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1. INTRODUCTION, MOTIVATION & OBJECTIVES 

The energy industry, and in particular the electricity sector, has been subject to major 
reforms over the recent decades. Until these processes started, the activity that we now call 
generation supply was part of the chain of activities of vertically integrated utilities and was 
thus performed as either a public service or as a regulated monopoly. 

Although these reforms have taken very different forms, all of them have shared a common 
approach that consists of taking steps towards introducing competition at any of the 
activities in which it was considered feasible. These reforms have been traditionally 
designated as “liberalization” or “deregulation” processes. 

From the regulatory perspective, the fact is that in the case of the energy industry, the reform 
has entailed exactly the opposite. Rather than a “deregulatory” process, the industry has 
experienced an intensely “re-regulatory” one, see Borenstein & Bushnell (2000) or Ruff 
(2003).  

In that context, the objective of regulation is, broadly speaking, to prevent from occurring 
inefficient outcomes that would otherwise occur (or inversely, to produce efficient outcomes 
that would otherwise not occur). In particular, the regulator must guarantee a minimum 
required level of security of supply. 

1.1 Security of Generation Supply 

Modern society depends critically on the availability of electricity. It is widely recognised 
that the lack of supply has dramatic social, economic and political consequences. Hence, 
avoiding emergency situations and ensuring that electric energy is supplied according to the 
desired quality standards represents a chief concern for regulators worldwide. 

With the advance of electricity markets, regulation is increasingly required in order to 
supervise that the market is able to guarantee an adequate level of security of supply. This is 
particularly relevant at the generation activity, where the liberalization process has been far 
more intense. 

1.1.1 The 4 Dimensions of the Security of Supply Problem 

The problem of security of supply at the generation level can be split up into four major 
dimensions according to their time horizon (Rodilla, 2010). This classification not only 
facilitates a better understanding of the problem but also the design of the regulatory 
mechanisms if required. The four dimensions are the following: 

• Security: the very short-term dimension. Defined by the North American Electric 
Reliability Council as the “ability of the electrical system to support unexpected 
disturbances such as electrical short circuits or unexpected loss of components of the 
system” (NERC, 1997). 

• Firmness: the short to medium-term dimension. Defined in Batlle & Pérez-Arriaga 
(2008) as the ability of the already installed facilities to supply electricity efficiently. 
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This dimension is determined by the characteristics of the existing generation 
portfolio and the medium-term resource-management carried out by generators (fuel 
provision, water reservoir management, maintenance scheduling, etc.). 

• Adequacy: the long-term dimension. Defined as the existence of enough available 
generation capacity (installed or expected to be installed) to efficiently meet demand 
in the long term. 

• Strategic expansion policy, which concerns the very long-term availability of energy 
resources and infrastructures. This dimension usually entails the diversification of 
primary sources of energy through a balanced generation portfolio. 

 

Figure 1.1-I The 4 dimensions of security of supply 

1.2 The Need for Regulatory Tools & Support Models 

Rodilla (2010) showed that in the “deregulated” and “liberalized” scheme that governs 
electricity business, the intervention of the regulator is vital to ensure that an appropriate 
level of security of supply is achieved. 

This regulatory intervention, which is carried out in order to drive the market towards an 
efficient outcome, is in practice implemented by introducing additional mechanisms, that is 
to say, additional rules. These mechanisms are regulatory tools aimed at providing 
additional (and optimal) signals to market agents. 

In order to perform this role adequately, the regulator needs another kind of tools: 
Assessment tools (models of different nature) that can be used either to evaluate the market 
performance and thus detect the need of introducing additional mechanisms, or to assist in 
the design of these mechanisms, by evaluating ex-ante the impact of the regulatory solutions 
that could be considered. 
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1.3 The New Active Role of Demand 

The active participation of the demand side in power systems has always been considered 
an important requirement for their well-functioning, particularly for that of the liberalized 
ones. Nonetheless, it has not played this desired key role so far due to several reasons 
(demand immaturity and lack of technical solutions).  

This situation is highly expected to change in the near future with the upcoming technical 
and regulatory developments of smart-grids and demand response tools. In this new context, 
the ability to properly consider this new active role of demand into electric power system 
analysis tools turns to be essential.  

1.3.1 Reliability Measures in the Presence of Demand Elasticity 

As highlighted by Rodilla & Batlle (2010), classical reliability measures such as the Loss Of 
Load Probability (LOLP), and the Expected Non-Served Energy (ENSE) leave aside very 
meaningful information when used to assess the performance of a system where elastic 
demand plays a significant role. As a matter of fact and as it can be checked in Figure 
1.3.1-I, in a fully elastic demand scenario, the values of the LOLP and of the ENSE are, 
according to their traditional definition, always equal to zero. Consequently, even a 
permanent scenario of severe scarcity could be obscured by the use of the aforementioned 
metrics. 

 

Figure 1.3.1-I Reliability measures in the presence of demand elasticity 

In order to reflect the elastic consumption in the performance measure, the evaluation of the 
distribution function of what was termed as the Value of the Non-Purchased Energy (VNPE) 
was proposed.  

1.4 PPC Models as a Tool to Assess System Performance 

One of the tools that has been intensively used to support electric power systems long-term 
planning and reliability analysis are Probabilistic Production Costing models (PPC models). 
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These models have traditionally been used in electric power systems as a support tool in the 
centralized long-term decision-making process.  

This approach has attracted considerable efforts from academia since the late 60’s. 
However, although some approaches have been developed to model load shifting programs, 
as for example Malik (2001), the literature has lacked until recently of efficient algorithms to 
explicitly introduce demand response to prices in PPC models. 

In Rodilla & Batlle (2010) an algorithm that allows extending the classic PPC models design 
to explicitly represent demand elasticity was proposed. 

1.5 Scope and Objectives 

This dissertation addresses the problem of developing an adequacy analysis model for 
electricity markets in which elastic demand plays a significant role.  

Taking as a starting point the PPC model approach proposed in Rodilla & Batlle (2010), we 
will formulate a PPC model to carry out reliability assessments of power generation systems 
where elastic consumption is substantial. The model proposed will be aimed at coping with 
a variety of peculiarities of electricity wholesale markets. 

In addition to that or, we will face the challenge of developing a methodology that captures 
the time-dependent nature of elastic demand. The tool developed must allow for finding 
patterns and realistically describe the elastic demand of a given electricity market. 

Eventually we will prove the capabilities of the model by analyzing a real-size case example 
based on the Spanish electricity market. 

To summarize, the objectives of the dissertation are the following: 

I. Develop a Probabilistic Production Costing model to estimate the adequacy of a 
power generation system. The following modelling challenges will have to be met. 

I.A. Develop model that allows for analysis in a conventional thermal generation 
system with fully inelastic load.  

I.B. Adapt the conventional PPC model for loading energy limited units. 

I.C. Extend the PPC model with regard to taking into account intermittent 
renewable generation. 

I.D. Construct an equivalent load and generation model to integrate price sensitive 
demand into the conventional PPC model as in Rodilla & Batlle (2010). 

I.E. Adjust the PPC model in order to properly reflect the effect of the interruptible 
load described in MITyC (2007).  

I.F. Develop an algorithm to compute the distribution function of the Value of the 
Non-Purchased Energy within the PPC frame-work. 
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II. Address the time-dependent nature of demand elasticity in an electricity market. In 
order to do so, a robust and flexible clustering tool will be developed. 

III. Carry out a simulation of the Spanish electricity market for 2016. 

1.6 Organization of this Document 

The document proceeds as follows. Chapter 2 describes the Probabilistic Production Costing 
model developed. In Chapter 3, a methodology to characterize the elastic demand of any 
given electricity market is formulated. Chapter 4 is devoted to the analysis of a real-size 
electricity market. Chapter 5 concludes and summarizes the results obtained. 
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2. A PROBABILISTIC PRODUCTION COSTING MODEL TO 
ESTIMATE THE RELIABILITY OF A POWER GENERATION SYSTEM 

2.1 Introduction 

After having introduced, in Chapter 1, the general problem of Security-of-Supply at the 
generation level and, more specifically, the upcoming problem of appraising the reliability 
of a power system in a context where demand plays an increasingly active role; we proceed 
now to introduce the model which constitutes the main theme of the present study. 

This chapter can be considered to be the conceptual core of this dissertation. It describes in 
detail the formulation proposed to carry out reliability assessments of power generation 
systems in electricity markets where elastic demand consumption is substantial. The model 
design is aimed towards being a valid tool to cope with a variety of peculiarities of 
electricity wholesale markets.  

2.1.1 Structure of the Chapter 

The Chapter proceeds as follows. Section 2.2 reviews the concept of Probabilistic 
Production Costing model and the relevant literature. Then, in Section2.3, we describe the 
conventional thermal model, its assumptions, the dispatching algorithm and the results 
provided. Next, in Section 2.4, we explain how energy-limited units (typically hydro units) 
can be modelled, how their dispatch can be carried out and discuss some of its implications 
concerning reliability assessments. In Section 2.5 we show how intermittent renewable 
generation can be included in the model. In Section 2.6 we show how elastic demand can 
be modeled within the Probabilistic Production Costing model methodology. In Section 2.7 
we provide a general formulation of the VNPE calculation algorithm. Section 2.8 concludes 
and discusses some applications and extensions. 

2.2 Introduction to Probabilistic Production Costing Models 

As described in Rodilla (2010), Probabilistic Production Costing models (in the following 
PPC models) have traditionally been used as a support tool in electric power systems, where 
they are particularly applicable to the centralized long-term decision-making process. These 
models are characterized by being focused in representing the random nature of some of the 
most relevant variables involved in the long-term planning problem (typically the demand 
values and the available capacity of each generating unit).  

This approach allows for reliability assessments of real-size electric power systems with little 
computational effort. However, achieving that requires making severe simplifications 
regarding mainly short and medium-term operational and planning constraints of the 
generation plants. 

The PPC framework has attracted considerable efforts from academia since the late 60’s. The 
basic model was applied to a non-constrained thermal system; see the pioneering works of 
Baleriaux et al. (1967) and Booth (1972). 
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The major outputs that were first calculated by means of these models were: 

• Reliability measures: the loss of load probability (LOLP), the loss of load expectancy 
(LOLE) and the expected value of the non-served energy (ENSE) among others. 

• Expected production schedules, that is, the expected energy generated by each generating 
unit (in average). 

• Expected production costs (idem). 

It is important to note that there are a considerable number of papers addressing several 
variations on the conventional approach. For instance, there are remarkable works focused 
on introducing simplified alternatives to include either hydraulic units as in Finger (1979), 
Ramos et al. (1991) or Malik (2004); storage units as in Conejo (1987) or Invernizzi et al. 
(1988); or time-dependent units as in Conejo et al. (1985). 

One of the most popular extensions to the basic model is the so-called frequency and 
duration method. This extension takes into account information on both the frequency and 
the duration of the different states (demand interval, outage rates, etc), and allows 
calculating additional results as, for example, the mean time existing between two 
consecutive critical events (most typically scarcities). This frequency and duration 
methodology embraces a whole set of different approaches. See for instance the works of 
Halperin & Adler (1958), Ringlee & Wood (1969), Ayoub & Patton (1976) or Finger (1979). 

Additional relevant research has been conducted within the PPC framework, for example in 
Leite da Silva et al. (1988) or in Lee et al. (1990) a means to calculate the underlying 
variance of the results is provided. A description on how to estimate derivatives (e.g. 
marginal values), can be found in Ramos et al. (1994) and also in Maceira & Pereira (1996).  

These PPC models have been extensively applied to determine the marginal contribution of 
each generating unit to the regulator’s reliability objectives. One of the first works on this 
topic is the one carried out by Garver (1966). A more recent work that addresses the 
problem of determining this contribution to reliability objectives (in this particular case, the 
contribution of wind energy) applying a PPC model can be found in Kahn (2004). This sort 
of calculations have been used, for example, to set the compensation for each generating 
unit in some real systems in which a capacity payment mechanism had been implemented 
(this was the case of the former Chilean mechanism or the Panamanian case among others). 

2.3 The Conventional Thermal System Model 

In this section, we describe the conventional thermal model, its underlying assumptions, the 
dispatching algorithm (which is, in fact, the core of the model) and the basic results it 
provides. 

2.3.1 Modeling Assumptions 

The simplest conventional PPC model is built upon two central assumptions. On the one 
hand, it is assumed that all generation plants can produce at full capacity at any time unless 
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when they are out-of-order due to a forced outage. On the other hand, hourly load is 
considered to be inelastic and stochastic. 

These models were conceived to check a fairly simple reliability condition: whenever the 
system’s inelastic demand exceeds the available generating capacity a loss of load takes 
place. The probability of such an event happening (the Loss of Load Probability or LOLP) 
and the corresponding expected value of the non-served energy (ENSE), have been the most 
noteworthy results obtained from these models regarding reliability.  

In such a context, the loss of load probability distribution can be evaluated by means of the 
distribution of the difference between two random variables: the demand and the total 
generation available. This difference is usually evaluated in a generic random hour. Longer 
term results (e.g. the expected non-served energy in a whole year) can be calculated by 
directly extending the results obtained when computing this generic hour. 

If all variables (demand and available generation capacity in the most simple case) are 
statistically independent, then the computation of the former difference considerably 
simplifies, since the sum (or difference) of two independent random variables is equal to the 
convolution of their probability distribution functions. 

We next present how the demand and the thermal generating units are modeled and the 
order followed in the convolution operation to simulate the generating units’ scheduling. 
Then we explain how to interpret the results obtained when performing this operation. 

The Demand Curve 

The empirical (de-cumulative) distribution function of the load is commonly accepted as a 
well suited proxy for the distribution function of the electricity demand in a generic random 
hour.  

The empirical de-cumulative distribution function of the Load, or empirical DDF, is the DDF 
associated with the empirical measure of a sample of observations (i.e. a set of k  hourly 

load values): It is usually denoted by )(ˆ LSk and estimates the true underlying DDF of the 

sampled hourly load, referred to as )(LS . More formally, the estimator )(ˆ LSk is said to 

converge almost surely to )(LS as ∞→k , for every value of L , thus the estimator )(ˆ LSk  is 

also said to be consistent. 

)()(ˆ
..

LSLS
sa

k →  

We will now proceed to outline how )(ˆ LSk  can be obtained from historical hourly load 

data. Let ),...,( 1 kll be a set of independent and identically distributed random variables with 

the common DDF )(LS  (i.e. observed values of hourly load). Then the empirical DDF is 

defined as: 

∑
=

≥⋅=≥=
k

i

ik Ll
kk

LeSampleementsInThNumberOfEl
LS

1

}{1
1

)(ˆ  
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Therefore, for a given set of historical data, the percentage of time that the load level is 
greater than or equal to a given load level will be interpreted as a probability. Thus, at any 
given time (hour) there will be a probability of 1 that the load will be higher than the 
minimum load in the sample being considered.  

Under those assumptions, and as illustrated in Figure 2.3.1-I, we can estimate the DDF of 
the Load )(LS  by just rotating the axes of the load-duration curve corresponding to the 

historical horizon considered, and then normalizing the time period so that the vertical axis 
gives the percentage of time (the probability) that a certain value of demand level is equalled 
or exceeded. The DDF of the Load is often referred to as either the hourly Load 
Complementary Distribution Function (LCDF) or as the Inverted Load Duration Curve 
(ILDC). 

 

Figure 2.3.1-IChronologic load (red curve), monotone load curve (blue curve in 
the left-hand graph) and estimated distribution function of the load (right-hand 
graph). 

Once again, it is important to bear in mind that )(LS does not represent a demand 

monotone curve anymore, but the de-cumulative distribution function of the demand in a 
generic hour. In other words, hourly load is supposed to be behaved as a random variable 
which is distributed according to )(LS . 

For further details on the empirical distribution function and its properties, see Shorack & 
Wellner (1986) and Van der Vaart (1998). 

Thermal Generators Modeling 

Let us denote each thermal generator’s available capacity by tQ . Within the PPC framework, 

this parameter is modeled as an independent discrete random variable. In the model 
proposed, it is actually represented through a Bernoulli random variable or, to be more 
precise, by means of a Bernoulli random variable (that models only the availability) 

multiplied by the generator’s maximum capacity tq .  

A Bernoulli distribution is a discrete probability distribution, which takes value one with 
success probability p and value zero with failure probability pq −=1 . Being the latter, in 
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this case, equal to the forced outage rate (FOR ) of the generator. Therefore, we are 
considering a two-state model, where the plant is either able to produce at full capacity 
(with probability p ) or unable to produce at all due to a forced outage (with 

probability FORpq =−=1 ). Accordingly, the probability mass function (PMF) of the 

available capacity tQ  is: 







 −
==

0

1

)( * FOR

FOR

qQm ttQt
     if     

Otherwise

q

qq

t

tt

0*

*

=
=

 

Under this modeling assumption the de-cumulative distribution function of the available 
capacity takes the form represented in Figure 2.3.1-II. 

 

Figure 2.3.1-II Distribution function of the available capacity of a thermal unit. 

The other parameter that is used to characterize the behaviour of a thermal generator is its 

marginal cost, denoted by tMC . When operating and network constraints are dismissed, the 

dispatch that yields the minimum operating cost is the one in which generators are loaded in 
order of increasing marginal cost. Hence, knowing the marginal cost of the generators or at 
least their relative value is of utmost importance. This ranking is commonly known as the 
merit order or the loading order. The loading algorithm that is going to be described in the 
next section does, in fact, follow this merit order. 

2.3.2 The Loading Algorithm 

In this section we describe the loading algorithm that is the core of the conventional 
Probabilistic Production Costing model. As it has been outlined in Section 2.3.1, the loss of 
load probability distribution can be evaluated by means of the distribution of the difference 
between two random variables: the demand and the total generation available. If all 
variables happen to be statistically independent, then the computation of the former 
difference is equal to the convolution of their probability distribution functions. 

In the first part of this section we will introduce the concept of convolution which is the 
foundation of the conventional PPC model. The second part will be devoted to explain how 
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it can be applied to analyse the reliability of electric power systems with exclusively thermal 
generation. 

Mathematical Concept of Convolution 

We turn now to the important question of determining the distribution of a sum (or 
difference) of independent random variables in terms of the distributions of the individual 
constituents. 

 a. Sum of Discrete Random Variables 

Suppose X  and Y  are two independent discrete random variables with probability mass 
functions )(xmX  and )(ymY . Let YXZ += . We would like to determine the distribution 

function )(zmZ  of Z . To do this, it is enough to determine the probability that Z  takes on 

the value z , where z  is an arbitrary integer. Suppose that kX = , where k  is some integer. 
Then zZ = if, and only if, kzY −= . So the event zZ =  is the union of the pair-wise disjoint 
events: 

)( kX =  and )( kzY −=  

Where k  runs over the integers. Since these events are pair-wise disjoint, we have: 

∑
∞

−∞=

−=⋅===
k

kzYPkXPzZP )()()(  

Thus, we have found the distribution function of the random variableZ . This leads to the 
following definition. 

Let X  and Y  be two independent integer-valued random variables, with distribution 

functions )(xmX and )(ymY  respectively. Then the convolution of )(xmX and )(ymY is the 

distribution function )()()( ymxmzm YXZ ∗=  given by the next equation for every integer z . 

∑ −⋅=
k

YXZ kzmkmzm )()()(  

The function )(zmZ is the probability mass function of the random variable YXZ += . 

It is easy to prove that the convolution operation is commutative, and it is straightforward to 
show that it is also associative. 

Although the described procedure applies to random integer variables it is not difficult to 
extend it to any discrete random variable, as long as it is defined for a countably infinite 
number of discrete values. 
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 b. Sum of Continuous Random Variables 

Let X  and Y  be two continuous random variables with density functions )(xf X and )(yfY , 

respectively. Assume that both )(xf X and )(yfY are defined for all real numbers. Then the 

convolution YX ff ∗  of Xf  and Yf  is the function given by 

dxxfxzfdyyfyzfzff XYYXYX ⋅⋅−=⋅⋅−=∗ ∫∫
+∞

∞−

+∞

∞−

)()()()())((  

This definition is analogous to the definition of the convolution of two probability mass 
functions. Thus it should not be surprising that if X  and Y  are independent, the density of 
their sum is the convolution of their densities. That is to say, the sum YXZ +=  is a random 
variable with density function )(zfZ , where Zf is the convolution of Xf and Yf . 

For further details on the sum of random variables and its properties, see Grinstead & Snell 
(2003). 

Application to Power Systems 

As described in Booth (1972), let us introduce the concept of “equivalent load after loading 

the first n  generating units”, denoted by nEqL . This nEqL , which is a random variable, 

represents the load that remains un-served after having loaded the first n  groups in the merit 
order. For instance, the equivalent load after having loaded the first unit in the merit order 
will be equal to the difference between two random variables, on the one hand the load L  

of the system and, on the other hand, the available capacity of the first unit denoted by 1Q . 

Explicitly: 

11 QLEqL −=  

As shown in the previous section, the probability mass function of the load after having 
loaded the first unit can be computed as follows: 

∑ −⋅==
k

QEqLEqL klmkmlEqLm )()()(
111 1  

Generally, the equivalent load after having loaded the first n  units can be expressed as 
follows: 

∑
=

−=
n

t

tn QLEqL
1

 

Or, alternatively: 

nnn QEqLEqL −= −1  

And its PMF could be computed by carrying the convolution of the variables involved, as 
expressed next: 
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∑ −⋅==
−

k

QEqLnEqL klmkmlEqLm
nnn

)()()(
1

 

By successively applying the former expression, the distribution functions of the different 
equivalent loads can be obtained. Obviously, the first equivalent load )0( =n  represents the 

load of the system, that is to say LEqL =0 . The subsequent equivalent loads represent the 

load yet to be covered after dispatching each one of the generators in the system. The last 

equivalent load nEqL  represents the un-served demand once all of the generators have been 

loaded (i.e. the amount of non-served energy).  

However, as the available capacity of the thermal units is modeled by means of a binary 
random variable, the computation of the successive distribution functions of the equivalent 
load considerably simplifies.  

Let us assume that )( 1−nEqLS is the DDF of the un-served load after having loaded the first 

1−n groups in the merit order, and that the thn thermal unit can be represented by means of 
a forced outage rate nFOR  and a maximum output nq . Thus, the DDF of the equivalent 

load after having loaded the first n groups could be simply computed by applying the 
following expression: 

)()1()()( 11 nnnnnn qlEqLSFORlEqLSFORlEqLS +=⋅−+=⋅== −−  

As it can be easily noticed, the DDF of nEqL is equal to the sum of two distinct and rather 

meaningful terms: 

• On the one hand, the term )( 1 lEqLSFOR nn =⋅ − , which is equal to the distribution 

function of the un-served load before loading the thn thermal unit multiplied by its 

forced outage rate. In other words, the thn generator will be not available with a 
probability equal to nFOR  and in such an event the un-served load will remain to be 

distributed according to )( 1 lEqLS n =− . 

• On the other hand, the term )()1( 1 nnn qlEqLSFOR +=⋅− − , which is equal to the 

distribution function of the un-served load that would result of the loading of 

the thn thermal unit if it were fully available, multiplied by its availability rate. That is 

to say, the thn generator will be available with a probability equal to nFOR−1  and in 

such an event the un-served load will be distributed according to )( 1 nn qlEqLS +=− . 

The following discrete example gives a further insight on how the probabilistic dispatch is 
carried out. Let us consider the following equivalent load distribution after having loaded the 
first 1−n  units: 
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Figure 2.3.2-I DDF of the demand. Case Example 

And let us assume that the available capacity of the thn thermal unit can be modelled by 
means of the following distribution function: 

 

Figure 2.3.2-II DDF of a thermal unit’s available capacity. Case example 

In this case the equivalent load after having loaded the first n  generating units can be 
effortlessly obtained as follows: 

The thermal unit will be not available with a probability equal to nFOR  and in such an 

event the un-served load will remain to be distributed according to )( 1 lEqLS n =− . Therefore 

the DDF of the un-served demand will be the one shown in Figure 2.3.2-III. 

Prob. 

S(EqLn-1) 

1 

2/3 

1/3 

2 4 6 [MW] 

Prob. 

S(Qn) 

1 

1/2 

3 [MW] 
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Scenario 1 

 

Figure 2.3.2-III DDF of the demand when generation is not available. Case example 

The thermal unit will be available with a probability equal to nFOR−1  and in such an event 

the un-served load will be distributed according to )( 1 nn qlEqLS +=− . Thus the DDF of the 

un-served demand will be the one shown in Figure 2.3.2.IV. 

Scenario 2 

 

Figure 2.3.2-IV DDF of the demand when generation is available. Case example 

Taking into account both scenarios and their probabilities, the DDF of the un-served load 
after having loaded the first n  units can be obtained straightforwardly. The procedure is 
depicted in the following figure: 

Prob. 
1 

2/3 

1/3 

2 4 6 [MW] 

Prob
1 

2/3 

1/3 

1 3 6 -1 [MW] 
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Figure 2.3.2-V. Probabilistic dispatch of a thermal unit. Case example 

Finally, Figure 2.3.2-VI illustrates the result of the sequential probabilistic loading of a set of 
thermal units for a given load distribution, that is to say, the de-cumulative distribution 

functions of the successive equivalent loads, denoted by )( nEqLS .  

 

Figure 2.3.2-VI Successive Equivalent Load curves 
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2.3.3 Basic Results Provided 

The major outputs that can be calculated by means of this model include reliability 
measures, expected production schedules, expected production costs and marginal price 
probabilistic distributions. 

The equivalent load curve after having dispatched every single generator represents the 
distribution function of the non-served energy, denoted by )(NSES . Two valuable pieces of 

information (see Figure 2.3.3) concerning reliability can be easily extracted from it:  

 

Figure 2.3.3 Distribution function of the non-served energy 

LOLP 

The loss of load probability (LOLP) represents the probability that there will still be demand 
left to be met (un-served demand) after all the generators have been loaded (in the generic 
random hour being represented). It is the point where distribution curve of the non-served 
energy cuts the vertical axis (probability). That is to say: 

)0( == NSESLOLP  

ENSE 

The expected non-served energy (ENSE) is the area below this curve. It represents the 
expected amount of energy (in MWh) that is left unsupplied (in the generic random hour 
being represented) after all of the generators have been loaded. More formally it can be 
defined as: 

dllNSESNSEEENSE

l

l

⋅=== ∫
+∞=

=0

)(][  
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LOLE 

The loss of load expectancy (LOLE) expresses the expected number of hours within a certain 
period in which the system load is expected to exceed the available electricity generation 
capacity; see Van Wijck (1990). Once the LOLP has been determined, calculating the LOLE 
is not difficult at all.  

Let ΨA  be the total number of hours in the time scope analyzed. The number of hours in 
which the load will exceed the generation capacity will be given by a Binomial Distribution 

of parameters Ψ= An  and LOLPp = . The LOLE will be equal to the expected value of that 

distribution. That is to say: 

Ψ⋅= ALOLPLOLE  

Traditionally, a reliability standard of one day in ten years has been established in electric 
systems; see FERC (2010). 

Expected energy supplied by a unit 

It can be easily checked that the expected value of the energy produced by a given unit (in a 
generic hour) can be computed as the difference between the NSEE before and after 
dispatching that unit, as shown in the next equation:  

dllEqLSdllEqLSEE

l

l

n

l

l

nn ⋅=−⋅== ∫∫
+∞=

=

+∞=

=
−

00

1 )()(][  

Probability of being marginal 

As it will be shown further in this chapter, in Section 2.7, the probability of a plant being 
marginal can be directly obtained within the PPC framework as follows: 

)0()0( 1arg =−== − nn

n

inalM EqLSEqLSp  

2.4 The Hydro-Thermal System Model 

As put across by Batlle (2002), modelling hydro plants is clearly one of the most challenging 
tasks that can be thought of in the electricity sector. In fact, even the purely theoretical 
design of a model covering all of its peculiarities is hard to conceive.  

For instance, the function that relates, for each plant, the amount of energy that can be 
generated to the volume of stored water is tremendously complex (i.e. it is non-linear and 
depends on the shape of the reservoir and even on the water of flow released). A further 
handicap is the fact that hydro units are commonly connected with other up and down-
stream storage units (both in series and in parallel) what introduces spatial and time-linking 
constraints.  

Hence, it is clear that any representation of hydro production must contain strong modelling 
simplifications that, nonetheless, allow for considering the fact that hydro plants are energy 
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constrained (i.e. it is not possible to produce at maximum power whenever desired). Section 
2.4.1 starts describing the assumptions undertaken by the modelling approach. We next 
show, in section 2.4.2, how hydro units can be incorporated to the PPC frame work. We 
conclude discussing the validity of the model proposed. 

2.4.1 Hydro Units Modelling 

As it has been previously noted, the remarkable complexity of the hydroelectric system 
imposes the need for reduced representations of the hydro units. The modelling assumptions 
carried out in order to make possible the medium and long term analysis proposed in this 
dissertation are based on the work of Batlle (2002). 

Following the approach proposed there, a group of hydro plants set in the same river basin 
and operated by the same firm are synthesized into a unique plant. From now on, we will 
refer to these composite representations as hydro plants. 

Each one of those hydro plants is characterized by three parameters assumed to be constant 
for each time period ψ  in which the time scope Ψ  is divided: 

• ≡ψ
hq Maximum capacity constraint of hydro plant h in periodψ . 

• ≡ψ
h

q Minimum output (run-of-the-river power) of hydro h in periodψ . 

• ≡
ψ
he Available energy at hydro plant h in periodψ  . 

 
As opposed to thermal plants, the three parameters that define the behaviour of each hydro 
unit are different for each period of timeψ . While the operating constraints of the thermal 

plants can be considered to be constant through the whole time scope of analysis, the ones 
that characterize the production of hydro plants are greatly time-dependent.  

Another fundamental issue regarding hydro units modelling is the fact that no forced outage 
rate is considered. Given that it is not significant compared their energy restriction, it is 
neglected.  

The model inputs are derived from historical values using the GEHA (Generador de 

Escenarios Hidráulicos Aleatorios, hydro production random scenario generator) developed 
by Batlle (2002). The GEHA consists basically of: 

• A time series model that generates a series of hydro energy produced in each period in the 
whole system. 

• A module that distributes that energy production among all the hydro units according to 
randomly sampled historical data. 

• A regression model that relates the energy produced by each hydro unit in a period with 
its maximum and minimum capacity values for that period, as shown in Figure 2.4.1-I and in 
Figure 2.4.1-II respectively. 



 
 

 20

 

Figure 2.4.1-I Maximum capacity Vs Available energy 

 

Figure 2.4.1-II Minimum output Vs Available energy 

For their further use within the model, two out of the three parameters that characterize a 
hydro unit are slightly modified. On the one hand, the minimum energy generated by the 
unit (that associated to the minimum output) is subtracted from the total available energy. 
That is to say:  

ψψψψψψ aqeeee
h

hhhh ⋅−=−=  

On the other hand, instead of the maximum output, the value of maximum output over 
minimum is used. Obviously: 

ψψψ
hhh qqq −=  

2.4.2 Loading of Energy-Limited Units 

The loading of hydro units is carried out in two steps. Firstly, the run-of-the-river power is 

deducted from the load of the system in that period, denoted by ψL . The total amount of run-
of-the-river power is: 
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∑
=

=
H

h
hH

qQ
1

ψψ  

And therefore, the distribution of the load after having loaded the minimum output of every 
hydro unit will be computed as follows: 

)()(
ψψψ

ψ
HQ

QlLSlLS
H

+===  

The loading of the run-of-the-river power is illustrated in Figure 2.4.2-I. 

 

Figure 2.4.2-I Loading of the run-of-the river output 

Secondly, the remaining available energy of each hydro unit ψ
he is loaded. Since plants are 

loaded sequentially (one after another), as a first step, they have to be sort according to the 
merit order that is described later in this section. Hydro plants are then scheduled attempting 
to make the most of their available energy. The loading algorithm proceeds as follows: 

Step 0. Let us denote ψ
ψ
H

Q
L  by ψ

1−nEqL  

Step 1. The hydro unit is supposed to produce at full capacity (over minimum) if the 
equivalent load is equal to or higher than it. On the other hand, if the load is lower 
than the capacity the production is supposed to be equal to the load. Accordingly, 
the distribution function of the load after having loaded the hydro unit would be: 
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Step 2. The expected value of the energy that the hydro unit would produce if it were 
dispatched in that position is computed as follows:  
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Step 3. If ψ
hh eEE ≤][ , that is to say, if the expected energy production does not 

exceed the available energy, the hydro unit is scheduled in that position. Therefore, 
the equivalent load to be met by the remaining generating units will be the one 
calculated in Step 2. Additionally, the values of the indexes n and h are updated 
(they are increased in one unit) and the dispatch algorithm goes back to Step 1. 

If ψ
hh eEE >][ , that is to say, if there is not enough available energy, the 

equivalent load remains to be ψ
1−nEqL and the algorithm proceeds to Step 4 

Step 4. The next thermal unit in the merit order is loaded, the equivalent load is 
modified accordingly and the algorithm goes back Step 1 

 

Figure 2.4.2-II Loading of Thermal and Hydro Units 

The merit order of hydro generators 

The loading order can considerably modify the distribution of the NSE of the system, as 
shown in Marcos (2007). Of all the possible loading sequences, the one in which the energy 
limited units are loaded at their maximum power output is the alternative that provides the 
highest level of reliability – i.e. the higher the power output the lower the values of NSEE 
and LOLP–.  
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Consequently, hydro units are ranked according to the total number of hours that they can 
produce at full capacity. For each unit, that parameter is calculated as: 
 

ψ

ψ
ψτ

h

h
h

q

e=  

2.4.3 Validity of the Expected Energy Convolution Model 

As highlighted by Marcos (2007), loading energy limited generators using all the energy 
available in each unit as an expected value (as is the case of most probabilistic models 
applied to power systems) leads to unfeasible scenarios (due to the lack of available energy) 
that must be taken into account.  

Energy supplied by a hydro unit in a given period 

Let ψ
hQ be a random variable that represents the output of hydro unit h in any given hour of 

periodψ  (that is composed of ψa hours). Obviously, the output of that unit can be obtained 

as the difference of two random variables as: 

nnh EqLEqLQ −= −1
ψ  

Therefore it is possible to determine the PMF of the hourly output ψ
hQ  by convolution 

recalling to the following expression: 

)()()( 11 nEqLnEqLhQ
EqLmEqLmQm

nnh

−∗= −−−

ψ
ψ  

Thus, the energy supplied by that hydro unit in periodψ  could be represented by means of 

another random variable, denoted by ψ
hE . Since the outputs of different hours are supposed 

to be independent, the energy produced by the hydro unit could be obtained as follows: 

���� ����� ��

timesa

a
hhhh QQQE

ψ

ψ
ψψψψ +++= ...
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Or, in terms of PMF as: 

������ ������� ��

timesa

a
hhhhE
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ψ

ψψ
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21
∗∗∗=  

The former expression requires a remarkable computational effort. However, given that the 

number of hours in a period is usually large enough )30( >ψa , and that the hourly outputs 
ψ
hQ  are supposed to be behaved as independent and identically distributed random 

variables, the computation of the distribution function of the energy supplied by a hydro unit 
considerably simplifies.  
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Let us denote the expected value and the variance of ψ
hQ by ψµh and 2)( ψσ h respectively. 

Recalling to the Central Limit Theorem (see, for instance, Grinstead and Snell (2003)) we can 

assert that ψ
hE converges in distribution to a normal. Formally: 

2)(,~ ψψψψψ σµ hhhhh aaE ⋅⋅Ν  

Figure 2.4.3-I shows the distribution function of the energy supplied by a hydro unit in a 
given period and the unfeasible scenarios.  

 

Figure 2.4.3-I Distribution function of the energy supplied by a hydro unit 

The Value-at-Risk approach 

The convolution model can be improved by limiting the percentage of unfeasible scenarios 
that are taken into account. This can be done by means of a risk metric as, for instance the 

Value-at-Risk. Instead of checking the condition ψ
hh eEE ≤ , an enhanced model would check 

the condition ψ
α heVaR ≤ as it is shown in Figure 2.4.3-II. 
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Figure 2.4.3-II Value-at-Risk approach 

However, although it is important to bear in mind these ideas, the model proposed follows 
the conventional approach given that the overall results do not change significantly. 

2.5 Introducing Renewable Generation in the Model 

As put across by Milligan and Porter (2008), the most straightforward way to represent wind 
(or, more broadly, intermittent renewable generation) in reliability models is as an hourly 
modification to the load, using data from the same year, month, day and hour. 

Let ),...,( 1 kll be a set of observed values of hourly load and ),...,( 1 kww  a set of observed 

values of hourly renewable production. It is important to note that the sub-indexes are 

consistent, that is to say il and iw represent the load and the wind production, respectively, 

of the same hour, day and year. 

We can now introduce the concept of hydro-thermal load (load that must be met by both 

hydro and thermal generators). The set ),...,( 1
HT

k

HT ll , whose elements are computed as 

difference between the load and the wind production, namely ii

HT

i wll −= , is obviously a 

set of observed values of hydro-thermal load. This set can be then directly used to obtain a 
proxy for the distribution of the load as shown in Section 2.3.1.  

Figure 2.5 illustrates this procedure. Firstly, hourly renewable production (green curve) is 
subtracted from hourly load (red curve) in order to calculate the hourly hydro-thermal 
demand (blue curve). Secondly, the hydro-thermal load-duration curve is built. Eventually, 
the empirical DDF of the hydro thermal load is calculated. 
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Figure 2.5 Introducing RES in the PPC model 

It should be noted that a detailed representation of renewable generation is far beyond the 
purpose of this dissertation. If the objective were to investigate the potential impact of future 
wind development scenarios on system reliability, operations or economics, the approach 
should be other. In those cases, as discussed in Smith et al. (2007), it would be better to use 
wind data from a numerical weather prediction (NWP) model that produced hourly or sub-
hourly wind speed estimates that could be converted to realistic representations of large-
scale renewable power production. 

2.6 Introducing Demand Elasticity in the Model 

In this dissertation we take as a starting point the PPC model approach suggested by Rodilla 
and Batlle (2010). They propose a very simple and appealing way to integrate demand 
elasticity into the conventional probabilistic production costing frame work. In Section 
2.6.1, that algorithm is described. 

We consider two different sources of demand elasticity, the one reflected in the demand 
curves offered in the power pool (Price-Sensitive Demand) and the interruptible load 
bilaterally contracted by the Transmission System Operator (TSO) to the largest industrial 
consumers in the system (Reserve-Sensitive Demand). As the approach proposed in Rodilla 
and Batlle (2010) does only consider Price-Sensitive Demand, it does not allow to explicitly 
modeling that demand which may be interrupted in the event of a scarce reserve margin. 
Therefore, the PPC model will be extended to properly reflect the effect of the Reserve-
Sensitive Demand. Section 2.6.2 is devoted to that purpose 

2.6.1 Modeling Price-Sensitive Demand 

We will now describe how demand offer bids can be modelled within the PPC framework 
resorting to the example used by Rodilla (2010). The underlying idea of the algorithm 
proposed is illustrated making use of both a deterministic demand and set of thermal units 
that are always able to produce, that is to say, a set of thermal units whose forced outage 
rates are equal to zero. Once the main idea is presented, introducing it in the PPC 
methodology will be straightforward. 

Modeling demand bids as equivalent generators 

Let us consider that demand marginal utility (the demand offer curve) is given by the red 
step-wise curve presented in Figure 2.6.1-I. The available generators’ capacities (MW) and 
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their corresponding marginal costs (€/MWh) have been represented as an aggregated step-
wise curve (dotted in blue) in the same chart. 

 

Figure 2.6.1-I Supply and Demand Curves 

It is important to note that the demand offer curve comprises two clearly differentiated parts: 

• The Inelastic Load, denoted here by InL . Ideally, the bid price corresponding to it 

should represent the value of loss of load (VOLL) of the system. Anyway, it is 
assumed to be much higher than the variable cost of any of the generators. 

• The Elastic Load or Price-Sensitive Demand. A set of price-quantity pairs ),( ii qπ  

denoted by iL . 

The algorithm proposed tackles the problem by solving an equivalent one (see Figure 2.6.1-
II), in which the elastic demand is substituted by: 

• A set of fictitious generators. Each one of them represents an elastic demand bid. This way, 

each iL , becomes a fictitious generator F

LiG . The maximum output and the marginal cost of 

the generator will be the quantity and price that define the original demand bid. 

• A new fictitious inelastic demand. It will be equal to the total amount of energy demanded 
(i.e. including both the inelastic and elastic consumption). This new fictitious inelastic 

demand has been denoted in Figure 2.6.1-II by F

InL . 
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Figure 2.6.1-II Equivalent problem formulation 

As it can be easily checked, the market outcome remains unchanged, since the market 
clearing price, and the committed generators are exactly the same in both cases.  

It is important to bear in mind that, in the equivalent problem, the production of the 
fictitious generators represents the elastic demand that was not accepted in the auction. In 
other words, it represents the energy that was not purchased because the bid price was 
below the market price. 

The PPC model with elastic demand 

As described in the previous section, the approach proposed is based on defining an 
equivalent problem, where the price-sensitive demand is substituted by an inelastic demand 
and a set of fictitious generators. 

Although it would be possible to represent stochastic demand elasticity by means of the 
forced outage rate, in this dissertation we consider that for each period ψ elastic demand is 

fully determined. As a consequence, for each period, elastic demand will be represented by 
a set of fictitious generators, defined by the following parameters: 

• ≡ψ
fq Maximum capacity constraint of fictitious plant f in periodψ (quantity bidded). 

• ≡ψ
fMC Marginal cost of fictitious generator f in periodψ  (bid price). 

• ≡ψ
fFOR Forced outage rate of fictitious generator f in periodψ  (always equal to zero). 
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2.6.2 .Modeling Reserve-Sensitive Demand 

In order to consider the load shedding capability bilaterally contracted by the system 
operator we propose the following methodology. 

For each period ψ in which the time scope of analysis Ψ  is divided, the interruptible load 

)(IL is placed in the supply function merit order allowing a certain level of reserve margin 

)(RM specified by the Transmission System Operator. That is to say, IL is modelled as a 

fictitious generator characterized by the following parameters: 

• ≡ψ
ILq Maximum capacity constraint of fictitious plant IL . It is equal to the total 

interruptible load (in MW). 

• ≡ψ
ILFOR Forced outage rate of fictitious generator IL  (always equal to zero). 

• ≡ψ
ILMC Marginal cost of fictitious generator IL in periodψ . It is set in such away that the 

position of the fictitious generator IL  allows for the desired level of reserve margin. 

The reserve margin for each period, namely ψRM  (in MW), is calculated as a given 

percentage )( RMε of the maximum load of that period, denoted by ψ
Maxl . Formally: 

ψψ ε MaxRM lRM ⋅=  

Figure 2.6.2 illustrates how the interruptible load is included in the supply function as a 
fictitious generator. 

 

Figure 2.6.2 Reserve Sensitive Demand 
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2.7 Measuring the Value of Non-Purchased Energy 

In this section, we present a methodology for constructing the distribution function of the so 
called Value of Non-Purchased Energy within the PPC framework. First, we recall the 
background of the VNPE and its importance. Next, we define it in a precise and concise 
way. And, eventually we provide a general formulation of the VNPE calculation algorithm. 

2.7.1 The Background of the Concept 

As highlighted in (Rodilla, 2010), classical reliability measures such as the Loss of Load 
Probability (LOLP), and the Expected Non-Served Energy (ENSE) leave aside very meaningful 
information when used to assess the performance of a system where elastic demand plays a 
significant role. As a matter of fact, in a fully elastic demand scenario, the value of the ENSE 
is, according to its traditional definition, always equal to zero. Consequently, a permanent 
scenario of severe scarcity could be obscured by the use of the aforementioned metrics. 

In order to reflect the elastic consumption in the performance measure, the evaluation of the 
distribution function of what was termed as the value of the non-purchased energy (VNPE) 
was proposed. The purpose of this section is to illustrate how it can be calculated in a real-
size case. 

2.7.2 Brief Overview of the VNPE Concept 

Let us characterize the demand by means of a set Ω  of price-quantity pairs ),( ii qπ  where: 

iπ   stands for the bid price (i.e. the highest price the buyer is willing to pay). 

 iq   denotes the quantity bidded. 

We can define the term “value of a bid” as the quantity demanded multiplied by the bid 
price. Thus, for a given demand and supply deterministic scenario, the value of the non-
purchased energy will be the total sum of the values of the bids that are not accepted. 
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Figure 2.7.2 VNPE for a given deterministic scenario 

Otherwise, resorting to the aggregate demand curve )(qD=π , the VNPE could be defined 

as the area below it in the interval ( *q ,q ):  

∫=
q

q

dqqDVNPE
*

)·(        

Where: 

*q    stands for the quantity cleared in the market.     

 q      represents the total energy demanded. 

2.7.3 Computation Model Description 

The whole procedure for building the VNPE distribution function is based on a fairly 
intuitive idea: whenever the price of a bid is lower than the marginal cost of the system 
(market clearing price), the bid will not be accepted. Provided that we consider that each 
elastic demand scenario is fully determined (i.e. the amount of energy demanded at each 
price level is not a random variable), the previous lemma becomes the guiding principle of a 
robust and simple way of computing the value of the non-purchased energy.  

The plan of this sub-section is as follows. We first present how the VNPE can be calculated 
for any possible scenario. Subsequently, we show how the probability of each of the 
scenarios can be estimated. And eventually, we bring in some considerations about the non-
served energy. 
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Value of Non-Purchased Energy Calculation 

 a. The marginal plant is a thermal or hydro generator 

Let us firstly assume that: the marginal unit is either thermal or hydro (in other words, not 

fictitious); that additionally, it will be marginal with a probability equal to inalMp arg ; and that 

the market clearing price of the system isλ . In such an event, the VNPE could be easily 
computed as follows: 

∑
Γ∈

=
),(

·
ii q

ii qVNPE
π

π           }/),{( λππ <Ω∈=Γ iii q  

Therefore, the value of the non-purchased energy will be the one calculated above with a 

probability equal to inalMp arg .  

 b. The marginal plant is a fictitious generator 

If a fictitious generator happens to be the marginal one, that is to say, if a demand bid 
represented by a so-called fictitious generator is partially accepted, the calculation of the 
VNPE differs slightly. In addition to the bids that were fully rejected, it is necessary to take 
into account the value of the bid that was partially turned down. 

In order to do so, we make use of the probability mass function (PMF) of the production of 
the fictitious generator. Assuming that the production of a fictitious generator can be 

represented by means of a discrete random variable denoted by fQ , that function gives the 

probability that the former is exactly equal to some value.  

Once we have obtained the PMF )( fQ Qm
f

, computing the VNPE and probability of each 

scenario is straightforward. Formally:  

∑
Γ∈

+=
),(

* ··
ii qp

iiff qqVNPE ππ           }/),{( λππ <Ω∈=Γ iii q  

Where: 

fπ     stands for the bid price of the fictitious marginal generator.  

 *

fq      denotes the quantity not purchased (production of the fictitious generator). 

The value of the non-purchased energy will be the one calculated above with a probability 

equal to )( *

ffQ qQm
f

=  for every value of fQ  so that the fictitious generator is marginal. 

That is to say, for every *

ff qQ =  such that ff qq << *0 , where fq  stands for the maximum 

output of the fictitious generator (quantity demanded). 
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Scenario Probability Estimation 

 a. Probability of being marginal 

A generator is said to be marginal if its production is at any point between its minimum and 
maximum output. As outlined before, evaluating which units are more likely to be marginal 
(and hence, set the marginal price) is vital to building the VNPE distribution function. For 
this reason, we explicitly show now how each unit’s probability of being marginal can be 
effortlessly obtained from the PPC model proposed in this dissertation.  

Let us recall the concept of the equivalent load after dispatching the first n groups, denoted 

by nEqL . In Figure 2.7.3-I, the de-cumulative distribution functions of the non-served load, 

both before (blue curve) and after (red curve) having dispatched the nth generator, are 
plotted. 

 

Figure 2.7.3-I Probability of being marginal 

By merely having a look at it, it can be noted that: with a probability equal to 1p , the nth 

group (regardless of its availability), will not produce at all, as the system load before 
dispatching it is zero (negative values of load may represent the reserve margin). Besides, 

with a probability equal to 3p , the load after dispatching the nth generator will be strictly 

positive, thus meaning that it cannot be marginal as additional generating units will be 
required to meet the demand. That could mean that the generator is either unavailable or 
incapable of solely satisfying the demand (the load is higher than the plant’s capacity).  

By the same token, we can deduce that if the plant is neither unavailable, nor producing its 

maximum or minimum output it must be necessarily marginal. Actually, the probability 2p  
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represents the likelihood of that happening. Said in a different and more concise way, the nth 

group will be marginal with a probability equal to 2p . 

In conclusion, measuring each generator’s probability of being marginal can be reduced to 
nothing more than plainly subtracting two numbers: the intercepts of both the de-cumulative 
distribution function of the equivalent load before dispatching the generator (denoted by 

)( 1−nEqLS ) and the de-cumulative distribution function of the equivalent load after 

dispatching it (denoted by )( nEqLS ) with the vertical axis. Explicitly, the nth generator will 

be marginal with a probability equal to: 

)0()0( 1arg =−== − nn

n

inalM EqLSEqLSp  

 b. Non-Purchased Energy Probability Mass Function 

In order to be treated within the model, the inelastic load is quantized according to a 
specified resolution, and so are the supply offers and the elastic bids. As a result, discrete 
random variables can be proxy for both the production of the generators and the n 
equivalent loads. 

As pointed out above, determining the probability mass function of the production of the 
fictitious generators is key to building the VNPE distribution function. We will now try to 
shortly describe how it is obtained from the PPC model by recourse to an example. 

Let )( nEqL EqLm
n

 be the probability mass function of the equivalent load after dispatching 

the first n groups.  

 

Figure 2.7.3-II Probability mass function of the Equivalent Load 

And let us assume now that the following generator in the merit order is a fictitious one (a 

demand bid) of capacity fq . Obviously, if the equivalent load is either zero or negative, the 

output of the fictitious generator will be zero. In addition to that, if the load is higher or 
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equal to the capacity, the output of the generator will be its capacity. And, needless to say, 
in any other case, the production will be equal to the load and, by the way, the fictitious 
generator will be marginal.  

More formally, the PMF of the production of a fictitious generator that is dispatched after the 
first n units can be defined as a piecewise function: 
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Then, it can be easily checked that the PMF of the production of the fictitious generator of 
the example is the following: 

 

Figure 2.7.3-IIIPMF of the production of a fictitious generator 

Non-Served Energy 

The evaluation of the impact of the non-served energy in the value of the non-purchased 
energy does not involve any major additional change in either the PPC model or the VNPE 
computation model. Actually, it can be easily done by just introducing a further fictitious 
generator whose capacity is equal to the maximum inelastic load, whose offer price is equal 
to the value of loss of load (VOLL) and is always available.  

Besides, this approach grants some other advantages, as the ENSE can be directly obtained 
as the expected output of this generating unit and the LOLP is nothing but its probability of 
being marginal, and hence, there is no need for an additional module that calculates this 
classical reliability measures. 
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2.8 Conclusions 

In this chapter we have formulated a Probabilistic Production Costing model to carry out 
reliability assessments of power generation systems in electricity markets where elastic 
demand plays a significant role. The model described is able to cope with a variety of 
peculiarities of electricity wholesale markets. 

Moreover, the proposed formulation meets the following modelling challenges: 

• Firstly, the model allows for analysis in a conventional thermal generation system 
with fully inelastic load.  

• Secondly, the conventional PPC model has been adapted for loading energy limited 
units. 

• Thirdly, the conventional PPC model has been extended with regard to taking into 
account intermittent renewable generation. 

• Fourthly, an equivalent load and generation model has been constructed to integrate 
price sensitive demand into the conventional PPC model. 

• Fifthly, the PPC model has been adjusted to properly reflect the effect of the reserve-
sensitive demand. 

• Sixthly, an algorithm to compute the distribution function of the Value of the Non-
Purchased Energy has been implemented within the PPC frame-work. 

This PPC model will be used in Chapter 4 to carry out a reliability assessment of the Spanish 
electricity market. 
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3. ADDRESSING THE TIME-DEPENDENT NATURE OF DEMAND 
ELASTICITY IN AN ELECTRICITY MARKET 

3.1 Introduction 

As shown in Chapter 2 the incorporation of demand elasticity in the PPC framework requires 
that the elasticity be the same for every hour in the simulation period. Nevertheless, a major 
aspect that can not be neglected is that demand is strongly time-dependent. In this chapter 
we turn to the important problem of developing a methodology to characterize the elastic 
demand of a given electricity market. 

The main objective of the following sections is to present a tool that captures the time-
dependent nature of demand (i.e. dependence on the calendar) and allows determining the 
elastic demand curves that will be used as an input to the model described in Chapter 2. At 
the same time, the tool will help to divide the time scope of the analysis in an adequate 
number of periods. In order to do so, historical elastic demand curves are classified and 
clustered.  

3.1.1 Structure of the Chapter 

The Chapter proceeds as follows. Section 3.2 reviews the concept of a Clustering Algorithm. 
Then, in Section 3.3, we describe the Neural-Gas Algorithm. In Section 3.4 we provide an 
insight on how the optimal number of clusters is determined and on how the time scope of 
analysis is divided. Section 3.5 concludes and discusses some applications and extensions. 

3.2 Basic Concepts 

Cluster analysis or clustering is a method of unsupervised learning by which a set of 
observations is assigned into subsets (called clusters) so that observations in the same cluster 
are similar in some sense; see Aldenderfer & Blashfield (1984). 

 

Figure 3.2 Result of a cluster analysis shown as the colouring of the squares into 
three clusters. 
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An important step in most clustering algorithms is to select a distance measure, which will 
determine how the similarity of two elements is calculated. This will influence the shape of 
the clusters, as some elements may be close to one another according to one distance and 
farther away according to another. Common distance functions include the Euclidean 
distance, the Manhattan distance, the maximum norm, the Mahalanobis distance or the 
Hamming distance. 

As it has already been mentioned, clustering algorithms are unsupervised, that is to say, they 
try to find a hidden structure in unlabeled data (data that is not classified a priori). 

Representing certain data using the clusters obtained necessarily entails a loss of detail, but 
facilitates the interpretation of the whole. In our case, the classification of historical elastic 
demand curves not only facilitates the interpretation of past data but also provides the 
possibility of determining the presence or absence of patterns on which to infer future 
trends. 

For a thorough classification of clustering algorithms see, for instance, Romesburg (2004). 

3.3 The Neural-Gas  

The Neural Gas is an artificial neural network introduced by Martinetz & Schulten (1991). It 
is a simple algorithm for finding optimal data representations based on feature vectors. The 
algorithm was named “Neural Gas” because of the dynamics of the feature vectors during 
the adaptation process. 

Distance Measure 

Before digging into the details of the algorithm it is important to choose a distance measure, 
as the calculation process will be based on it. In this case, the most suitable distance 
measure between to curves is the area (positive definite) between them. 

 

Figure 3.3 Distance between two demand curves 
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In Figure 3.3 two different elastic demands, namely )(qDa=π  and )(qDb=π , are 

depicted. The distance between them (denoted byδ ) is, according to the definition 
proposed, equal to the orange shaded area. Formally: 

πππδ
π

π

dDDDD baba ⋅−= ∫
−− )()(),( 11  

Note that both elastic demand curves are defined within the same range of prices, denoted 

by ],[ ππ . The lower bound π  of this range is equal to zero, and the upper bound π  is 

lower than the Value of Lost Load (which ideally is the offer price of the inelastic demand).  

As it will be explained in the next section, the clustering process is aimed to calculate, for 
each cluster, the amount of energy offered at every price within the aforementioned range; 
while reducing the distance between the clusters and the elastic demand curves they are 
meant to represent. 

Algorithm 

Let us consider a set of Γ  historical elastic demand curves )(qDγπ =  Let Η  be the number 

of feature curves )(qFηπ =  that will represent the whole set of historical data. The method 

to obtain the feature curves proceeds as follows: 

Step 0. Initialize the iteration counter 0=t  and randomly choose a set of Η  feature 
curves from the Γ  historical elastic demand curves.  

In order to do the latter, generate a set of Η  random numbers 

},...,{ 1 Hxx according to a discrete uniform distribution (DUI). As it may have been 

noticed, the DUI has been chosen as the elements of the original set of data 
represent equally likely scenarios (hourly elastic demand). Obviously, the possible 
values of the random numbers range from 1 to the number of vectors Γ  within the 

original set of data. Thus, the set of feature curves will be },...,{},...,{
11 HxxH DDFF =  

Step 1. Another historical elastic demand curve ξ  is randomly chosen 

A random number x  is generated according to a DUI as explained before. 
Consequently, the randomly chosen curve will be xD=ξ  

Step 2. The distance of the H  feature curves to the given historical elastic demand 
curve ξ  is measured and the distance order is determined. Additionally, the feature 

curves are labelled accordingly. 

ηηη ξ FFk →= 0),(  is the closest feature curve to ξ  

ηηη ξ FFk →=1),(  is the second closest feature curve to ξ . 
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ηηη ξ FFk →−Η= 1),(  is the most distant feature curve to ξ . 

Step 3. Each feature curve is adapted according to the following expression: 
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Step 4. The iteration counter is increased in one unit. As long as maxtt ≤  the 

algorithm goes back to Step 1. Otherwise, the procedure finishes. 

After sufficiently many adaptation steps the feature curves cover the original data space (set 
of historical demand curves) with minimum representation error. 

Representation error 

The total representation error, denoted by TRE, is defined as the sum of the distances 
(defined as the area between two curves) between each original elastic demand curve 

γD and its closest feature curve ηF . Formally: 

∑
Γ

=

=
1

),(min
γ

ηγη δ FDTRE  

This representation error can be used as a performance measure to evaluate the clustering 
algorithm, determine the optimal number of feature curves or initialize such parameters as 
the neighbourhood range or the adaptation-step-size. 

3.4 Analysis of the Time-Dependent Demand Elasticity 

As shown in Chapter 2 the incorporation of demand elasticity in the PPC framework requires 
that the elasticity be the same for every hour in the simulation period. Nevertheless, a major 
aspect that can not be neglected is that demand is strongly time-dependent; see, for 
instance, Wood & Wollemberg (1996). 

As a consequence, in order to address the “uniform behavior” assumptions required in the 
time abstracted PPC framework, the analysis needs to be split into multiple smaller-scale 
simulations. In particular, one simulation is needed for each time period in which a 
“uniform behavior” could be considered as a reasonable hypothesis for the elastic demand. 
Eventually, the results obtained from each one of simulations could be weighted according 
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to the number of hours they represented (i.e. the number of hours of the period in which a 
uniform behavior of elasticity is assumed). 

In this Section we show how the clustering algorithm described in Section 3.3 is used to 
assess the number of time periods where the “uniform behavior” hypothesis can be 
considered as a reasonable assumption, how the optimal number of periods is determined 
and how the time scope of analysis is divided. 

3.4.1 Determination of the Optimal Number of Clusters 

As pointed out in Sugar & James (2003), the correct choice of the number of clusters is often 
ambiguous, with interpretations depending on the shape and scale of curves in the original 
data set and the desired clustering resolution. 

However, increasing the number of clusters will tend to reduce the amount of representation 
error in the resulting clustering, to the extreme case of zero error if each original curve is 
considered its own cluster. 

Intuitively then, the optimal choice of the number of clusters will strike a balance between 
maximum compression of the data using a single cluster, and maximum accuracy by 
assigning each data point to its own cluster.  

Balancing Accuracy and Simplicity 

By means of an example, we will show how to choose qualitatively a set of clusters that is 
comprehensive enough but not unnecessarily exhaustive. Figure 3.4.1-I shows a set of 
hourly elastic demand curves (in yellow), and a single cluster (in green) that intends to 
represent the whole set. As it can be recognized, although the cluster is close to the vast 
majority of the demand curves, there are some outliers in the left side that greatly differ from 
the cluster that is supposed to be proxy for them. Hence, using a single cluster in this case is 
obviously not accurate. 

 

Figure 3.4.1-I Historical demand curves. #1 Cluster 
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In Figure 3.4.1-II the same set of hourly elastic demand curves is displayed. Nonetheless, 
two clusters (in green and red respectively) are calculated in this case. As expected, one of 
the clusters (the green one) is approximately equal to the one calculated in the single cluster 
case, while the other (the red one) is quite similar to the aforementioned outliers. Thus, 
adding a second cluster greatly enhances the accuracy of the analysis in this particular case.  

 

Figure 3.4.1-II Historical demand curves. #2 Clusters 

Finally, Figure 3.4-III shows the result of calculating an additional representative (in blue). 
Including another cluster improves the accuracy of the clustering. However, it is not clear 
whether it is worth it. The third cluster is very similar to the first one, so it does not provide a 
relevant understanding of the dynamics of the elastic demand whereas it significantly 
hinders further analysis.  

 

Figure 3.4.1-III Historical demand curves. #3 Clusters 
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We can therefore conclude that the two-cluster approach is (qualitatively) the one that better 
combines both accuracy and simplicity.  

The Elbow method 

The analytical method used to deciding on the number of clusters is the so-called Elbow 
method, see Long et. al (2010). It looks at the total representation error as defined in Section 
3.3 and is founded upon a rather intuitive idea: The number of clusters should be chosen so 
that adding another cluster does not give much better modelling of the data. 

More precisely, if the total representation error is plotted against the number of clusters, the 
first clusters will add much information (reduce notably the error), but at some point the 
marginal gain will drop, giving an angle in the plot. The number of clusters is chosen at this 
point, hence the "elbow criterion"  

The marginal reduction of the Total Representation Error is intuitively defined as follows: 

1#

#1#
#

−

− −=∆
Clusters

ClustersClusters
Clusters

TRE

TRETRE
TRE  

Chart 3.4.1 shows the Total Representation Error (and its marginal reduction) committed 
when using different number of clusters to represent a given set of hourly curves (the hourly 
curves a whole month). 

 

Chart 3.4.1 Total Representation Error 

As it can be observed in the chart and even more clearly in Figure 3.4.1-IV, the marginal 
reduction of the error drops dramatically beyond two clusters. Thus, there is no sense in 
further complicating the analysis and two clusters should be chosen in this case. 
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Figure 3.4.1-IV Total Representation Error 

3.4.2 Division of the Time Scope of Analysis 

In Section 3.4.1, we have outlined a procedure for determining the optimal number of 
clusters for a given set of hourly elastic demand curves. Now we undertake the problem of 
defining the periods in which the time scope of analysis should be divided. This division 
must be done in such a way that the “uniform behavior” of elastic demand could be 
considered as a credible hypothesis for each period. 

Figure 3.4.2-I shows a set of hourly elastic demand curves (in yellow), and a two clusters (in 
green and red respectively) that are supposed to represent the whole set.  

 

Figure 3.4.2-I Clustering Analysis. Clusters and original curves 
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After having calculated the clusters, the next step is to determine which cluster is closer to 
each one of the original curves, that is to say, which cluster represents each one of the 
hourly elastic demand curves better.  

In Figure 3.4.2-II the results of the calculation of the closest cluster are displayed. For every 
single day in the time scope of analysis (28 days in this case), each hour is labelled in either 
red or green if it is closer to either of the clusters (the colour code is consistent). 

 

Figure 3.4.2-II Clustering Analysis. Closest cluster 

After carefully examining the results, a pattern can be recognized. In the first hours of the 
day, the so-called off-peak hours, elastic demand is quite similar. A certain affinity among 
the rest of the hours (peak hours) is also perceived. Therefore, it seems logical to divide the 
time scope of analysis into two periods, namely A and B, as illustrated in Figure 3.4.2-III. 
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Figure 3.4.2-III Clustering Analysis. Definition of periods 

Eventually, in order to further improve the accuracy of the analysis while maintaining its 
comprehensiveness another step can be taken. Instead of using the clusters calculated 
previously we can divide the original set of hourly curves into two subsets (one 
corresponding to each period) and calculate a single cluster for each one of them, as shown 
in Figure 3.4.2-IV.  
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Figure 3.4.2-IV Clustering Analysis. Single cluster per period 

3.4.3 Elastic Demand Clustering Tool 

In order to carry out the analysis proposed in this section a robust and flexible clustering tool 
has been developed. This tool performs two rather distinct functions. 

• On the one hand, it provides the user with the optimal number of clusters for a given 
time scope (e.g. four curves that represent the different types of hourly curves of a 
given month). Additionally, it helps to divide the time scope of analysis into different 
periods balancing accuracy and simplicity. 

• On the other hand, it allows the user to obtain feature curves according to specified 
clustering criteria (i.e. clusters for peak and off-peak hours, working days and 
holidays, summer and winter seasons, etc.). 

For the purposes of the model described in Chapter 2, the major outputs of this tool are both 
a definition of the periods ψ  in which the time scope of analysis Ψ is divided, and the 

elastic demand curves )(qDψπ =  that are supposed to apply for every hour within aeach 

one of those periods. 

 

Figure 3.4.3 Time Structure 
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3.5 Conclusions 

In this Chapter, the challenge of developing a tool that captures the time-dependent nature 
of elastic demand has been met. The tool proposed allows for finding patterns and obtaining 
clusters to realistically describe the elastic demand while avoiding the inconvenience of 
taking into account too many hourly demand curves.  

This clustering tool will be used in Chapter 4 to characterize the elastic demand of the 
Spanish electricity market. That is to say, it will be used to determine how many different 
elastic demand scenarios are necessary to fairly represent the whole Spanish elastic 
consumption. 
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4. CASE EXAMPLE: APPLICATION TO THE SPANISH ELECTRICITY 
MARKET 

4.1 Introduction 

In Chapter 2 we formulated a Probabilistic Production Costing model to estimate the 
reliability of a power generation system. The model proposed is particularly suited for 
carrying out reliability assessments in electricity markets where elastic demand consumption 
is substantial. Notwithstanding, the model is also able to cope with a wide variety of 
peculiarities that arise in electricity wholesale markets. 

Additionally, in Chapter 3, we developed a tool that captures the time-dependent nature of 
demand elasticity. The tool produced allows for finding patterns and obtaining clusters to 
realistically describe the elastic demand of a given electricity market.  

In this Chapter, we proceed to face the analysis of a real-size electricity market. We will test 
the capabilities of the models described in this dissertation by carrying out a simulation of 
the Spanish electricity market for 2016. In this context, we will put a strong emphasis on 
taking into consideration demand elasticity. Furthermore, we will thoroughly evaluate how 
traditional reliability measures (as, for instance, the Loss of Load Probability or Expected 
Non-Served Energy) are affected when such non-negligible demand elasticity is considered. 

4.1.1 Structure of the Chapter 

The Chapter proceeds as follows. In Section 4.2 we describe the characteristics of the 
Spanish electricity market that is going to be analysed, the assumptions made and the data 
that is going to be used as an input for the PPC model. Section 4.3 presents the structure of 
the simulation. Section 4.4 reviews and discusses the results obtained. Section 4.5 concludes 
and comments some applications and extensions. 

4.2 The Spanish Electricity System 

This section is devoted to describe the way the Spanish electricity market has been 
modelled. The structure of the section mirrors that of Chapter 2. In this case however, 
instead of modelling each one of the elements of the power system within the PPC 
framework we present the data that is going to be used in the simulation, along with the 
assumptions and projections made. 

4.2.1 Load Scenario 

In order to obtain the hourly values of load that are going to be used as an input to the PPC 
model as described in Section 2.3.1 we take, as a starting point, the chronological load 
profile from 2009. This hourly load profile is scaled up according to an estimation of 
demand growth as depicted in Figure 4.2.1. 
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Figure 4.2.1Load Estimated Profile for 2016 

In order to estimate the demand growth, a central scenario is constructed from the historical 
series on demand growth at power plant bars and GDP from 1993 to date. Then an ARX-
type model is used to fit the demand/GDP curve. The results of are shown in Chart 4.2.1. 

 

Chart 4.2.1 Evolution of the Annual Load 

4.2.2 Thermal Generation 

As outlined in Section 2.3.1 the parameters that are used to characterize the behaviour of a 

thermal generator t  are its capacity tq , its forced outage rate tFOR  and its marginal 

cost tMC . 

Both the capacities and the forced outage rates of the thermal plants that are currently 
operating in the Spanish system are available at REE (2010). With regards to the estimation 
of the installed capacity in Spain by 2016, the expected decommissioning of fuel-oil and 
coal plants is taken into account. 

The fuel variable cost has been used as proxy for the marginal cost. Additionally, the carbon 
dioxide emissions price has been estimated. The parameters that characterize the set of 
thermal generators that have been used in the analysis are gathered in Chart 4.2.2. 
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Chart 4.2.2 Thermal Generation Data 

Figure 4.2.2 shows the implied supply function when every single generator is available. 

 

Figure 4.2.2 Thermal generation supply curve 
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4.2.3 Hydro Generation 

As described in Section 2.4.1 the parameters that are used to characterize a hydro unit h  in 

a period ψ  are its maximum capacity ψ
hq , its minimum output ψ

hq  and the available energy 
ψ
he . Those parameters are derived from historical values using the GEHA, developed in 

Batlle (2002). 

A Preliminary Division of the Time Scope of Analysis 

As put across in Section 3.4, in order to address the “uniform elasticity” assumptions 
required in the PPC framework, the analysis needs to be split into multiple smaller-scale 
simulations. The characteristics of the data regarding hydro units, straightforwardly suggest a 
preliminary division of the time scope of analysis. 

The available energy provided by the model is given monthly. Therefore, it seems 
reasonable to divide the time scope of analysis, at least, in months. 

Hydro Scenarios 

In order to capture the annual variability of hydro production, five different scenarios of 
hydro energy availability are considered. The scenarios are obtained from historical data as 
follows: 

• Historical scenarios of hydro production are sorted based on the amount of energy 
produced. 

• The hydro scenarios that represent the 5, 25, 50, 75 and 95-percentiles of the 
distribution are selected. 

Figure 4.2.3 shows the five scenarios of hydro production that have been evaluated. 
Obviously, the results obtained from the analysis of each one of the scenarios must be 
weighted according to their likelihood. 

 

Figure 4.2.3 Scenarios of Monthly Available Hydro Energy 
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4.2.4 RES Generation 

In order to obtain the hourly values of production of Renewable Energy Sources that are 
going to be used as an input to the PPC model as described in Section 2.5 we take, as a 
starting point, the chronological production profile from 2009.This hourly production profile 
is scaled up in consonance with the estimated RES production increase for 2016 based on 
governmental planning (that is to say, ~40%) as shown in Figure 4.2.4. 

 

Figure 4.2.4 RES Generation Estimated Profile for 2016 

4.2.5 Elastic Demand 

In this case example we consider two different sources of demand elasticity: On the one 
hand, the elasticity reflected and extracted from the bids made by participants in the Spanish 
power pool in the past years and, on the other hand, the interruptible load bilaterally 
contracted by the Transmission System Operator to the largest industrial consumers in the 
system. 

Demand Bids from Market Participants. Price-Sensitive Demand 

We have taken into account the bids made hourly by market participants in the day-ahead 
Spanish electricity market along 2010.  
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Figure 4.2.5-I Aggregate supply and demand curves. Spanish electricity market 
(Source: OMEL) 

Figure 4.2.5- shows, among other things, the aggregate demand curve (in light blue) for a 
given hour. As described in OMEL (2001), according to the market rules the bid price in the 
Spanish pool is capped at 180.3 €/MWh. Therefore, those bids whose price is equal to this 
cap can be considered to be inelastic. Consequently, the only bids that interest us are the 
ones made by agents who are price-sensitive (the agents who actually declare the maximum 
price they are willing to pay). We will now illustrate how the clusters of this elastic demand 
curves are obtained. 

Step 1. As a first step then, we must obtain the historical aggregate demand curves 
and remove those bids whose price is equal to the maximum allowed price. In 
Figure 4.2.5- a set the elastic demand curves is shown. 

 

Figure 4.2.5-II Historical hourly elastic demand curves. March 2010 

Step 2. Secondly, we use the clustering tool described in Chapter 3 to determine the 
number of clusters that better represent the historical data gathered. As argued in 
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Section 4.2.3, the time scope of analysis will, at least, be divided in months. 
Accordingly, the clustering process will aim to determine the optimal number of 
clusters for each month. 

Figure 4.2.5-III illustrates the result of calculating different numbers of clusters for the 
data presented in Figure 4.2.5-II Historical hourly elastic demand curves. March 
2010. 

 

Figure 4.2.5-I Different number of clusters. March 2011 

As explained in Section 3.4.1, in order to determine the optimal number of clusters 
the total representation error committed has to be measured. Chart 4.2.5 shows the 
marginal reduction of the total representation error committed when using different 
numbers of clusters to represent the hourly curves of each month.  
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Chart 4.2.5 Marginal reduction of the representation error 

As it can be noticed, the marginal reduction of the error does not decrease 
significantly when adding a third or a fourth cluster. Therefore, it does not make 
sense to further complicate the analysis and two clusters per month will be 
calculated. This decision is reinforced by merely having a look at Figure 4.2.5-III, in 
which the average Total Representation Error committed per month is depicted. The 
so-called “elbow” (see Section 3.4.1) is clearly in the neighbourhood of the point 
that represents the error committed when using two clusters. 

 

Figure 4.2.5-III Average representation error per month 

Step 3. Finally, the time scope of analysis must be divided appropriately. Each month 
will be split into two periods. In order to define those periods, we must calculate 
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which cluster is closer to the elastic demand of each hour. In Figure 4.2.5-III the 
hours of a given month are labelled according to which their closest cluster is. 

 

Figure 4.2.5-III Division of a month in periods 

The division of the month in this case in peak and off-peak hours seems to be more 
than reasonable. The division of the rest of the months is carried out analogously, 
and the results obtained are similar. Therefore, every month is divided into a peak 
and an off-peak period. It is important to note, however that the definition is not 
exactly the same for all of them (i.e. the off-peak period may be1h-8h, 1h-9h, 23h-8h 
or so). 

Interruptibility Service. Reserve-Sensitive Demand 

The so-called “Interruptibility Service”, see MITyC (2007, is a demand management tool that 
allows the Transmission System Operator giving a rapid and efficient response to the needs 
of the electricity system in emergency situations. It consists of a reduction of the active 
power demanded to a residual power level in response to a power reduction order issued by 
Red Eléctrica de España, the TSO, to consumers subscribed to this service. 
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In 2010, there were 142 existing contracts in the Spanish mainland system. According to 
those contracts, the total interruptible power manageable by the TSO in periods of 
maximum demand reaches approximately the amount of 2112 MW. 

The criterion to draw upon this load shedding is not based on prices but on the TSO’s 
evaluation of the reserve margin at any given moment. Actually, the TSO can issue an order 
when this margin is below the 10% of the system’s load.  

Therefore, in line with the methodology described in Section 2.6.2, the interruptible load 
)(IL will be modelled for each period ψ  as a fictitious generator characterized by the 

following parameters:  

• 2112=ψ
ILq  [MW] 

• 0=ILFOR  [-] 

• ≡ILMC Marginal cost of fictitious generator IL in periodψ . It is set in such away that 

the position of the fictitious generator IL  allows for the desired level of reserve 
margin. 

The reserve margin for each period, namely ψRM  (in MW), is calculated as a given 

percentage )( RMε of the maximum load of that period, denoted by ψ
Maxl . Formally: 

ψψψ ε MaxMaxRM llRM ⋅=⋅=
100

10
 

4.3 Simulation Structure 

The simulation proceeds as follows. For each one of the five hydro scenarios a whole year is 
simulated. Each one of those years is subsequently divided up into months (hydro 
parameters vary monthly), and in both a peak and an off-peak period (elastic demand is 
supposed to behave uniformly in each one of those periods). Therefore, a total of 120 
simulations are carried out (five hydro scenarios times twelve months times two periods of 
elastic demand). Figure 4.3-I summarizes the structure of the simulation. 

 

Figure 4.3-I Simulation Structure 
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For each one of the simulations the input data is comprised of: 

1) The de-cumulative distribution function of the hydro thermal load for that period. 

 

Figure 4.3-II DDF of the hydro-thermal load for a given period 

2) The cluster of the historical elastic demand curves of that period. 

 

Figure 4.3-III Cluster of the elastic demand curves for a given period 

3) The data related to thermal plants, which is supposed to be equal for every period. 

 

Figure 4.3-IV Thermal Supply Curve when every generator is available 
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4) The data related to the interruptible load, which is supposed to be equal for every 
period as well. 

5) And the data related to hydro units. The disaggregation presented (by peak and off-
peak hours) allows us to better represent the dispatch of hydro plants. The 
manageable production (which was termed as available energy over minimum in 
Section 2.3.1) is only used in peak hours while the run-of-the-river output is kept 
both in peak and off-peak hours. 

Figure 4.3-V shows the equivalent supply curve for a given period. This curve is built 
upon the modeling assumptions described in Chapter 2. As it can be noted, elastic 
demand bids are modeled as equivalent thermal generators; hydro generation is split into 
the run-of-the-river output (offered at zero price) and the manageable production and the 
interruptible load is modeled as an equivalent generator that allows for a certain reserve 
margin. 

 

Figure 4.3-V Equivalent Supply Curve for a given period 

4.4 Case Example Results 

In order to illustrate the discussion regarding the need for new reliability measures presented 
in Chapter 1, we ran two simulations: 

• “Active Role of Demand” scenario. In this simulation demand elasticity was taken 
into account as described in Section 4.2. 

• “Business As Usual” scenario. In this case, demand elasticity is neglected and all the 
load is supposed to be inelastic (as in conventional PPC models) 

Figure 4.4-I shows the result of the probabilistic loading for a given period when demand 
elasticity is taken into consideration.  
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Figure 4.4-I Successive Equivalent Load Curves. Active Role of Demand 

Figure 4.4-II shows the result of the probabilistic loading for the same period when demand 
elasticity is left aside. 

 

Figure 4.4-II Successive Equivalent Load Curves. Business As Usual 
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4.4.1 Classical Reliability Measures 

We can compare the different values of the traditional reliability measures obtained in the 
two simulations.  

 

Chart 4.4.1 Classical Reliability Measures. Results 

Even in the case of the Spanish electricity system, characterized by a large overcapacity, the 
magnitude order of the difference is significant. As expected, there is a considerable 
difference in the values of the LOLP and the ENSE that depends on whether elastic demand 
is taken into account or not.  

As anticipated in Rodilla & Batlle (2009) traditional reliability measures leave aside very 
meaningful information when used to assess the performance of a system where elastic 
demand plays an important role. In neither of the scenarios evaluated the information 
provided by those metrics is fully comprehensive, as they do not capture the total value of 
the bids that were not accepted.  

In the case of the “Active Role of Demand” scenario, this value may be exorbitant but it 
would lie hidden behind a ridiculously low LOLP that only takes into account the fully 
inelastic demand. Alternatively, in the case of the “Business As Usual” scenario, the total 
value of the bids that were not accepted may be negligible but this fact would be concealed 
by a high LOLP that would lead to think that the system does not meet the minimum 
reliability requirements. 

4.4.2 Value of Non-Purchased Energy 

In order to attain a better understanding of the reliability of the system we evaluate the 
distribution function of the Value of Non-Purchased Energy (see Section 2.7). Figure 4.4.2 
shows the distribution function calculated in the “Active Role of Demand” scenario 
(obviously, it does not make sense to evaluate it in the “Business As Usual” scenario as 
demand is assumed to be inelastic). 
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Figure 4.4.2 Distribution function of the VNPE & Risk Measures 

In addition to the distribution function and the probability mass function of the VNPE , 
conventional risk measures such as the expected value (mean of the distribution), the Value-
at-Risk and the Conditional Value-at-Risk have been included; see Philippe (2006) and 
Rockafellar & Uryasev (2002) respectively. Chart 4.4.2 summarizes the results obtained. 

 

Chart 4.4.2 VNPE. Risk Analysis 

4.5 Conclusions 

In this Chapter we have faced the analysis of a real-size electricity market. By carrying out a 
simulation of the Spanish electricity market for 2016, some of the capabilities of the models 
developed in this dissertation have been tested. 

• The model described in Chapter 3 has proven itself as a useful and powerful 
clustering tool. It has allowed us to efficiently characterize the elastic demand of a 
real-size electricity market.  

• The Probabilistic Production Costing model developed in Chapter 2 has allowed for 
evaluating the reliability of a real-size power system both in terms of conventional 
reliability measures such as the LOLP and the ENSE, and in terms of the Value of 
Non Purchase Energy. The distribution function of the latter could be compared with 
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that resulting from a benchmark, as shown in Figure 4.5-I. This comparison would be 
useful to provide a more precise idea on how well the market is performing its 
function. 

 

Figure 4.5-I VNPE benchmarking 

Additionally, the simulations carried out have reinforced the points of view made explicit all 
along Chapter1. There we presumed that classical reliability measures were not meaningful 
when used to assess the performance of a system where elastic demand was important. In 
this Chapter we have verified that statement.  Eventually, we have made evident the 
potential of the Value of Non-Purchased Energy as an alternative or complementary 
reliability metric in a context where elastic demand is substantial. 
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5. CONCLUSIONS 

This last chapter is dedicated to evaluating the conclusions that result from the research 
conducted in this dissertation. It includes a brief summary of the analysis, developments and 
findings that constitute the core of this work. 

5.1 Summary  

This dissertation has addressed the problem of developing an adequacy analysis model for 
electricity markets in which elastic demand plays a significant role. This issue is currently of 
the most relevance due to the reforms that have been introduced in the power industry 
worldwide and the upcoming technical and regulatory developments of smart grids and 
demand response tools that will allow for an increasingly active role of demand. 

The following points summarize the analysis carried out and the results obtained in this 
dissertation. 

Development of a PPC model 

We have developed a PPC model that is able to cope with a wide variety of peculiarities of 
electricity wholesale markets. The proposed formulation meets the following modelling 
challenges: 

• Firstly, the model allows for analysis in a conventional thermal generation system 
with fully inelastic load.  

• Secondly, the conventional PPC model has been adapted for loading energy limited 
units. 

• Thirdly, the conventional PPC model has been extended with regard to taking into 
account intermittent renewable generation. 

• Fourthly, an equivalent load and generation model has been constructed to integrate 
price sensitive demand into the conventional PPC model. 

• Fifthly, the PPC model has been adjusted to properly reflect the effect of the reserve-
sensitive demand. 

• Sixthly, an algorithm to compute the distribution function of the Value of the Non-
Purchased Energy has been implemented within the PPC frame-work. 

Addressing the Time-Dependent Nature of Demand Elasticity 

We have developed as well a methodology that captures the time-dependent nature of 
demand elasticity. The tool produced allows for finding patterns and obtaining clusters to 
realistically describe the elastic demand. Additionally, the clustering process is aimed at 
being comprehensive enough but not unnecessarily exhaustive. The tool performs two rather 
distinct functions. 
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• On the one hand, it provides with the optimal number of clusters for a time scope 
(e.g. four curves that represent the different types of hourly curves of a given month). 
Additionally, it helps to divide the time scope of analysis into different periods 
balancing accuracy and simplicity. 

• On the other hand, it allows obtaining feature curves according to specified 
clustering criteria (i.e. clusters for peak and off-peak hours, working days and 
holidays, summer and winter seasons, etc.). 

Power System Reliability Assessments 

Two results regarding reliability assessments of power systems could be highlighted.  

• We have verified, in a real-size case example, that traditional reliability measures are 
not fully comprehensive in a context where elastic demand consumption is 
substantial. 

• We have made evident the potential of the Value of Non-Purchased Energy as a 
substitute or complementary reliability metric in a context where elastic demand 
plays an active role. The VNPE could help to reveal a scarcity situation that would 
otherwise lie hidden behind ridiculously low values of LOLP and ENSE that only take 
into account the fully inelastic demand.  



 

 

 

 

 

 

 


