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Abstract 

In the deregulated framework in place in most power systems, a significant part of the 

energy is traded through auctions on day-ahead markets where agents submit bids to 

either buy or sell energy. When defining a bidding strategy, generators usually resort to 

models that anticipate and simulate agent interactions. The residual demand curve 

(RDC), a well-known approach to representing competitor behaviour, enables 

generators to formulate effective oligopolistic strategies. 

One way to estimate and build an RDC is to use information available about other 

agents’ bids on previous and comparable days as a reference. This basic approach to 

market modelling has proven useful in the past in European power exchanges. In the 

current context, however, characterised by substantial market penetration on the part of 

non-dispatchable renewable resources, the suitability of this method of RDC building 

may need to be tested.  

This paper first analyses how the results of day-ahead auctions on European power 

exchanges have been affected by the growing penetration of renewable energy. It then 

questions both the use of RDC as an approach in this changing context and the 

aforementioned simplified estimation method to compute these curves. The discussion is 

illustrated with empirical evidence from the Iberian market. 

Keywords: electricity market, power exchange, strategic bidding, residual demand 

curve, MIBEL. 
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1 INTRODUCTION 

In the competitive framework that governs electricity production in many electric power 

systems, generating company (GenCo) revenues depend largely on generators’ ability to 

devise a suitable bidding strategy for short-term markets. This is particularly true in 

European markets, which operate around power exchanges (PX), for two main reasons. 

On the one hand, auction design based on so-called semi-complex bidding protocols and 

the linear pricing rule requires GenCos to design a bidding strategy (which is not always 

obvious) that correctly internalises all operating costs. And on the other, large GenCos 

can optimise their entire generation portfolio to capitalise on (not necessarily 

acknowledged) oligopolistic strategies. 

The bids that are ultimately sent to the market operator condition the overall market 

outcome, including dispatch efficiency and consequently consumers’ power bills. 

Hence, it is not surprising that this issue has attracted a good deal of attention from both 

the industry (stakeholders and regulators) and academia. 

Strategic bidding has been analysed from two main perspectives. The most common 

approach assesses the possible impact of imperfect competition and market power on 

the aforementioned market outcome: the ability of market agents to behave strategically 

and thus the potential need to design measures to mitigate market power; see for 

instance [1,2].  

The second perspective is to broach the problem from the point of view of an individual 

GenCo seeking to optimise its energy sales on the spot market based on its portfolio, 

cost structure and operating constraints. The present discussion lies in this latter realm. 

In particular, it focuses on single-agent profit maximisation models based on the 

residual demand curve (RDC) [3]. In this modelling framework, only the bids submitted 

by the target firm are optimised, while its competitors’ strategies are fixed and 

introduced exogenously via the RDC. The RDC is a function that links a GenCo’s sales 

to the market clearing price. In other words, it expresses how the amount of energy sold 

in a given hour by an individual GenCo affects the market clearing price in that hour. 

The RDC has been widely used in strategic bidding models; see for instance [4,5,6].  
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One basic but common method for plotting the RDC takes market data from previous 

and comparable1 days to gather information about competitors’ price-quantity bidding 

strategies. This information is used as a starting point to plot a series of RDCs in the 

belief that it constitutes the best proxy for competitors’ short-term bidding strategies. 

The models developed in references [7,8] are examples of the use of this approach. 

The objective of this paper is two-fold. It first focuses on how the results of day-ahead 

auctions on European power exchanges have been affected by the growing penetration 

of renewable energy. Secondly, it discusses how the applicability of the aforementioned 

simplified method for estimating RDC is affected by these changes. 

The paper is structured as follows: 

• Theoretical background is provided on the characteristics of the RDC approach and its 

capability to represent the different auction designs implemented worldwide. The 

reasons why RDCs are particularly well suited to markets with a simple auction 

mechanism are explained (Section 2). 

• RDC suitability in the more complex auction designs implemented in Europe is 

qualitatively evaluated. The analysis focuses on the effect of significant market 

penetration by non-dispatchable and highly variable renewable energy sources 

(vRES). The behaviour of semi-complex auctions in this context is illustrated by the 

auction result patterns observed for the Iberian day-ahead market, MIBEL in recent 

years (Section 3). This market features the two characteristics dealt with in the present 

discussion: a day-ahead market based on semi-complex auctions and a power system 

with a vRES share that is among the world’s highest. 

• Section 4 introduces an ad hoc computation method for testing RDC applicability, 

which is then evaluated in the context of the MIBEL market.  

• The main conclusions drawn from the foregoing are set out in Section 5. 

                                                 

1 By comparable it is meant a day whose market conditions (bids, demand, etc.) are similar to those 

applying to the following day. 



 

4 

2 BACKGROUND: THE PROBLEM OF MODELLING DAY-AHEAD 

ELECTRICITY AUCTIONS 

The strategic bidding problem in short-term electricity markets is addressed in the 

literature with a variety of techniques; see for instance the reviews in [9,10]. As pointed 

out in the latter, many widely varying approaches are in place, fathered by the diversity 

of the spot market designs implemented worldwide.  

A market model intended to accurately reproduce real market interactions and results 

must contain a detailed description of all the relevant features of the real market in 

question. These features include the clearing algorithm, network model and bidding 

protocol. A fully detailed description of all market rules and agents’ interactions is 

seldom a realistic aspiration, however, for two major reasons: a) the lack of reliable data 

to feed the model, which mainly depends on the amount of market information 

disclosed by the market operator; and b) the size of the resulting problem. In practice, 

coping with these difficulties calls for a trade-off between the loss of accuracy 

stemming from representational simplification and the size of the resulting problem. 

This section aims to describe how this trade-off is handled in practice. The complexities 

arising in electricity auction design are addressed in item 2.1 and exemplified by a 

particular type of auction design, the semi-complex model in place in the MIBEL (item 

2.2). The standard RDC approach is discussed in item 2.3 and its suitability in the semi-

complex market context in item 2.4. 

2.1 Auction design in day-ahead electricity markets 

The special features of electricity as a tradable product such as limited storability, the 

existence of inter-temporal technical constraints and non-linear cost function 

components have led to a variety of auction designs and pricing rules (see [11] for a 

review of electricity auction design criteria). One of the major differences that 

distinguishes one auction design from another is the extent to which agents and 

particularly GenCos are allowed to include their technical constraints and cost data in 

their offers. Based on this criterion, electric power auctions can be classified into three 

major categories: simple, complex and semi-complex. 

At one end of the spectrum, GenCo bids may consist exclusively of a series of price-

quantity pairs per time period as the terms of sale for the underlying product i.e., the 

MWh. Auctions implementing such one-item bid formats are simple auctions. In this 
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model, the market can be cleared directly as the intersection between the aggregate 

supply and demand curves to obtain both the energy committed and the marginal 

clearing price. Note the absence of inter-temporal links among the hour-by-hour 

auctions. Simplicity and transparency are the two strong points of simple auctions. The 

drawback is that this design obliges GenCos to fully internalise all production costs in 

their price-quantity bids and exposes them to the risk of unfeasible or uneconomic 

scheduling2. These two considerations have prevented the rigorous implementation of 

simple auctions and restricted this design to a mainly theoretical alternative. 

Nonetheless, some market designs such as Italy’s GME [12] or the former California 

Power Exchange [13] come very close to this textbook model. 

On the other end of the spectrum, so-called complex auctions allow for multiple-part 

bidding. Multiple-part bidding implies that, in addition to the quantity-price pairs for 

energy, bids include non-convex cost data such as start-up/shut-downs as well as 

technical constraints such as load gradient limits or minimum stable loads. Such 

markets are cleared in much the same way as centralised paradigm, usually involving 

the use of the so-called security constrained economic dispatch (SCED) [14] (although 

in a market context SCED determines outputs as well as prices). Unlike simple auctions, 

optimisation-based formulations always reach technically feasible solutions. Complex 

auctions have sometimes been claimed to be scantly transparent, however [15]. US 

markets such as PJM, NYISO, ISO-NE, California ISO or MISO are examples of 

complex auctions; further details on the design of such auctions can be found in [15]. 

In an attempt to combine the transparency of simple auctions with the technical-

economic constraints of complex auctions, many markets have evolved toward a trade-

off approach referred to as hybrid or semi-complex auctions.  

2.2 MIBEL, example of semi-complex auctions 

The core idea in this design is to allow agents to reflect constraints in their bids to some 

extent through so-called complex conditions. The number and features of the complex 

conditions defined in a market’s bidding protocol should suffice to mitigate the risks 

facing GenCos in simple auctions, while keeping auction clearing as transparent and 

easy to interpret as possible. In practice, this trade-off has entailed either the direct 

inclusion of some of the constraints that are hardest to internalise, such as the load-

                                                 

2 This can be mitigated through complementary arrangements such as intraday markets. 
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gradient, or by allowing some useful experience-based inter-temporal constraints. In 

most cases, the latter represent neither an actual single technical constraint nor cost 

component, but rather a combined effect of several. This is the case of the block orders 

used in a number of European markets [17], for instance, under which agents can 

submit bids covering an interval of consecutive hours and the minimum average price to 

which they are willing to commit for the interval. Where all-or-nothing terms are in 

place, if the average price offered for the interval is not reached, the simple hourly bids 

are removed from the eligible set of bids (or “killed”) in the market clearing process.  

 Once the killed bids are identified, clearing of the accepted bids is highly reminiscent 

of a simple auction. In other words, prices are determined as the point where the 

aggregate supply (accepted bids only) and aggregate demand curves intersect. Note that 

since some bids are killed in the clearing process, the aggregate curve of accepted bids 

differs from the original aggregate curve. Furthermore, accepted bids curve is defined 

only for prices lower than the marginal price. Figure 1 depicts the outcome of an hourly 

MIBEL auction in which a number of block bids on the original curve were killed and 

are therefore absent from the accepted curve. 

 

Figure 1. Aggregate original and accepted curves in a MIBEL hourly auction 

In the MIBEL, a type of block order, called the Minimum Income Condition (MIC), 

enable a generating unit3 to define a bottom threshold condition for its income in the full 

day-ahead session. The MIC implies that the unit will be committed if and only if 

Equation (1) holds:  

ܨ ൅ ܸ∑ ܳ௛
ଶସ
௛ୀଵ ൒ ∑ ܳ௛ ∗ ܥܯ ௛ܲ

ଶସ
௛ୀଵ  (1) 

where: 

Qh  unit energy committed in hour h [MWh]. 

                                                 

3 The MIBEL bidding protocol makes no allowance for portfolio bidding: i.e., the bids are 

defined on a unit-by-unit basis. 
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MCPh  market clearing price in hour h [€/MWh]. 

F  MIC fixed term [€]. 

V  MIC variable term [€/MWh]. 

Otherwise, the unit’s bids for all the hours in the interval are killed. For further details 

on MIBEL day-ahead market rules, see [18-19] for an overview of MIBEL market 

operation.  

The following item analyses whether residual demand is a suitable approach to 

simulating the actual operation of MIBEL day-ahead auctions as described above. 

2.3 Standard RDC approach 

Attaining a suitable trade-off between computation plausibility, input data requirements 

and the ability to accurately represent market interaction usually calls for model 

simplifications. Computational complexity and the amount of input data required can be 

reduced in essentially two ways. 

• The characteristics of the auction design represented in the model can be simplified 

to reduce the number of variables to be optimised by each agent and simplify the 

auction clearing mechanism. 

• The number of agents whose variables are optimised can be reduced. 

In practice, both types of simplification are applied. Single agent profit maximisation 

models based on the RDC, for instance, entail simplifying the bidding protocol and 

auction clearing mechanism for equivalence to the simple auction paradigm, as well as 

reducing the number of agents whose variables are to be optimised to one: the target 

firm. Optimising the bidding strategy of the target firm, which involves formulating its 

own unit commitment problem, lies outside the scope of this paper. A thorough 

description of the single-agent profit maximisation problem can be found in [5]. 

Since in the RDC model, auctions are assumed to be simple, market agents’ bids just 

consist of hourly price-quantity pairs. With this simplification, the rest of the market 

agents can be modelled with the aggregate representation provided by the residual 
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demand curve4. A supplier’s RDC is a function that relates the market clearing price in a 

given hour to the quantity sold by the supplier in that hour. Mathematically, it can be 

formulated as: 

ሻ݌ଵሺିܥܦܴ ൌ ሻ݌ଵሺିܦ െ ௡ିଵܩ
ିଵ ሺ݌ሻ,  (2) 

where ିܦଵሺ݌ሻ	stands for is the inverse function of demand ܦሺݍሻ. ିܦଵሺ݌ሻ	, then, is the 

function that yields the quantity that the demand would be willing to purchase at price 

p. Analogously, ܩ௡ିଵ
ିଵ ሺ݌ሻ	stands for the total quantity that all other suppliers would be 

willing to sell at price p. The residual demand ܴܥܦሺݍሻ	is the inverse function of 

 .ሻ݌ଵሺିܥܦܴ

Figure 2 shows how to compute a given GenCo’s RDC, ܴሺݍሻ, from the residual 

aggregate supply curve, ܩ௡ିଵሺݍሻ	, and aggregate demand, ܦሺݍሻ.  

 

Figure 2. Computing RDC 

By subtracting the sum of competitors’ offers at price p from the cumulative demand at 

that price, the market clearing price becomes a function only of the energy sold by the 

target firm. 

2.4 Preliminary assessment of RDC models in MIBEL 

With the single agent RDC-based model simplifications described in item 2.3, the 

resulting optimisation problem is computationally plausible [8]. Regarding the market 

data available for MIBEL, GenCos have access after every day-ahead market session5 to 

the following pieces of information [18]: 

                                                 

4 The RDC should be used when target firm decisions can affect market prices. When GenCos 

can be regarded as price-takers, market interactions can be modelled directly, using price as an 

exogenous input. 

5 A day-ahead session comprises the 24 hourly auctions for the following day. 
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• original price-quantity supply and demand aggregate curves: the offers and bids 

submitted by suppliers and demand, excluding the associated complex conditions 

• aggregate accepted price-quantity supply and demand curves, i.e., the block bids 

committed in the auction because their price was lower than the marginal price and 

they formed part of offers not killed in the clearing process6. 

The above information, which is published on the market operator’s (OMIE) website (omie.es) 

can be used to compute a GenCo’s RDC under certain assumptions. 

RDC-based modelling approach disregards the inter-temporal links in bids introduced 

by complex conditions. In the following we focus on the role of these links. 

3 THE INCREASING IMPORTANCE OF COMPLEX CONDITIONS: THE 

ROLE OF RENEWABLES 

In MIBEL, GenCos are free to decide whether or not they include complex conditions 

in their thermal unit offers. Note that where they do not the market operates as if it were 

a simple auction. 

That was approximately the situation in the first few years after MIBEL was launched 

in 1998. Figure 3 depicts a typical market outcome in 2003, when very few block bids 

were killed, yielding an outcome similar to what would be expected of a simple auction.  

 

Figure 3. Typical early MIBEL hourly auction (29 June 2003, hour 23) 

Such auction outcomes reflect a fairly predictable market in which the most prominent 

uncertain short-term variable is demand, which market agents can forecast very 

accurately. This environment of low uncertainty allowed GenCos to simplify their 

offers to price-quantity pairs. 

                                                 

6 The information published includes how the underlying complex conditions affected the final 

result (if offers where matched or not), but not the complex conditions themselves. Individual 

offers in full, including the associated complex conditions, are not disclosed until 90 days after 

closure of the market session. The RDC approach described here assumes that limitation. 

0 10 20 30 40 500
40
80

120
160
200

Energy [GWh]

P
ri

ce
 [

€/
M

W
h]



 

10 

However, cost internalisation becomes much more complicated as uncertainty grows 

[20,21] and with it the risk that not all production costs will be recovered. In this 

context the minimum income condition provides thermal units with a means to hedge 

against potential non-recovery of start-up costs7. Since high vRES penetration may 

constitute a major source of uncertainty, agents should be expected to resort more 

frequently to complex conditions in such a scenario.  

In the MIBEL, renewable, particularly wind, energy output has increased dramatically 

over the last ten years. Wind market share grew from 4 % in 2002 to 16 % in 2011 

(ree.es). The impact on the presence of complex conditions has been evident. As a way 

to illustrate the influence of wind on this, we next compare the total energy withdrawn 

in a given hour in the day-ahead market, defined as the amount of energy in the offers 

killed in that hour, to daily wind production. The period studied is 2002 to 2010. The 

results, extracted from Iberian market operator OMIE data for one off-peak and one 

peak hour, are depicted in Figure 4. 

 

Figure 4. Withdrawn energy and wind production, 2002- 2010  

In the early years of the series the amount of energy in killed in the clearing process 

offers was very small (almost non-existent). As wind output grew, however, that 

amount rose significantly, particularly in peak hours, providing empirical evidence of 

the increasing use of complex conditions with rising vRES penetration levels. One 

outcome of the more intense use of these conditions is the gradual disappearance of the 

resemblance to simple auctions observed in the early years. The supply curves depicted 

in Figure 1, in which a significant amount of block bids in the original supply curve are 

killed, are representative examples of recent market outcomes. This suggests, a priori, 

                                                 

7 In this vein, [22] analyses the greater social welfare attained with complex conditions than simple 

auctions in the presence of uncertainty. 
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that RDC-based models were a more accurate approach for MIBEL at the outset than 

they are today.  

4 APPLICATION OF RESIDUAL DEMAND-BASED MODELS IN THE 

PRESENT CONTEXT OF MIBEL 

Further to the intuitive notion set out at the end of section 3, an analysis was conducted 

of when the RDC approach reviewed here is suitable for modelling markets and 

estimating prices and when it is not, because the error may be too large. 

4.1 Adapting the RDC computation to the MIBEL semi-complex auction context 

Strictly speaking, RDC methodology can only be applied to simple auctions, for the 

curve is plotted on the grounds of price-quantity pairs only. As noted in item 2.1, 

however, MIBEL can be viewed as adhering to a simple-auction-like design in which 

some of the original simple bids are removed for failure to meet the complex conditions. 

Therefore, if it were possible to know in advance which simple bids would not be killed, 

RDC computation would be straightforward. Since that information is only available ex-

post, however, an assumption must be made to identify the accepted bids for the ex-ante 

computation of RDC and hence of an optimal bidding strategy. The most basic way to 

estimate and build an RDC is to use information available about other agents’ accepted 

bids on previous (and comparable) days. 

A refinement of this basic RDC approach, in which a simple assumption based on 

results observed on comparable days in the past is applied to identify the accepted bids 

is proposed below. More specifically, the methodology consists of the following four 

steps: 

Step 1. A reference day is chosen, a comparable day regarded as the best proxy for 

plotting the series of 24 day-ahead RDCs. Representative RDC series are normally 

found with clustering techniques that generate weekly and hourly historical curve 

patterns [4]. 

Step 2. The residual supply and aggregate demand curves are plotted for the target day 

with the simple bids and the committed curves. Note that the committed curve is only 

defined below the marginal price for the supply curve (above the marginal price for the 

demand curve). To obtain a supply curve defined over the complete range of prices, the 

committed curve is extended above the marginal price, adding the original supply curve 
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quantity/price block bids. The same procedure is applied to the aggregate demand curve. 

Figure 5 shows how the residual supply curve is built using the available market data.  

 

Figure 5. Construction of the residual supply curve in a semi-complex auction 

The assumption of course is that the accepted bids will be the same as on the reference 

day. This is a strong assumption, since accepted bids actually depends on the resulting 

prices as per Equation (1).  

Step 3. The RDC is plotted as explained in item 2.3. 

Step 4. Lastly, a number of corrections are applied to the RDC to supplement the 

information on the expected conditions for the day-ahead session. Two main variables 

change in the short term in MIBEL: vRES output, which is typically offered at 

€0/MWh; and inelastic demand, typically tendered by retailers on behalf of households 

at the cap price, €180.3/MWh. The system operator publishes the forecasts for both on a 

daily basis. These corrections in the quantities bid at both the maximum and minimum 

prices, when incorporated directly into RDC models, shift the curve horizontally [1]. 

Rises in vRES output shift the curve to the left, while declines shift it to the right. 

Conversely, higher household demand shifts the curve to the right and lower demand to 

the left. The net shift is consequently equal to the difference in inelastic demand 

between the day ahead and the reference day, minus the difference in vRES on those 

two days.  

All other things being equal, a change either in vRES or in inelastic demand modifies 

the price. While day-ahead inelastic demand can be quite accurately predicted, vRES, 

particularly as regards wind, cannot. Day-ahead forecast errors for this parameter are 

still significant. Since complex conditions depend on the market price, the 

accepted/killed block bids may differ in the presence of steep and unbalanced changes 

in those two variables and consequently in price. In light of this latter consideration,  

larger absolute deviations in “demand minus vRES” may reasonably be expected to 

detract more significantly from model accuracy. 
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4.2 Validity of the approach 

By way of illustration of the aforementioned intuitive notion, data were gathered on all 

MIBEL day-ahead auction results from 2007 to 2011. For each pair of consecutive days 

across this period, the variable “demand minus wind8” was plotted against the rise or 

decline in the amount of energy in killed offers in the MIBEL. Wind production was 

measured as agents’ offers on the day-ahead market9. The variable “demand minus 

wind” was computed as ൣ݀݊ܽ݉݁ܦ஽
௛ െ ஽ିଵ݀݊ܽ݉݁ܦ

௛ ൧ 	െ	ൣܹ݅݊݀஽
௛ െܹ݅݊݀஽ିଵ

௛ ൧	where 

subscripts D-1 and D indicate two consecutive days10 and superscript h the hour. 

The point cloud for three different medium to large demand consumption hours and the 

respective linear regression are shown in Figure 6.  

 

Figure 6. Variation on two consecutive days in the amount of energy in killed offers 

While the strength of the correlation and the correlation itself depend on the hour 

analysed, the trend suggests that the larger the change in “demand minus wind” between 

the reference day and the day-ahead, the greater is the difference in the accepted/killed 

offers and therefore the less suitable is the approach described in item 4.1. The slope is 

negative because positive values of the variable mean higher prices and subsequently 

fewer killed offers. Conversely, a negative value means lower prices and therefore more 

killed offers.  

                                                 

8 Wind is the major source of vRES on the MIBEL day-ahead market. 

9 These offers are based on agents’ best forecasts for the day-ahead and constitute the relevant 

measure for the day-ahead market, since deviations between these forecasts and real-time 

production are corrected in subsequent, e.g. intraday, markets. 

10 The Fri/Sat, Sun/Mon combinations were disregarded as they are not comparable days. 
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Two representative examples of the practical computation of a day-ahead RDC are set 

out below for fuller comprehension of this discussion11. The methodology described in 

item 4.1 was back-tested using real market data to analyse how accurately it could 

forecast MIBEL market behaviour and, more specifically, market prices. The 

methodology was applied to the two cases listed in Table 1: case A, with a minor 

variation in “demand minus wind” and case B, with a major variation. 

Table 1. ∆Demand - ∆Wind (MWh) in case A and case B. Source: OMIE. 

 

In Case A the prediction was for 23 September 2010 and in case B for 14 January 2010. 

In both cases hour h on day D-1 was used as the reference for the same hour h on day D, 

for in both cases the previous day was a comparable day. The corrections considered in 

step 4 of the methodology for both household (inelastic) demand and wind production 

were the changes actually recorded: i.e., perfect foresight. Lastly, the adjusted RDC so 

computed was compared to the actual market RDC for hour h on day D.  

The results for three representative hours (11, 19 and 22) are shown. The more closely 

the blue curve matches the red curve, the more accurate is the forecast. The results for 

case A are shown in Figure 7. 

 

Figure 7. RDC for two consecutive days. Case A (adjusted curve (blue) computed from the 

reference RDC (dotted green) and the “actual” (red) curves) 

A satisfactory fit was obtained for the adjusted curve at all hours. Therefore, prices were 

very accurately estimated in this case. For a hypothetical new entrant selling 5 GWh in 

all three hours studied, the forecasting errors would be 5.8, 0.3 and 1.8 % for hours 11, 

19 and 22, respectively. The curves obtained for Case B are plotted in Figure 8. 

                                                 

11 For reasons of confidentiality, the RDC computed is for a hypothetical new entrant, whose 

competitors are all the actual GenCos. 
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Figure 8. RDC for two consecutive days. Case B. 

In this case the adjusted curve did not fit the actual curve. Moreover, the reference curve 

could not be made to fit the actual curve by mere horizontal shifting in light of their 

different shapes. Price forecast errors would be significant in this case: for the same new 

entrant selling 5 GWh, they would be 50, 57 and 51 %. 

The explanation for the inaccuracy in Case B can be readily found by analysing the 

accepted/killed offers on the two consecutive day. Figure 9 shows the aggregate original 

and accepted curves (after filtering the offers priced at €0 €/MWh). 

 

Figure 9. Case B: aggregate original and accepted curves 

The figure represents the aggregate original supply curves and the block bids that were 

ultimately committed. While the original offers were very similar, complex conditions 

induced substantial variations in the simple bid acceptance/killing pattern, even though 

prices were fairly similar on both days at the hours analysed.  

5 CONCLUSIONS 

This paper analyses the suitability of single-firm optimisation models based on residual 

demand curves (RDC), focusing on methods that use historical data to build RDC 

scenarios for modelling day-ahead markets.  
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In the context of European power exchanges these methods have traditionally provided 

a suitable trade-off between accuracy, the amount of competitor data needed to feed the 

model and computational requirements.  

The approach performs well when auctions are highly reminiscent of simple auctions in 

terms of behaviour and outcome. This study submits, however, that its applicability and 

accuracy decline under certain market conditions when complex conditions are widely 

used by GenCos. In particular, GenCos may obtain inaccurate estimates when 

substantial changes in vRES output are not offset by demand-side changes in the 

opposite direction. That premise is supported by the results observed in the Iberian 

electricity market, MIBEL, in recent years. 
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