NYISO (2013), MISO (2013a) or ISO-NE (2014). 

The general approach consist, as described in the introduction, in obtaining a uniform marginal price from 
the unit commitment model (marginal cost) and giving additional side-payments on a differentiated per 
unit basis. Side-payments are sometimes referred to as make-whole payments or uplifts. In practice, a side-
payment is calculated as the difference between the incurred costs of a unit (according to its offer) and its 
uniform-price-based market remuneration8. The difference generally considers the complete day costs and 
incomes (i.e. side-payments are calculated on a daily basis, not hourly) and only exists if the difference is 
positive (if costs happen to be higher than market remuneration). This paper follows this simple approach 
to compute non-linear prices9 and side-payments according to: 

 UniformPricet t  (12) 

 0, , , , , , , ,

Operation Costs Market Remuneration

max( [ ( ) ( )], )NL LV SU SD
j day j j t j j j t j t j j t j j t t j j t j t

t day

SP C u C P u p C v C w P u p


        
 (13) 

Where j denotes generating units and the production of each unit has been derived from the clustered 
production obtained in the UC model. Note this side-payment is only paid if positive and represents the 

payment needed when the uniform price t 	does not suffice to compensate for all the costs incurred in a 

day. Therefore, the income of each generating unit per day is: 

  


  , , ,t j j t j t j day
t day

P u p SP  (14) 

3.3 Linear (non-discriminatory) pricing rules 

Linear pricing rules rely on a uniform price to account for variable and fixed (non-convex) costs at the 
same time. This can be achieved in a number of ways: different authors propose alternative pricing 
mechanisms to reflect non-convexities in the marginal price perceived by all units (see for example 
Vázquez (2003), Hogan and Ring (2003), Gribik et al. (2007) which minimize side-payments or Ruiz et al. 
(2012) which completely eliminates side-payments). These methods seek to minimize side-payments and 
find a price that truly captures the value of energy (this is the reason why they are called non-
discriminatory, although in most cases some sort of side-payments are still needed)10. 

Since side-payments would still be necessary in most cases (although minimal), this approach, strictly 
speaking, should still be considered discriminatory. On this paper though, we will refer to these pricing 
rules as linear representing the fact that non-convexities are considered in price formation and 
distinguishing it from the non-linear rule previously introduced. 

All of the mentioned alternatives are similar in nature although very different in its implementation. 
Probably the most promising alternative is the convex-hull pricing (Gribik et al., 2007) which is the 
foundation of the recently accepted MISO proposal of extended locational marginal pricing (ELMP).11 
                                                      

8 Again, here we have restricted the scope of the paper to the energy only day ahead market. When adding in the analysis more 
products or subsequent markets, the side-payments may include other concepts such as the opportunity cost derived from 
providing reserves.  

9 Some more refined methods to calculate side-payments are worth mentioning -see for example O’Neill et al. (2005)- although 
not representative of current market practices. 

10 A real case example is the pricing rule implemented in Ireland (SEMO, 2013) where an ex-post optimization model increases 
marginal prices in the least costly way until all units recover their declared costs. In this case no side-payments are needed and 
all units perceive the same price. 

11 See MISO (2013b) and FERC (2012). 
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The method proposed by MISO does not follow completely the convex-hull methodology (or full-ELMP) 
in favour of a computationally simpler formulation. This simplified method is based on virtually allowing 
fractional commitment of some units, even though fractional commitment is not physically feasible, and 
allocating the corresponding share of non-convex costs on the market price. 

We chose to use a similar approach, generally referred to as “Dispatchable Model”. It consists in a 
modification of the unit commitment model used for dispatch in which binary restrictions are relaxed. 
This way some units are partially committed and now, marginal costs depend on non-convex costs since 
an additional unit of energy would require an increase in the continuous commitment variable. Only 
equation (7) needs to be changed to: 

 0    , , , , , ,, , , , , ,MR
g t g t g t g g t g t g tu v w N u v w g G t  (15) 

The relaxed model is used only to compute prices. We will now call relax
t  to the new hourly price which 

is the marginal cost of the relaxed UC solution. The feasible economic dispatch is still obtained from the 
unmodified unit commitment. We apply the same procedure to calculate side-payments: 

 UniformPrice relax
t t  (16) 

 0, , , , , , , ,max( [ ( ) ( )], )NL LV SU SD relax
j day j j t j j j t j t j j t j j t t j j t j t

t day

SP C u C P u p C v C w P u p


        (17) 

Finally, the income of each generating unit per day in the linear pricing context is: 

  


  , , ,
relax
t j j t j t j day

t day

P u p SP  (18) 

Note that the dispatch remains the same as in the non-linear case; the linear pricing rule only affects the 
remuneration by producing a higher uniform price through the dual variable of the relaxed problem which 
reduces the side-payments requirements. 

3.4 Market-based mix search 

To illustrate our methodology to find the perfectly adapted mix, first consider the following simple case 
with only two generation technologies. In order to determine how much capacity of each of the 
technologies will be installed, all possible combinations of technology one (T1) and technology two (T2) 
are represented in the plane shown in Figure 2 (a). 

If we focus on T1 only, the area of all possible combinations can be divided into a region of mixes that 
would make all units of T1 recover their capital cost (profitable) and a region where not all units of T1 
recover their capital costs (not profitable). In the figure, region A + B represents the profitable area for 
T1. For a fixed level of T2, the boundary of the profitable area (break-even frontier) gives the capacity of 
T1 that would be installed since new investments would be made as long as these are profitable. No 
additional capacity would be installed beyond the boundary since these would not recover their 
investment costs or would make other units of T1 unprofitable bringing the total capacity installed back 
to the frontier. 
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(a) Continuous investment break-even mix (b) Discrete investment break-even mix 
Figure 2. Break-even solutions. 

The same reasoning applies to determine T2 capacity, which adapting to changes on T1 capacity and vice 
versa can only find equilibrium on the intersection of both break-even frontiers. Thus, the perfectly 
adapted mix can be obtained from the remuneration information calculated for each possible mix by 
modules 2 and 3 in our model. Note that these break-even frontiers will change under each of the pricing 
rules. 

Figure 2 (b) represents this methodology applied to a discrete investment problem, which is our case. 
Break-even frontiers can be interpolated from the point cloud and the continuous break-even mix obtained 
as the intersection. However, we are considering the more realistic discrete investments which present a 
lumpiness problem. As illustrated in the figure, no point will probably coincide with the continuous break-
even mix and various discrete energy mixes may seem valid under the break-even criteria. To discern 
which of these nearly optimal points is preferred, the value of the net social benefit (NSB) resulting under 
each of the mixes is compared and the NSB-maximizing mix is selected. 

In our analysis, three technologies are considered (nuclear, combined cycle gas turbines and open cycle 
gas turbines), extending this illustrative example with a third dimension. Therefore, break-even frontiers 
become surfaces and these three surfaces (one for each technology) intersect at one point. An extension 
to n dimensions would be mathematically analogous although not easy to represent graphically. 

4 RESULTS 

Three different energy mixes are calculated and compared. First, the least-cost (reference) energy mix 
from a centralized perspective is obtained as described by module 1. Around this reference mix a set of 
possible mixes containing 3706 potential solutions is built. All these possibilities are characterized by 
modules 2 and 3. Module 4, considering market-based investment decisions, selects the two mixes that 
best adapt to a non-linear and a linear pricing rule. These results are obtained in a context of a rather 
significant solar PV penetration (19.2 GW-peak) in a power system supplying the chronological hourly 
demand for Spain 2012 (40.4 GW-peak). The data used to represent each power plant type is summarised 
in Table i. 
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Table i: Generating technologies characteristics12 

 
Max 

Output 
Min 

Output 
Max Up 

Ramp 
Max Down 

Ramp 
Capital Cost LVC  NLC  SDC  SUC  

 MW MW MW/min MW/min K$/MW-year $/MWh $/h $ K$ 

OCGT 150 60 12 12 78.58 104 1650 - 14.75 
CCGT 400 160 10 10 142.8 57 2440 - 28.33 
NUCLEAR 1000 500 - - 590.0 8.5 1500 - - 

NSEC = 5000 $/MWh 

Figure 3 shows first the minimum cost reference mix followed by the mixes resulting from applying the 
two different pricing rules considered. Both the mix produced by the linear pricing rule and the mix 
produced by the non-linear pricing rule deviate from the reference mix. In fact, none of the pricing rules 
supports the reference energy mix (i.e. they do not provide sufficient remuneration to make all units in 
the reference mix profitable), which would be a desirable characteristic of a pricing rule. Both pricing rules 
require a deviation from the reference mix including a slight decrease in total capacity. This deviation 
though, is significantly smaller when the linear pricing rule is applied. 

 
Figure 3. Generation mix results. 

The major difference is the shift in capacity of nuclear and OCGT (base-load and peak-load) which in the 
non-linear pricing context substantially deviates from the reference. Some small differences between these 
three mixes are a result of lumpiness since only discrete investments are considered. Bigger differences 
are more representative of the pricing rule influence. 

To gain more insight, the representation presented in Figure 2 has been extended to include three 
technologies and the results of this simulation are shown in Figure 4. Doing this requires an extension to 
3 dimensions but for the sake of clarity this figure shows 2-dimensional break-even frontiers obtained for 
all combinations of CCGT and OCGT units and only discrete combinations of nuclear power plants. 
These frontiers can be thought of as the contour lines of the three surfaces that should intersect only at 
the break-even solution point. This way, a point where all three contour lines intersect will indicate the 
desired solution but this point may not be represented in the figure since the optimal continuous solution 
could require a non-discrete level of nuclear capacity. 

                                                      

12 These data is based on Black and Veatch (2012). The start-up costs take as reference Kumar et al. (2012). 
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(a) (b) 
Figure 4. Break-even frontiers under (a) linear and (b) non-linear pricing rules 

Figure 4 (a) shows the result for the linear pricing rule. To easily find the point where all three surfaces 
intersect look at the crosses (+) which represent the intersection of the CCGT (blue) and OCGT (red) 
lines and the asterisks (*) which represent the intersection of the NUC (black) and OCGT (red) lines. The 
perfectly adapted generation mix to be installed under a linear pricing rule would have between 10 and 
11 nuclear power plants. Since we are assuming that only discrete investments are possible the final 
solution requires 11 nuclear power plants and is indicated by the green dot. The red diamond points the 
minimum cost reference mix, it is hard to tell with the figure but it is located outside of the feasible 
boundary. 

The same analysis can be made for Figure 4 (b) which shows the results for the non-linear pricing rule. 
The ideal solution would lie between 7 and 8 nuclear power plants but the discretization simplifies it to 
8. Note the difference in the horizontal axis; in this case the perfectly adapted mix requires a totally 
different amount of OCGT capacity and the reference mix lies out of the bounds of this plot. 

This figure helps to discern what is the trend produced by each of the pricing rules. Linear pricing rules 
attract capital intensive technologies in alignment with the desired minimum cost energy mix. Non-linear 
pricing rules produce price signals that do not include non-convex costs and thus, infra-marginal units 
that could lower total operation costs result unprofitable and are not installed. The gap left by the lack of 
base-load capacity is filled with peak-load capacity with lower investment costs and higher variable costs. 

In Figure 5 (a) we sorted in descending order the hourly uniform prices produced by each of the pricing 
rules in the corresponding energy mix. The non-linear price consists of four different regimes; the price 

is set to NSEC  when not enough capacity is available, the other two steps correspond to OCGT and CCGT 
variable costs. Nuclear power plants can never be marginal since they are not able to regulate their output, 
therefore the price is set to zero when production exceeds demand and solar PV production is spilled. The 
linear pricing rule is not limited to these four steps and a continuum of prices is possible. Compared to 
the non-linear case, the price is lower when the additional nuclear power plants substitute CCGT units 
and when CCGT units replace OCGT units. Figure 5 (b) illustrates how daily side-payments are, as 
expected, reduced by the linear pricing rule. 
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(a) Monotone curve of uniform market prices (b) Monotone curve of daily side-payments 

Figure 5. Pricing regime comparison between linear and non-linear pricing rules 

5 DISCUSSION 

This section aims to qualify the results presented previously, mainly to determine the relevance of the 
pricing rule and to clarify some common misconceptions. 

While pricing rules clearly affect the energy mix, these differences should be quantified in terms of total 
cost (investment + operation + non-served energy) of the thermal mix installed. This is the variable to 
be minimized in an expansion planning problem and its minimization necessarily implies the 
maximization of NSB. 

 ,
NSE

year t j t j
t year j t year j

TotalCost nse C OperationCost AnnualInvestmentCost
 

       (19) 

Figure 6 details the share of each component of total costs. It is clear that the linear pricing energy mix 
is composed of more capital intensive technologies with lower variable costs. Interestingly, the share of 
non-convex costs (no-load and start-up costs) is relatively small (around 7%) although these are 
responsible for the price differences between each of the pricing rules and thus, responsible for the 
difference in the final energy mix. 

 
Figure 6. Cost structure of each generation mix 

In particular, start-up costs only represent around 1.5% of total costs. This suggests that we could use 
the so-called screening curves (SSCC) method (Phillips et al., 1969) to gain some more insight on the 
results we are obtaining. In particular, we use an alternative representation of the SSCC (Figure 7), where 
the horizontal axis which generally represents hours of operation of each generation technology (up to 
8760 hours) here represents installed capacity. This simply requires a change of variable using the relation 
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between time and power given by the net load-duration curve of the system13. The area under each curve 
represents the costs incurred when a certain capacity of each technology is installed. 

In this type of representation we get the total cost involved when instaling a MW of each of the 
technologies at each of the load levels (under the simplified dispatching assumptions of the SSCC 
methodology). 

 
Figure 7. Screening curves representation of total costs 

This figure should help to better interpret what at first might seem a counterintuitive result: the structure 
of the optimal mix changes significantly as a consequence of the pricing rule implemented, but the total 
costs are affected to a lower extent when compared in relative terms. With this representation we shall 
see that effectively not-so insignificant changes in the mix may not affect total costs in relative terms. 

To begin with, let us graphically identify the total cost of the optimal mix obtained with the SSCC method 
as the solid area of the figure above. Now we shall compare the costs resulting from the mixes depicted in 
figure. The extra cost of the non-linear pricing mix is produced by the excess of peak-load capacity and 
the lack of base-load capacity. These extra costs are represented by green areas in the figure and are 
relatively small if compared to the total costs of the system. 

Table ii compares the total cost for each of the three generation mixes obtained. The difference in total 
cost between a mix and the reference mix can be interpreted as a measure of the inefficiency of each pricing 
rule. 

Table ii: Total cost comparison of the resulting mixes 

 Total Cost Absolute Difference Relative Difference 
 $ Million $ Million % 
Minimum Cost Reference Mix 17,692   
Linear Pricing Energy Mix 17,693 +0.584 +0.0033 
Non-Linear Pricing Energy Mix 17,816 +124.074 +0.7013 

As already illustrated by the SSCC, the percentage difference with respect to the minimum cost is very 
small for both pricing rules so it could seem that the impact of pricing rules in total costs is negligible. 
                                                      

13 See Batlle & Rodilla (2013) for a more-in-detail explanation of this alternative way to represent the SSCC methodology 
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Actually, we should first know what can be called a small difference in this context and what the impact 
of installing a sub-optimal generation mix can be. One clear reason for this difference to be small is that 
the cost data considered for mid-load units makes it a very competitive technology for peak-load and base-
load alike and this diminishes the effect of deviations in the energy mix. Take for instance a mix in which 
only CCGT units are installed; this mix would produce a 3% increase in total costs with respect to the 
minimum cost reference mix. Considering this we can say that the non-linear pricing rule produced a 
relatively big increase in total costs while the linear pricing rule produced a cost increase two orders of 
magnitude lower. 

We now compare the result of applying (changing) the pricing rule to the adapted-to-the-other-pricing-
rule energy mix. We can see how the changes are relevant (Table iii). The non-linear rule does not produce 
sufficient remuneration for the linear mix and the linear rule produces excessive remuneration for the 
non-linear mix. 

Table iii: Investment cost recovery under different generation mix - pricing rule combinations 

 
 

Linear mix and 
non-linear rule 

Non-linear mix 
and linear rule 

OCGT 110.86 % 104.79 % 
CCGT 78.011 % 153.47 % 
NUCLEAR 88.146 % 114.95 % 

This allows to extract two additional conclusions. First, in the previous table it is clearly illustrated that 
the performance of one or the other pricing rule can only be judged in the long run: it would make no 
sense to evaluate the suitability of the implementation of one rule on the basis of the estimated returns or 
costs calculated for a mix adapted to any other market design context, or even to the mix resulting from 
a pure cost minimization. Second, from the regulatory design point of view, it has been evidenced that a 
change in the pricing rule would produce an economic imbalance requiring new investments but also 
divestments that could take a long time before a new economic equilibrium is reached. So, although further 
research would be needed, regulators should be discouraged to change the particular pricing rule in force 
(linear or non-linear) since the negative impact of “disadapting" the mix could be relevant, and the 
potential benefits in the long run are yet not clear enough. 

6 CONCLUSIONS 

This paper has proposed a practical and computationally efficient methodology to compare the long-term 
effect of pricing rules in the investment signals perceived by market agents. We asses this impact in terms 
of the expected energy mix to be installed under different pricing rules. 

A real size example of a power system was used to compare two pricing rules; a non-linear pricing rule 
resembling current market practices in the US and a linear pricing rule including the main characteristics 
proposed in literature. Two important results can be extracted from this simulation. First, the way in 
which non-convex costs are reflected in the uniform price can have a significant impact in the investment 
signals perceived by market agents and the linear pricing rule seems to promote a more efficient energy 
mix. Second, contrary to what a superficial analysis may suggest, a linear pricing rule does not necessarily 
produce higher energy prices than a non-linear pricing rule; in fact it can lower the price since it attracts 
generation technologies with lower variable costs. 

The results presented in this paper suggest that a properly designed linear pricing rule can be more 
efficient in the long term. But it has been evidenced that adapting a market from an existing non-linear 
settlement mechanism (or the other way around) could be a problematic process that requires careful 
planning. 



IIT Working Paper 

15 

Acknowledgements 

We thank our colleagues Samuel Vázquez and Paolo Mastropietro for their fruitful support, as well as 
Profs. Ignacio Pérez-Arriaga and Michel Rivier for their comments on the draft version of this paper. 

7 REFERENCES 

Batlle, C., 2013. Electricity generation and wholesale markets. Chapter of the book Regulation of the 
Power Sector, 2013, Springer, Pérez-Arriaga, Ignacio J. (Ed.). ISBN 978-1-4471-5033-6. 

Batlle, C. & Rodilla, P., 2013. “An enhanced screening curves method for considering thermal cycling 
operation costs in generation expansion planning”. IEEE Transactions on Power Systems, 
vol. 28, no. 4, pp. 3683‑3691, Nov. 2013. 

Baldick, R., Helman, U., Hobbs, B.F., O’Neill, R.P., 2005. Design of Efficient Generation Markets. 
Proceedings of the IEEE 93, 1998–2012. doi:10.1109/JPROC.2005.857484 

Black and Veatch, 2012, “Cost and performance data for power generation technologies”, Prepared for the 
National Renewable Energy Laboratory, February 2012. Available at bv.com/docs/reports-
studies/nrel-cost-report.pdf. 

FERC (Federal Energy Regulatory Commission), 2012. Order Conditionally Accepting Tariff Revisions. 
Docket No. ER12-668-000. July 20, 2012. 

Gribik, P.R., Hogan, W.W., Pope, S.L., 2007. Market-Clearing Electricity Prices and Energy Uplift. 
Harvard University. 

Hogan, W.W., Ring, B.J., 2003. On minimum-uplift pricing for electricity markets. Electricity Policy 
Group. 

ISO-NE (ISO New England), 2014. Section III, Market Rule 1. Appendix F. Net Commitment Period 
Compensation Accounting. Jan-23-2014. Available at www.iso-ne.com. 

Kumar, N., Besuner, P., Lefton, S., Agan, D., Hilleman, D., 2012. Power Plant Cycling Costs. Intertek 
APTECH. Available at www.nrel.gov. April 2012. 

MISO, 2013a. BPM (Business Practices Manual) 005 - Market Settlements. 10/17/2013. Available at 
www.misoenergy.org. 

MISO, 2013b. Schedule 29A. ELMP for Energy and Operating Reserve Market: Ex-Post Pricing 
Formulations. November 19, 2013. Available at www.misoenergy.org. 

Morales-España, G., Latorre, J.M., Ramos, A., 2013. Tight and Compact MILP Formulation for the 
Thermal Unit Commitment Problem. IEEE Transactions on Power Systems, vol. 28, no. 4, 
pp. 4897-4908, Nov. 2013. 

NYISO (New York Independent System Operator), 2013. NYISO Accounting and Billing Manual. 
Version 3.1. Effective Date: 10/31/2013. Available at www.nyiso.com. 

O’Neill, R. P., Sotkiewicz, P. M., Hobbs, B. F., Rothkopf, M. H., Stewart, W. R., 2005. Efficient market-
clearing prices in markets with non-convexities. European Journal of Operation Research, 
vol. 164, iss. 1, pp. 269–285. 

Palmintier, B., Webster, M., 2011. Impact of unit commitment constraints on generation expansion 
planning with renewables. Power and Energy Society General Meeting, 2011 IEEE, pp. 1–7, 24-
29 July 2011. 

Phillips, D., Jenkin, F.P., Pritchard, J.A.T., Rybicki, K., 1969. A mathematical model for determining 
generating plant mix. Proceedings of the Third IEEE PSCC, Rome. 

Ring, B.J., 1995. Dispatch based pricing in decentralised power systems. Ph.D, Thesis Dissertation. 
University of Canterbury 1995, p. 213. 

Ruiz, C., Conejo, A.J., Gabriel, S.A., 2012. Pricing Non-Convexities in an Electricity Pool. IEEE 
Transactions on Power Systems, vol. 7, pp. 1334–1342. 

SEMO, 2013. Trading and Settlement Code. v14.0 Available at: http://www.sem-
o.com/MarketDevelopment/Pages/MarketRules.aspx 

Shortt, A., Kiviluoma, J., O’Malley, M., 2013. Accommodating Variability in Generation Planning. IEEE 
Transactions on Power Systems 28, 158–169. doi:10.1109/TPWRS.2012.2202925 

Stoft, S., 2002. Power system economics. Wiley-Interscience, 2002, p. 302. 
Vázquez, C., 2003. Modelos de casación de ofertas en mercados eléctricos. PhD (in Spanish). Institute for 

Research in Technology. Comillas Pontifical University.  
Veiga, A., Rodilla, P., Batlle, C., 2013. Intermittent RES-E, cycling and spot prices: the role of pricing 

rules. Working Paper IIT, submitted to Electric Power Systems Research. Available at: 
www.iit.upcomillas.es/batlle/ 


