
 

Equation Section 1  
Abstract—This paper presents a fuel prices scenario generator 

in the frame of a simulation tool developed to support risk 

analysis in a competitive electricity environment. The tool feeds 

different exogenous risk factors to a wholesale electricity market 

model to perform a statistical analysis of the results. As the 

different fuel series that are studied, such as the oil or gas ones, 

present stochastic volatility and strong correlation among them, a 

multivariate Generalized Autoregressive Conditional 

Heteroskedastic (GARCH) model has been designed in order to 

allow the generation of future fuel prices paths. The model makes 

use of a decomposition method to simplify the consideration of the 

multidimensional conditional covariance. An example of its 

application with real data is also presented. 

 
Index Terms—Fuels, Monte Carlo methods, Power system 

modeling, Risk analysis, Stochastic processes. 

I.  INTRODUCTION 

NTIL the early eighties, in the electricity supplying 

industry no market existed; instead the business was 

organized as regulated, vertically integrated utilities whose 

costs where fully asserted by the regulator. The development 

of the technology, led by the evolution of the gas turbines y 

combined cycles, together with new economic conditionings, 

launched the introduction of competition in the generation 

industry [1]-[3]. Beginning in Chile and more ambitiously 

followed by England & Wales and Argentina, new market-

based ideas where put in place in the electricity sector. This 

scheme has been established since then in many other 

countries, such as Scandinavia, Spain, Australia... 

From that point on, both economic and engineering science 

put their eyes in the study of the new electric environment, and 

both are trying to take advantage of their former expertise. The 

challenge is to adapt the models designed until now for other 

markets, in the case of economists, and for a regulated 

framework, in the case of engineers, in order to make them 

suitable for analyzing the singular electricity markets and for 

supporting decision-making. 

From this point of view, the models applied up to now to 
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the electricity markets may be classified in two areas, 

according to their origins, the ones that derive from the 

economic and more precisely financial science and the ones 

that come from the engineering science [4]. 

The latter ones face a more detailed representation of the 

production process that characterizes the electricity market. 

However, it is not easy to implement in these models ways to 

deal with the added uncertainties inherent to electrical markets, 

in addition to the classical uncertainty sources. This is 

especially true in case of being the agents' strategic behavior 

relevant, as opposed to the widely studied, but scarcely 

instantiated, perfect competition market. 

One approach, used in the tool presented in [5], is to feed a 

strategic competition electricity market on a number of 

different scenarios of the relevant risk factors, which are 

considered to be exogenous (independent) of the electricity 

agents behavior. So it is the case of hidraulicity, demand in the 

short-term (2 years at most) study horizon, and fuel prices. 

Electricity prices are, on the other hand, endogenous variables 

resulting from the exogenous risk factors evolution and agents 

actions. 

Fuel is the main raw material from which electricity is 

produced in most electricity markets, and thus it is one of the 

key risk factors that influence on electricity market prices. 

However, the way to model them to evaluate this influence it is 

not obvious. This paper focuses on the fuel prices scenario 

generator. First, a time series model is built, in this case over 

the weekly prices of a number of commodity indexes the 

modeler considers sufficiently relevant to model the fuel the 

plants in the system burn, named as base fuels. Then the final 

value of the costs of the fuel that every thermal plants uses to 

generate electricity is determined. 

In this paper, we will just focus on the first step, the 

methodology required to sample possible matrices of the 

prices of the base fuels in the future. We are not going to delve 

on how the thermal plants variable costs can be obtained from 

these indexes, since only the plant operator is fit to decide the 

percentage of the variable cost of a plant that can be explicated 

by a change in the fuel indexes. Variable costs traditionally are 

composed by the cost of the fuel plus the O & M costs and a 

part of fungible cost. Even the indexation of the first 

component is not a simple question, since it depends on many 

factors (plant efficiency, transportation costs, storage 
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capabilities, agent’s strategy...). 

The time series model building is also a difficult task. Since 

the different fuel series that are studied, such as the oil or gas 

ones (see Fig. 1), present stochastic volatility and strong 

correlation among them [6], a multivariate Generalized 

Autoregressive Conditional Heteroskedastic (GARCH) model 

[7] has been designed in order to allow the generation of future 

fuel prices paths. 

Multivariate GARCH models present some difficulties 

related to the consideration of the multidimensional 

conditional covariance. In this paper, a decomposition method 

to simplify this problem is proposed as well. 
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Fig. 1.  Evolution of three fuel prices indexes from year 1995 to 2000. 

 

The sequel of this paper is organized as follows. Section II 

includes a brief description of the general structure of the 

simulation model. Then, the paper core (the fuel prices model) 

is presented. Section IV is an example of its application with 

real data. Finally, our conclusions are stated. 

II.  THE RISK ANALYSIS MODEL FRAMEWORK 

In [5] a model for analyzing electricity market risk is 

proposed. The basic idea is to focus the modeling of the 

uncertainty on the price drivers’ behavior rather than in the 

price itself, what in the literature is named as fundamental 

approach. 

This way the future price distribution is obtained by feeding 

a market model with scenarios representing the possible 

realizations of the considered as exogenous variables. These 

variables are those that can be considered as independent of 

the electricity market itself, such as hydro inflows, demand or 

the fuel costs [5]. The way the model copes with the fuel 

prices modeling is the subject of this dissertation. 

The model general framework, illustrated in Fig. 2, consists 

in a set of independent and interrelated modules with the aim 

of allowing the development of every one of them according to 

the market evolution. 
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Fig. 2.  The risk analysis model framework. 

A.  Uncertainty via scenario generation 

The basic assumption behind the scenario generators 

modules is that the evolution of the variables that each one of 

them represents is correlated to no other. While this is rather 

straightforward in the case of hydraulicity or demand, it is true 

that it may be questioned in the fuel prices case. 

Nevertheless, the model supposes the generating agent 

behaves as a mere observer in front of the evolution of the fuel 

prices in the commodity markets. In this sense, the fuel prices 

scenario generator (GECA) that is described next assumes the 

agent is a fuel price taker. Although it is clear that every 

electricity agent in the market may (and very often does) also 

exploit in any way his capability to manage his purchasing, in 

the model this is disregarded leaving the evaluation of the 

flexibility entailed open to a higher scope model. 

B.  The strategic market model 

The main reason why the fundamental analysis is 

undertaken is that market agents’ strategic behavior needs to 

be represented to properly analyze most of the actual 

electricity markets and particularly the Spanish wholesale 

electricity market. 

While the demand or fuel prices modeling may be valid for 

many different markets, the representation of the way agents 

interact in different markets and even in the same market when 

the scheme changes requires a particular model. Also, 

depending on the time scope of the analysis different models 

may be considered suitable. For example, for long-term 

analysis a model that does not take into account start up costs 

may be suitable while for a short-term study a more detailed 

representation of the production cost function is 

recommended. The modular structure allows changing the 

market model depending on this casuistry. In fact, the model 

has already been applied to analyze a real electricity market, 

the Spanish one, using different market models, the ones 

described in [9] and [10]. 

Both are market equilibrium models capable of taking into 

account the strategic behavior that characterizes most part of 

the actual electricity markets. Besides, both provide not only 



 

market prices but also production costs and benefits of the 

suppliers acting in the market. 

C.  Scenario analysis module 

As mentioned, market prices, production costs and profits 

are the outcomes of the market model. Once the model is fed 

with all the set of possible realizations of the risk factors 

considered, density functions of the outcomes may be analyze 

in order to derive risk measures such as Value-at-Risk or the 

results sensitivity to each risk factor. 

It is important to note that the model is just aimed to risk 

analysis and this way is disregarding the value of flexibility 

inherent to the managing capacity of the agents. The model 

provides the exposure of the agent supposing that nothing can 

be done in future steps in time. Thus, it provides the worst case 

scenario, the most pessimistic analysis possible. 

III.  THE FUEL PRICES SCENARIO GENERATOR (GECA) 

The objective of the GECA is to generate fuel prices paths 

that feed the market model allowing an analysis of the impact 

of the fuel markets evolution over the electricity wholesale 

market price or even the analysis of the fuel market 

themselves. 

GECA is conceived under the fundamental idea of facing 

MonteCarlo-based analysis, in which it could be possible to 

cluster and control in any way the scenario generation process, 

following the common idea presented in [5]. 

The market equilibrium models used are rather time-

consuming due to the linear optimization problem that they 

solve. They represent a real electricity market with many 

plants (more than a hundred in the Spanish case) throughout a 

no less than a medium-term scope. For this reason and taking 

into account that at least up to three variables may be 

considered at a time (hydraulicity, demand and fuel prices), 

controlling the sampling process to achieve the objective of 

enhancing the computation turns a key issue. 

Besides, leaving nuclear plants aside, thermal plants burn 

several types of fuel, mainly oil, gas and coal derivatives. In 

principle, this would lead to an unacceptable high number of 

variables. Thus the first assumption taken is that all the 

variable costs of thermal plants can be indexed to any 

available spot price series
1
, e. g. fuel fired plant costs related 

to series for the crude oil such as Brent. The number of spot 

prices series required may be rather high (no smaller than 

three) what may complicate considerably the multivariate 

GARCH model. As it is going to be seen afterwards, this is 

overcome decomposing the fuel prices GARCH model through 

Principal Components Analysis (PCA). 

A.  The multivariate GARCH fuel prices model 

As it has been formerly mentioned, the model assumes the 

generating utility acts as a mere fuel prices taker, what makes 

suitable to apply a quantitative model. 
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    1)  The quantitative modeling approach 

Since the early thirties, the research aimed to obtain a 

model that allowed to parameterize the behavior of the 

financial markets has turned into an science community 

obsession. 

After many frustrating attempts that proposed complicated 

models that in many cases depended on non-observable 

entries, Fisher Black y Myron Scholes [11] hit the target. 

The method assumes that prices follow a random walk, i. e. 

proportional prices changes are normally distributed. This 

implies that prices at any point in time in the future follow a 

lognormal distribution. 

The Black & Scholes model states the behavior of the 

underlying price may be described through a stochastic Gauss-

Wiener process defined by two constant parameters, the 

expected average return and the volatility. 

Let ts  be the underlying asset price at time t  and 

ln( )t tr s=  the expected return, then: 

 t tds dt dµ σ ε= ⋅ + ⋅  (1) 

where µ  represents the expected return or cost-of-carry, σ  

the volatility and dε  the white noise. 
The process fulfils the Markov property, which means that 

the estimated value of the price at any time depends only on 

the foregoing value. 

The model is based on a series of additional assumptions: 

no transaction costs (thus liquidity) nor taxes, fully divisible 

financial assets, no arbitrage opportunities... that, although 

arguable in any way, were good enough for short-term analysis 

of traditional stock markets. 

However, these assumptions are no longer acceptable, 

particularly in the commodity markets. The analysis of the 

implied volatility calculated from the little fuel prices data 

available, such as oil and gas, shows that volatility can not be 

assumed constant [6]. Prices oscillate around a long-term 

average value (mean reversion). A strong correlation between 

volatility and price level can be easily detected. 

Aiming to adapt the stochastic models to the casuistry of 

the commodity markets, many models that try to reflect these 

phenomena have been developed. 

Reference shows some of these models, among which it is 

suitable to highlight the ones that assume a stochastic behavior 

of the volatility: 

 ( )1, ,t t tF z tσ σ −=  (2) 

where tz  is a white noise. 

This way, the intention is to capture the fact volatility is 

price dependent. The model GECA, to capture the 

heteroskedasticity
2
 of the fuel prices series, is based on 

routines that allow to adjust a model of the GARCH-type 

(Generalized Autoregressive Conditional Heteroskedasticity) 
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proposed in [7]. Besides, the model permits to consider 

satisfactorily multivariate series, representing the existent 

covariance among the different fuel data series (e. g. oil and 

gas). 

B.  The multivariate GARCH model 

The GARCH model proposed by Bollerslev in [7] is a 

generalization of the Autoregressive Conditional Heteroske-

dasticity model (ARCH) enounced by Engle in [12]. 

The more general expression of it, a multivariate GARCH 

follows. 

Let ( )1 , , 't t KtS s s= …  be a vector containing the values 

at time t  of K  variables considered, e. g. different 

commodity prices. Thus, the variables evolution can be 

modeled as a vector autoregressive process VAR( p ), where 

p  is the order of the process, i. e. the number of relevant 

precedent values: 

 1 1t t p t p tS M A S A S U− −= + ⋅ + + ⋅ +…  (3) 

M  is a vector of dimension [ 1K × ], iA , 1, ,i p= … , 

are fixed coefficient matrices of dimension [K K× ] and tU  

is a white noise with nonsingular covariance matrix UΣ/ : 
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The vector autoregressive processes VAR( p ) express the 

value of the variable in a more general sense in two ways, one 

associated to the autoregressiveness and the other to the 

vectorization. 

The first relates the value of the asset price with more than 

the previous point in time. The mean-reverting model [17] is 

the first step that can be taken to move away from the Markov 

property, as the information in more than the previous point in 

time is relevant. In fact, it represents a particularization of the 

autoregressive processes, the one of first order, 1p = . 

On the other hand, the vectorization allows to relate the 

asset price value to other assets that could present a correlated 

behavior. This is of a lot of use in the case of commodities, 

e. g. gas prices are deeply correlated with oil prices. 

The vector GARCH(m ,r ) model states that, in each 

period, the non-singular covariance matrix UΣ/  of tU  

depends not only on the last r  residuals, but on its own m  

previous values: 

 1 1 1

1 1

t

t t r t r t r

t m t m

V

U U U U− − − −

− −

/Σ = +

′ ′+∆ ⋅ ⋅ + + ∆ ⋅ ⋅ +

/ /+Θ ⋅Σ + +Θ ⋅ Σ

…

…

 (5) 

where V , ∆ , and Θ  are square matrices of dimension 

K . 

C.  Multivariate GARCH decomposition 

As previously described, the multivariate model analyzes a 

number, K , of price series jointly. This analysis turns out into 

a non-singular square covariance matrix UΣ/  of K K×  

dimension, whose out-of-the-diagonal values express the 

conditional crossed covariance among the series. 

Unfortunately, usually these parameters are not null, what 

deeply complicates the further stochastic variance analysis. 

As the number of parameters that appear when analyzing 

the covariance matrix grows in such a way that it makes it 

unaffordable, most part of the literature proposes to add 

restrictions that reduced this number and that guaranteed that 

the matrix was positive definited to assure the process stability. 

These restrictions are quite straightforward in the univariate 

context (e. g. in a GARCH(1,1) every model parameter has to 

be positive) but less obvious in a multivariate model. 

In the introductory section of [13], where Engle presents a 

proposal to solve the problem, a detailed description of the 

attempts found in the literature up to the moment can be found. 

They are either to decompose the problem in a set of 

univariate models, either to assume that the covariance values 

are constant over time what reduces the problem to the 

analysis of the values in the diagonal. 

We opt for applying the Principal Component Analysis 

(PCA) technique. PCA has been intensively used in 

engineering (signal analysis, circuits theory...) but also in 

almost every scientific field, such as medical statistics, 

ecology, econometrics or even history
3
. Reference [15] applies 

PCA to develop a forward curve model for energy derivatives 

valuation. 

The application to the GARCH model decomposition that is 

presented afterwards is analogous to the one presented in 

detail in [8]. 

The reason why we develop this approach is that it adapts 

very well to the particular application pursuit: the fuel prices 

scenario generation. 

First, decomposing the covariance matrix into its principal 

components allows to estimate its parameters considering just 

K  univariate GARCH models. 

Besides, PCA offers a key additional piece of information 

of a lot of use for the scenario generation process. The 

eigenvalues obtained in the PCA represent the weights of each 

component in descending order. So, taking advantage of the 

nature of the series considered, which are very correlated (see 

Fig. 1), it is possible to resume most of the information in just 

one component, i. e. just one parameter or risk factor. 

This is seized to cluster the scenarios in order to better 

cover the universe of possible realizations of the risk factor 

fuel prices fφ . Being able to resume the set of series in just 

one, the first principal component, eases the scenario 
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clustering task, as for example makes simpler to build an 

scenario tree. Reference [16] contains a review of the different 

approaches to create a scenario tree from a set of samples. 

As the desired number of scenarios that wanted to be taken 

into consideration was rather small, a much more simple 

clustering process, outlined next in section III.E., was 

developed for the model. 

Next, the PCA of the non-singular covariance matrix Σ/  is 

presented. 

Decomposing the matrix Σ/  we have: 
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Let 
1G G G−/ ′⋅ Σ = ⋅ , then 

If we define 
1
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Let 
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thus 

 1t K tU W = Ω Ω ⋅  
…  (9) 

If we calculate the typical elements of t tE W W ′⋅  : 
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and 
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Thus 
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As it can be easily seen, the covariance matrix obtained 

from the decomposition in singular vectors is diagonal, what 

lets to decompose the multivariate GARCH process in a set of 

K  univariate models ( 1, ,k K= … ) of the form: 
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As previously mentioned, as the singular components are 

multiplied by its corresponding eigenvalues and these are 

always of decreasing value, often some of them may be 

disregarded. In fact, usually when analyzing oil and gas price 

series, the first eigenvalue is considerably bigger than the rest, 

what implies that the first component gathers most of the series 

information. 

D.  Estimation of the multivariate GARCH parameters 

The multivariate model decomposition into univariate 

models eases significantly the parameters’ calculation. 

However, the estimation of a GARCH model is not an easy 

task to implement. Getting into the subject it is a worthy 

experience. The reason is double as it allows us, on the one 

hand, to better understand the model and on the other to avoid 

problems that often appear in some of the commercial software 

as not always converge when trying to solve the problem. 

The estimation process of the parameters of the 

GARCH(m ,r ) model is faced via maximum likelihood, as 

detailed in [7]. The procedure is equally of use for the 

adjustment of the ARCH(r ) models, as these ones are a 

particular case of the generalized models. 

As suggested in [5], to obtain the estimators of maximum 

likelihood, the algorithm applied is the Berndt, Hall, Hall and 

Hausman (a non-linear optimization with no restrictions based 

in the gradient). 

E.  Scenario clustering process 

Once the model parameters are estimated, a high number of 

possible fuel prices paths are generated for the scope of the 

analysis. Then the whole set of scenarios are clustered 

following the hierarchical criteria described in [5] that share 

all the scenario generators involved in the general model 

framework. 



 

Assume that a high number of paths, e. g. a thousand, are 

pseudo-randomly sampled for a two-year period. The first 

clustering criterion, 1fφ , is the average value of the first 

principal component calculated in the decomposition process 

just presented. As mentioned, this component is the one that 

gathers most of the series information. As the model is focused 

on long-term analysis and at the same time the market model 

represents the electric market operation with detail, the number 

of samples considered E  has to be limited. 

The density function of 1( )ff φ  can be easily calculated 

and scenarios whose values of 1
e
fφ  were closer to the “e -

percentile”, ( )100 /( 1)f e E′ ⋅ + , 1, ,e E= … , can be 

chosen as representatives. This process is illustrated in Fig. 3. 

Fig. 3 shows the principal component resultant of the 

analysis of the series shown in Fig. 1 together with the two 

representatives, 1e =  and 19e =  for 19E = . The 

sampled paths shown in the figure correspond to 95% and 5% 

percentile representatives ( 0.9519
1( )ff φ = ). 
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Fig. 3. Scenario paths clustering. 

As it can be seen, both representatives’ shapes are very 

different, what serves also to illustrate that using 1fφ  as the 

only clustering criteria may not be good enough due to the 

inherent seasonality of electricity demand. This may have 

some impact when analyzing electricity price risk, due to the 

inherent seasonality of electricity demand. Two samples for 

one-year period with the same average value, but one with 

high prices in the first and the last three months and another 

with inverse shape (low prices in winter periods and high 

prices in the summer ones) result in different electricity market 

prices. A higher level of detail, e. g. building a four-stage 

scenario tree would be then required if we wanted to analyze 

how does this affect electricity prices. 

F.  Determination of the variable costs of the system thermal 

plants 

We are not going to delve on how the thermal plants 

variable costs can be obtained from the matrix containing the 

base fuel prices for each scenario. 

Once the base fuel indexes matrix are sampled, the variable 

cost of  thermal plant u , for a scenario ζ  will be obtained as: 

 
*

u k uk
K

c S c
ζζ χ= ⋅ +∑  (14) 

where kχ  expresses the relation between the fuel cost 

component of the plant with each of the spot prices of the K  

base fuels and 
*
uc  represents the other components of the final 

variable cost (O & M and fungibles). 

It is up to the modeler to decide the percentage of the 

variable cost of a plant that can be explicated by a change in 

the fuel index price, i. e. to determine the values of kχ . This 

indexation depends on many factors (plant efficiency, 

transportation costs, storage capabilities, agent’s strategy...). 

IV.  CASE EXAMPLE 

Finally, Fig. 4 illustrates the decreasing trend of the average 

annual spot price of the electricity in a synthetic real-sized 

hydrothermal market for 10E =  scenarios of fuel prices 

generated with GECA, clustered attending to its annual 

average price and solved using the market equilibrium model 

presented in [10]. 

Just a look at the graph may provide interesting 

conclusions. For example, one could observe the sensitivity of 

the electricity market price to fuel prices. In this synthetic 

system, it can be seen that a decrease in the fuel cost results in 

a larger percent reduction in the electricity spot price. 
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Fig. 4. Electricity spot prices vs. fuel prices 



 

Obviously, there is a direct correlation between both prices, 

an increase in the fuel prices leads to an increase in electricity 

prices and vice versa. However, as the values in the graph are 

averaged across the year periods and the impact of the fuel 

prices’ changes on the electricity prices depends on load 

pattern, then cases with inverse correlation among the annual 

average values may appear, such as the two first scenarios 

shown in the figure. For instance, assume we consider two 

annual fuel prices paths, 1 2,e e , with the same average value. 

1e  is characterized by high prices in the beginning of the year 

and low in the end while 2e  starts with low prices that steadily 

increase along. As it can be assumed that electricity load 

presents an increasing trend through time, 1e  is expected to 

result in a lower average electricity price for the whole year. 

V.  CONCLUSION 

A fuel prices scenario generator in the frame of a simulation 

tool developed to support risk analysis in a competitive 

electricity environment has been presented. The model 

proposed considers fuel prices as exogenous regarding the 

wholesale electricity prices and faces the generation of future 

paths through a multivariate Generalized Autoregressive 

Conditional Heteroskedastic (GARCH) model, in order to 

allow to take into consideration the stochastic volatility 

detected in actual commodity markets. 

The decomposition method proposed makes possible the 

consideration of the multidimensional conditional covariance 

and shows the possibility of representing the various fuel 

series by just its first principal component. This way, it is 

possible to generate and cluster scenarios to feed a market 

model in the frame of a fundamental electricity price risk 

model. 

In markets such as the electricity ones, where price is 

affected by various factors (hydrology, demand, fuel prices,...), 

to be able to quantify the actual impact of each one of them is 

a key task of generating firms. The model is a useful tool when 

it comes to analyze the effect on electricity market price of the 

evolution of the fuel prices in commodity markets. 
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