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Abstract 

An increase in power-grid complexity leads to more sophisticated and computationally 

intensive models for grid analysis, operation, and control. Despite computer advances, 

traditional power-system methodologies such as power-flow analyses may result in 

computationally hard problems. This thesis proposes the introduction of complex-network 

techniques for the research into power systems, leading to new models that provide good 

approximations with lower computational requirements. The thesis focuses on the generation 

of synthetic power grids and power-network vulnerability analyses. 

Synthetic power grids are non-real power grids that are statistically similar to real power 

networks from a topological and electrical point of view. This work introduces a new algorithm 

to generate synthetic transmission power grids. The algorithm considers economic and 

technical factors in order to mimic the topology of real power networks. Results are tested on 

selected European transmission power networks. 

The thesis also introduces a new metric for the analysis of power-network vulnerability. This 

is of particular interest in cases such as deliberate attacks. Betweenness centrality, a network-

topological metric, is endowed with electrical parameters. It results in a hybrid metric, the 

Electrical Line Centrality, that measures the impact of line failure on the network. This metric 

improves prior results while reducing computational times. This is crucial in order to include 

the protection against deliberate attacks in the network design problem. 

Finally, the analysis of power network topology is a necessary prior step in the generation 

of synthetic power grids and the assessment of power-network vulnerability. In this work, the 

power-network structure is characterized by global metrics traditionally used in complex-

networks. Furthermore, a new framework is introduced to characterize network structure, 

enhancing network description, and classification. This framework will also allow for the 

topological validation of synthetic power grids.
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Resumen 

Un aumento en la complejidad de las redes eléctricas conduce a la necesidad de modelos 

más sofisticados para el análisis, operación y control de estas. Este aumento en la sofisticación 

de los modelos implica un incremento del coste computacional de los mismos. A pesar de los 

avances informáticos, las metodologías que tradicionalmente se han aplicado a los sistemas de 

energía eléctrica, como los análisis de flujo de carga, pueden tener tiempos de ejecución muy 

elevados. Esto podría llegar a comprometer la utilidad de estos. Esta tesis propone la 

introducción de técnicas de redes complejas en los problemas relacionados con los sistemas 

de energía eléctrica. La introducción de conceptos propios de la teoría de redes complejas 

permitiría desarrollar modelos que dieran soluciones aproximadas con un coste computacional 

reducido. Esta tesis se centra en la aplicación de técnicas redes complejas para la generación 

de redes eléctricas sintéticas y para analizar la vulnerabilidad de la red eléctrica. 

Las redes eléctricas sintéticas son redes eléctricas no reales que tienen propiedades 

eléctricas y topológicas similares a las redes reales. Es decir, son redes ficticias pero cuya 

operación y control es similar al de las redes reales. Esta tesis propone un nuevo modelo para 

la generación de redes eléctricas sintéticas. Este nuevo modelo utiliza consideraciones 

económicas y eléctricas para generar redes sintéticas con una topología similar al de las redes 

reales. El modelo es validado con la red de transporte eléctrico de España, Portugal y Francia.  

Además, la tesis introduce una nueva medida para el análisis de la vulnerabilidad de la red 

eléctrica. Esto es de especial interés en casos como los ataques deliberados. Una medida propia 

de redes complejas, la centralidad de intermediación es completada con información eléctrica. 

Esto da como resultado una métrica híbrida, la Centralidad de la Línea Eléctrica, que mide el 

impacto del fallo de una línea en la red. Esta nueva medida permite mejorar los resultados 

obtenidos con las medidas propuestas anteriormente en la literatura, al tiempo que reduce el 

coste computacional. Esto es crucial de cara a la inclusión de la protección de la red eléctrica 

contra ataques deliberados en el problema de diseño de la red. 

Finalmente, el análisis de la topología de la red eléctrica es un paso previo a la generación 

de redes eléctricas sintéticas y a la evaluación de la vulnerabilidad de la red eléctrica. En esta 

tesis se hace una descripción pormenorizada sobre la estructura de la red eléctrica con las 

medidas tradicionalmente utilizadas en redes complejas. Además, se introduce un nuevo 

modelo que permite caracterizar la estructura de la red de forma sistemática y detallada, 

mejorando la descripción y comparación de redes complejas. Este nuevo modelo se utilizará 

para la validación topológica de redes eléctricas sintéticas. 
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1 INTRODUCING COMPLEX NETWORKS TO 

POWER SYSTEMS 

1.1. Increasing power-system complexity 

The structure of power networks has experienced substantial changes since their 

appearance. From a set of local low-voltage networks, power grids evolved to become large-

scale high-voltage networks that extend over several countries. Moreover, power grids interact 

with other networks, such as gas or communication networks [1], [2]. Furthermore, relatively 

recent developments in power systems such as the spread of flexible alternating current 

transmission systems (FACTS), high voltage DC lines or distributed generation, are shifting the 

traditional vision of power systems while increasing system complexity [3]. 

An increase in system complexity calls for more sophisticated and computationally intensive 

models for grid analysis, operation, and control. Despite computer advances, traditional power-

system methodologies, such as power-flow analyses, may result in computationally hard 

problems, requiring large computational resources and computing times. Moreover, the 

interconnection among networks increases power-grid vulnerability: a failure in one system 

can propagate to other systems leading to blackouts with severe economic consequences. This 

means that systems cannot be studied in isolation, which increases the size of the networks 

under study. New challenges such as the integration of renewable energy sources or demand 

response further increase the complexity of the problem. 

1.2. The lack of power-grid data hinders innovation 

The increase in network size, as well as the introduction of innovative solutions, require the 

development of new algorithms for network operation, control, and design. Despite a large 

number of contributions published every year, power-system research is often hindered by the 

lack of public data. Real data, such as network models, are crucial to test and validate 

theoretical developments. 
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Validation processes may require the comparison of new algorithms with existing ones. 

However, when public data are scarce, re-using a minimal set of test cases is problematic, since 

the performance of some algorithms, such as heuristics or metaheuristics, might be case 

dependent. Another solution is to use private data for the construction of test cases. This 

hampers transparency and replicability. Furthermore, the lack of public data might not 

encourage interdisciplinary research, since the barriers to entry for experts from other 

disciplines, who might be tempted to research into power systems are high. Moreover, 

research might be conditioned by the interest of data owners, which might not be aligned with 

other stakeholders’ interests. These factors combine to one conclusion: the lack of power-grid 

data is a barrier for research and innovation.  

Although some TSOs have started to publish data in Europe within the INSPIRE directive [4], 

network models are scarce, and information is only partial. Consequently, there is a long haul 

before the publication of detailed network models. In the U.S., access to real network models 

is almost null because of security concerns. There are cautions against the disclosure of the real 

location and the topology of power networks because of terror concerns. 

1.2.1. Existing test cases 

The lack of power-network models conditions the testing and validation of theoretical 

algorithms. We usually see algorithm proposals that are applied to small and old-fashioned test 

cases such as the IEEE-118-bus standard. This test case stands for a portion of the North 

American power network in the year 1961. This network cannot represent the complexity of 

current power grids. Forty-eight years later, transmission networks include higher voltage 

levels and new types of power generators. After the installation of the first wind farm in 1980, 

power generation is shifting from large power plants connected to transmission networks to 

small renewable power plants that are distributed along the transmission and distribution 

networks. Moreover, these standard cases do not consider recent technologies such as storage 

systems that can alter the operation of power networks. Finally, the small size of those systems 

cannot replicate the real behavior of real large networks that expand beyond the borders of 

each country.  

The IEEE-118-buses test case, as well as other IEEE standards, are publicly available in the 

Power System Test Archive of Washington University [5]. There, repository owners specified 

the drawbacks of those systems concerning the power-network conditions in 1993. A list of 

available test cases, network location, date and limitations is shown in Table 1-1. This repository 

Recent advances in power systems as well as the higher degree of connection with 

other networks have increased the complexity of power networks. New models are 

needed to operate and control power networks. Public network models are therefore 

necessary to enhance research into power systems. However, public data are scarce, 

and the disclosure of real information might run into security issues. 
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also includes three dynamic test cases with similar deficiencies. The University of Edinburgh 

also has an open-access repository that includes four power-flow test cases (information is 

detailed in Table 1-2) [6]. The unsuitability of test cases is also an issue in distribution networks 

[7]. Accordingly, test cases should be updated to reflect the complexity of the current power 

network. 

Table 1-1. Test cases available in the Power System Test Archive of Washington University 

Source: Washington University [4] 

IEEE test case Location Date Comments 

14 buses The midwestern US February 1962 No line limits. 
Low base voltage. 
An overabundance of voltage control capability. 

30 buses The midwestern US December 1961 No line limits. 
Line impedance may be wrong. 

57 buses The midwestern US Early 1960’s No line limits. 
Line impedance may be wrong. 

118 buses The midwestern US December 1962 kV levels defined as a bad guess. 
MVA limits were not part of the first data. 

300 buses No Info 1993 No comments 

Table 1-2. Test cases available in the Power System Test Archive of the University of Edinburgh 

Source: University of Edinburgh [5] 

Test case Location Date Comments 

39 bus test case New England No Info Same cost for all generators 

Iceland network Iceland Published 2011 No cost information  
Voltage bounds were assumed 

Reduced GB network Great Britain Published 2010 No comments 

GB network Great Britain No Info Obtained from official publicly available data 

All prior cases are also available in Matpower [8]. Matpower is a Matlab-based power-

system simulation package that includes novel realistic systems such as the PEGASE networks 

(five instances whose size ranges from 89 to 13,659 nodes) or a few demand-generation 

scenarios for the Polish grid. The NESTA archive also adds network operation constraints to a 

set of existing test cases to evaluate and validate power-system optimization algorithms [9]. 

However, those cases continue to be insufficient for research purposes because they are only 

used for analyzing power flows in an existing network; additional information should be 

provided to complete them. Crucially, they do not provide the location of nodes. This 

information is critical in applications such as transmission expansion planning, where the 

location of nodes is necessary to calculate the installation cost of new lines. Similarly, those 

cases usually give just one demand scenario. An extensive set of demand scenarios may be 

required in specific studies that research into demand response. 
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Recent manuscripts have published new test cases that are the result of combining several 

datasets. This is the case of the European transmission network or the Australian power grid 

[10], [11]. Although some TSOs are starting to publish some limited information, several 

datasets are usually needed to build a complete test case. For instance, we may combine the 

electrical parameters of the European transmission network provided by ENTSO-e with the 

geographical coordinates of the French network provided by RTE to build a case for the France 

power network [12], [13]. However, this is not a distinct task. Although both networks stand for 

the same power grid, the number of nodes is not the same in both of them due to different 

model assumptions. Besides, no details about the generation are provided. The development 

of those test cases is therefore conditioned by third-party data, and it might not be possible to 

update them easily. New test cases need to be functional to have the chance to include further 

power-system developments as well as new detailed information. 

1.2.2. New initiatives 

There are two main groups of initiatives that aim to develop functional network models. On 

the one hand, OpenStreetMap-based algorithms try to create real network models based on 

crowdsourced data. On the other hand, the GRID DATA project of ARPA-e encourages the 

development of algorithms to generate non-real, albeit realistic network models. 

A. Open-Access-Map initiatives 

The OpenStreetMap, OSM, is an initiative to create an open-access map of the world [14]. 

This map is built with crowdsourced data; everybody can contribute to add information about 

the real location of roads or transmission lines. Several projects have tried to build network 

models extracting the information related to power networks, such as substations, generators 

or transmission lines location, from OSM. All those elements need to be connected (the user 

must set up the connection of transmission lines within substations). In addition, no electrical 

parameters are given, so the data are not directly implementable into a model. 

Another initiative is SciGRID. The SciGRID project was started by the Next Energy research 

group and funded by the German Federal Ministry of Education [15]. It aims to build a European 

transmission-network model. They also have a similar initiative with the gas network. They filter 

the power information obtained from OSM and abstract the topological information to add 

electrical parameters based on typical cable values. Similarly, the osmTGmod project uses OSM 

to build the German transmission network; they complete the information that is missing using 

heuristics [16]. 

Traditionally used test cases do not replicate the complexity of existing real power 

networks. Although novel network models have been proposed, they continue to be 

insufficient. New efforts and approaches are required to generate functional and 

accurate network models that include the complexity of real power grids. 
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Rivera et al. propose the automation of network model generation from OSM data [17]. The 

automation avoids the manual introduction of power relations among elements such as 

substations, transmission lines, or generators required by prior works. This model is offered at 

the OSM platform [18]. They have tested the accuracy of this algorithm with 14 real networks, 

and it ranges from 31% to 94%. The accuracy is the ratio between the line length inferred by 

the proposed models and the length officially reported by TSOs. This validation does not include 

any electrical parameter testing. They have also developed a mobile app to enhance users to 

update the location of power-system components with their smartphone.  

The main drawbacks of these initiatives are the lack of electrical information and the errors 

and missing data in OSM [19]. Accordingly, the development of realistic network models will 

depend on the time users need to complete the information of all power-system-components 

location. The accuracy of the models is therefore conditioned by third-party information and 

the assumptions made to endow network models with electrical parameters.  

Finally, these initiatives imply the disclosure of the real location and the topology of power 

networks that might run into additional issues.  

B. Generation of synthetic power grids 

The Generating Realistic Information for the Development of Distribution and Transmission 

Algorithms (GRID DATA) initiative aims to develop novel network models to be used as test 

cases [20]. Those new test cases should reproduce the characteristics of North American power 

networks. This initiative is funded by the Advanced Research Projects Agency within the U.S. 

Department of Energy with $11.3 M. The motivation of this initiative is the development of new 

Optimal Power-Flow algorithms that will contribute to the increase in network efficiency and 

reliability. They will also support operation-cost reduction and integration of renewable 

resources. Furthermore, they highlighted that access to public data would stimulate 

optimization competitions, encouraging novel contributions.  

To generate new network models, ARPA-E proposes two alternatives. First, the 

anonymization of real data provided by utilities. Second, the development of new algorithms 

to build realistic network models. In both cases, network models will be published into an open-

access repository. Those projects are already underway, and their contributions are expected 

in the next few years.  

Although the generation of algorithms to build test cases is a relatively new topic for 

transmission networks, they have been used in the analysis of geomagnetic disturbances or to 

test communication and control networks for smart grids [21], [22]. Some works are focused 

on the generation of synthetic distribution networks (e.g., Reference Network Model 

developed at the Institute for Research in Technology) [23]. 
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1.2.3. Public does not mean real data 

The lack of public data slows down research and hinders innovation. However, publishing 

real data raises security issues. For instance, real power-system data can be used to develop 

new control algorithms, but also to plan an attack to maximize the probabilities of a blackout. 

Accordingly, the publication of real information, as proposed in OSM initiatives might be 

controversial.  

However, research does not need real information. Researchers need truthful, realistic 

information: non-real datasets are just as good as real ones, as long as they have the same 

properties. By the use of realistic test cases, theoretical models and algorithms can be tested 

in networks that replicate the conditions of real power grids. 

The two procedures proposed to provide public data by ARPA-E (network anonymization 

and network model generation) find a balance between data availability and security issues. 

This is a strength that is crucial concerning OSM initiatives. Beyond the limits of OSM 

approaches such as the lack of electrical parameters or the missing information, their success 

is conditioned by third-party data. This problem is also present in the anonymization of utilities’ 

information. We, therefore, think that the generation of synthetic power grids is the best 

alternative to the lack of network models. Furthermore, synthetic power grids allow for the 

introduction of novel developments or data. ARPA-E is the seed of a new research line based 

on the generation of synthetic power networks. Although ARPA-E defines the research 

question with clarity, the choice of methods to generate the networks is a crucial further step. 

The use of traditional power-methods (e.g., optimization problems) may not be an accurate 

tool to generate those synthetic networks because of network size. New approaches are 

required to generate those synthetic power grids. 

 

1.3. New threats to power-grid robustness 

Not only is the lack of network models a problem that cannot be addressed with traditional 

power-system techniques, but the assessment of network vulnerability is also a challenge due 

to the large size of power networks and the increasing interconnection among systems. 

Vulnerability assessment is a crucial step in the design of robust networks. A failure in power 

networks may lead to a blackout with severe consequences. For instance, in 2012, 620 million 

people were affected by a power outage in India [24]. 

The generation of synthetic power grids, non-real albeit realist network models, is a 

suitable solution for the lack of publicly available network models. Those systems are 

not real and do not disclose information about real power networks. However, they 

replicate the complexity of real networks and have their same properties. Operation 

and control are similar to the ones of real networks. They can be used in research 

projects. 
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Power systems are designed to have redundant lines and extra generation capacity in order 

to be able to meet demand in case of failures. Therefore, TSOs try to analyze the adequacy of 

the network to design those redundancies. The adequacy of a power system is defined as “the 

ability to supply the aggregate electrical demand and energy requirements of the end-use 

customers at all times, taking into account scheduled and reasonably expected unscheduled 

outages of system elements” by the National Electric Reliability Council (NERC) [25]. 

Traditionally, N-1 analysis has been used in electrical engineering to study network 

adequacy [3]. This analysis provides detailed results of how power flows through the network 

in case of line or generator failure. It also quantifies the energy that would not be supplied in 

the system in case of failure. Consequently, TSOs have accurate information to ensure power 

supply after component failures. However, the analysis of extensive power grids may consume 

large computational resources. Network design usually considers the failure of one or two 

components in power networks. Thus, power networks are supposed to be robust against 

component failure.  

However, if a power network does not respond quickly in case of component failure, it may 

suffer a cascade of failures that lead to massive blackouts [26]. Furthermore, the blackout might 

also be aggravated by other network failures, such as telecommunication networks. 

Furthermore, power networks might be the target of deliberate attacks. These are targeted 

attacks that aim to collapse power networks, as the cyber-attack that caused the Ukrainian 

blackout in 2015, affecting 225,000 customers [27]. This collapse was caused by a cyber-attack 

in which substation breakers were remotely opened. This caused the failure of several 

components simultaneously affecting 30 different substations.  

Accordingly, the N-1 criterion used to design networks is not an accurate tool in case of 

cascade failures or deliberate attacks. Although it is not possible to completely mitigate the risk 

of a blackout, network design might contribute to reducing the size and cost of those blackouts. 

Novel approaches have tried to evolve from the traditional power-network vulnerability 

assessment. Based on N-1 analysis, high-risk N-k analysis proposes the creation of a list with 

the most vulnerable elements in the network [28]. Adequacy analysis of power systems can 

also be addressed as an optimization problem by formulating the problem of optimal 

interdiction of a power grid in order to identify critical elements [29]. This is a max-min 

programming problem in which a terrorist tries to attack the system maximizing loss of load. 

This problem can also be formulated as a Mixed-Integer Non-Linear (MINLP), Bi-level problem, 

or as Mixed-Integer linear problem (MIP) [30], [31]. However, computational requirements 

continue limiting the analysis of the power-network vulnerability. 
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1.4. The role of complex-network techniques  

Complex networks are systems composed of a large number of connected units that 

interact among them [32]. Complex-network techniques arose from graph theory to study 

these interactions -graph edges- among system units -graph nodes-. From biology to social 

science, complex networks have been applied to different goals, such as the study of protein-

protein interaction or the prediction of the currency market in online gaming [33], [34]. The 

analysis of complex-network topology allows us to understand the principles that guide 

network evolution and condition its behavior [32]. 

Power grids can be modeled as complex networks with a set of substations that are 

connected through transmission lines. The interaction among those substations is the power 

that flows through power lines when power is injected or withdrawn in each node.  

Unlike power-system methodologies, complex-network techniques are relatively light in 

computational requirements. However, they only consider the topological structure of the 

system and, in principle, they disregard their nature (e.g., in power networks they do not 

consider power flows or additional electrical information). In the case of power networks, mere 

network analysis does not consider the Kirchhoff’s circuit laws that govern power flows. Recent 

studies have started to adapt complex-network methodologies to power systems, for instance 

by the inclusion of power-flow analyses [35]. Accordingly, by merging complex-network 

techniques and tools from the power-system domain, new models may provide good 

approximations with lower computational requirements. 

The combination of complex networks and power systems is therefore accurate for the 

generation of synthetic grids and power-network vulnerability analysis, two problems that 

cannot be addressed with traditional power-systems methodologies. 

1.4.1. Generating synthetic power grids 

The need for new power-network models leads us to take up the problem of generating 

synthetic power grids. Synthetic power grids are non-real power grid cases that are similar to 

real power networks from a topological and electrical point of view. They are fictitious 

networks, so information about the real network is not disclosed, but they are similar in terms 

of operation and control. 

The N-1 analyses are used to assess power-network adequacy. Those studies support 

the design of robust networks against component failures. However, both the large 

size of real networks and the high degree of interconnection with other networks limit 

results obtained from this approach. Furthermore, it is not a suitable approach for 

deliberate attacks. New methodologies are required to protect power networks of 

new threats without compromising computational requirements. 
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In the complex-network field, several algorithms were proposed to generate synthetic 

networks with low-computationally intensive models [36]. An example of those algorithms is 

the preferential attachment model [37]. Based on the idea “the rich get richer”, the algorithm 

proposed by Barabási and Albert generates networks in which degree distribution follows a 

power law. The only information considered when generating the synthetic network is the 

number of connections per node. Thus, those algorithms only focus on network topology 

disregarding their nature. While those models may be accurate in social networks, they cannot 

be used in power networks. We may generate a network in which the transmission capacity of 

transmission lines connected to a power plant is lower than the generation capacity of that 

generator. 

Furthermore, some of those algorithms assumed that networks have specific topological 

properties. Although several studies have analyzed the structure of power networks, results 

have led to controversial conclusions [38]. It is not clear whether the topology of power 

networks fits with the topological features of those synthetic networks or not, and this question 

has not been assessed satisfactorily to the best of our knowledge. Consequently, as an earlier 

step to the generation of synthetic power grids, a sound topological analysis of power networks 

is required. 

The analysis of network topology will determine how synthetic networks are generated and, 

at the same time, will be a measure of network accuracy (one of the conditions to state that a 

synthetic network is realistic is that its topology is similar to a real power network structure). 

Topological conclusions may be incorporated in two ways. First, the algorithm may choose 

which lines would be installed incorporating only topological considerations. That is, the 

algorithm installs those lines that minimize the error concerning the target topological 

properties. Second, when lines are added based on an electrical criterion, candidate lines will 

be filtered considering the target network properties. Finally, synthetic networks should be 

considered valid only if they share their topological properties with real power networks.  

Consequently, complex networks may support the generation of synthetic power grids 

since they do not require computationally intensive models. New algorithms should combine 

complex-network techniques with electrical criteria to build realistic test cases.  

1.4.2. Assessing power-network vulnerability  

Unlike the generation of synthetic networks, which is a relatively new and promising line of 

research, we find several works that approach the assessment of power-network vulnerability 

from a complex-network perspective. 

The first works try to determine the most critical elements in networks by using exclusively 

topological metrics (see Chapter 6). However, the results were not accurate enough. Some 

authors question the ability of complex-network metrics to assess power-network vulnerability 

since they disregard the electrical nature of power systems. Accordingly, they will never provide 

accurate results when analyzing network vulnerability [39]. 
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Later on, complex-network metrics were adapted to power systems by including electrical 

considerations such as transmission lines parameters. Cuadra et al. provide an extensive review 

of the analysis of robustness in power networks by applying complex-network concepts [40]. 

Although those hybrid metrics obtained improved results, new enhancements should be 

introduced to be the right approach and substitute for traditional power-system analyses. 

Those metrics are promising because of the low computational requirements. 

Despite not considering network operation explicitly, vulnerability indices may be effectively 

incorporated into network design. Transmission expansion planning, designing the 

transmission network with optimization methods [41], may benefit from these indices in two 

ways: by introducing them as a partial objective in the optimization function (it penalizes high 

values of vulnerability indices) or by including them as constraints (it establishes maximum 

values for the indices). These topological metrics can also be used to select those lines that are 

potentially promising candidates to be installed in the network [42].  

New improvements should be introduced to improve the results provided by complex-

network metrics and to be included in the network design problem. Furthermore, as in the case 

of synthetic power networks, a topological analysis is the previous step to analyze the 

properties of complex networks. It is also necessary to clearly define how power networks 

should be modeled as complex networks.  

1.5. How can this thesis contribute to research into power systems? 

The application of complex-network techniques to the power grid is a line of research that 

may support the generation of synthetic grids as well as power network vulnerability studies. 

Those techniques contribute to face two of the problems existing in power systems: the lack of 

available network models, and the vulnerability assessment in case of cascade failures or 

deliberate attacks.  

Although a few models have been proposed to generate synthetic power grids, the topology 

of the resulting networks is not consistent with real grids (as it will be further discussed in 

Chapter 4). This thesis proposes a new algorithm for the generation of synthetic power grids 

that combines complex-network techniques with electrical considerations. The resulting 

networks are tested against the real transmission grids of Spain, Portugal, and France. 

Complex network techniques can support the analysis of power systems with 

computationally light models. Complex-network studies analyze system topologies. 

This is a good approach to the generation of synthetic power grids and the assessment 

of power-network vulnerability. In both cases, complex network models should be 

completed with electrical information that captures the electrical nature of power 

grids. 
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Furthermore, it proposes a novel framework to validate synthetic power grids. This 

framework also allows for the understanding and description of the complex-network 

structure, independently of the nature of those networks. This is a great achievement in the 

field of complex networks that supports network classification and comparison.  

Besides, we analyze complex-network metrics used to asses network vulnerability. As 

explained, existing methods cannot capture the electrical nature of power systems and results 

are worse than strictly electrical models. We propose a new hybrid metric that reduces 

computational requirements while improving results.  

To sum up, the thesis objectives are the following:  

• The development of a comprehensive analysis of transmission-power-network topology. 

This will support the understanding of the power-network structure in order to guide the 

generation of synthetic power grids and the assessment of power-network vulnerability. 

• The proposal for a new algorithm to generate synthetic power grids. The novel algorithm 

will focus on transmission power networks. Furthermore, the resulting synthetic networks 

should be validated from a topological point of view. 

• The proposal for a new hybrid metric to assess power-network vulnerability. This new 

metric should combine complex-network metrics with electrical parameters.  

A detailed summary of each chapter is presented in the section below.  

1.6. A quick guide to the rest of this document 

The content of the chapters is described as follows: 

• Chapter 2 introduces the topological analysis of power networks. It applies a set of global 

statistics: network size, degree distribution, characteristic-path length, network diameter, 

betweenness centrality and network average clustering coefficient to fifteen European 

transmission networks (400 kV and 220 kV). This analysis tries to find topological patterns 

and differences among networks by analyzing metric scalability. The analysis focuses on 

voltage level and network location. Finally, this chapter discusses the characterization of the 

power network as a scale-free network and a small-world network. This topological analysis 

has been published as:  

Research Questions & Objectives:  

This thesis proposes a novel algorithm to generate synthetic power networks by 

combining complex network techniques with electrical considerations. This merge is 

also the origin of a new complex network metric to assess power network 

vulnerability. To provide a foundation for this, the thesis develops an extended analysis 

of power-network topology. It also introduces a novel framework to describe complex-

network structure.  
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o R. Espejo, S. Lumbreras, and A. Ramos, “Analysis of transmission-power-grid topology 

and scalability, the European case study,” Physica A: Statistical Mechanics and its 

Applications, vol. 509, pp. 383–395, Nov. 2018. 

• Chapter 3 presents an innovative approach to describe complex-network topology from 

graphlet decomposition, which improves existing approaches for network 

characterization. This new framework exploits the local information provided by 

graphlets to give a global explanation of network topology. We propose a twelve-

dimensional metric that analyzes how 2- and 3-node graphlets describe the structure of 

networks. The twelve dimensions are independent of network size, so they allow for 

direct comparisons of different networks regardless of size. It also reduces the complexity 

of graphlet counting, since it does not use 4- and 5- node graphlets. The application of 

the novel framework to five real networks demonstrates its potential to explain both 

global and local network topological properties. We apply the proposed metrics to a 

broad set of networks to show that it can classify networks of different nature based on 

their topological properties. In order to further simplify the interpretation of our graphlet 

analysis, we reduce the twelve dimensions to their main principal components. This 

paves the way for a connection between complex-network analyses and diverse real-

world applications. This novel framework and the application to real networks have been 

included in a working paper as:  

o R. Espejo, G. Mestre, F. Postigo, S. Lumbreras, A. Ramos, T. Huang, and E. Bompard, 

“Exploiting graphlet-decomposition to explain the structure of complex networks.” 

• Chapter 4 applies the novel approach proposed in Chapter 3 to the European 

transmission power network. The twelve-dimensional metric supports a better 

understanding of power-network topology. It explains the similarities and differences we 

find among networks considering network location and voltage level. Furthermore, it is 

proven to be an adequate tool to assess the topological consistency of synthetic power 

networks. The use of this framework clearly shows if the topology of a synthetic network 

is consistent with real power networks or not. We also analyze the topology of existing 

synthetic networks. Results show that those networks are not topologically consistent 

with the European transmission power networks. The straightforward interpretation of 

the twelve dimensions allows for the improvement of synthetic-network-generation 

algorithms.  

• Chapter 5 proposes a new algorithm to generate synthetic spatial power grids. The 

proposed algorithm mimics the historical evolution of power systems by taking into 

account economic and technical factors. The algorithm is articulated in two steps, the 

first step is focused on economic efficiency to meet demand, and the second one is 

targeted at increasing network robustness while achieving some topological attributes. 

We generate a synthetic network for the Portuguese, Spanish and French 400-kV 

transmission networks. Those networks are shown to be topologically consistent, 

according to the metrics presented in Chapter 2 and Chapter 3, with real ones. The 
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parametrical nature of the proposed model allows for the generation of different 

instances of consistent power networks, an exciting feature for grid generation. The 

content related to the generation of synthetic power grids has been published as:  

o R. Espejo, S. Lumbreras, and A. Ramos, “A Complex-Network Approach to the 

Generation of Synthetic Power Transmission Networks,” IEEE Systems Journal, pp. 1–

4, 2018. 

It has also been presented in the Windfarms 2017 conference: 

o R. Espejo, S. Lumbreras, and A. Ramos, “Generating statistically consistent synthetic 

power networks for testing renewable integration models,” Windfarms 2017, 

Madrid, Spain, Jun 2017.  

• Chapter 6 introduces to the assessment of power-network vulnerability with complex-

network metrics. Based on prior work, we show that pure topological metrics do not give 

conclusive results in vulnerability analyses. However, extended topological metrics, 

which endow topological metrics with electrical considerations, provide satisfactory 

results with lower computational requirements. This chapter proposes a new extended 

metric, the electrical line centrality, that can be applied to ranking lines according to the 

impact of line failure in the network. The proposed metric is based on the idea of 

betweenness centrality, and it considers parameters related to power demand, 

generation, and transmission lines. Simulations confirm the improvement of results 

concerning prior works. The proposal of the line electrical centrality has been published 

as:  

o R. Espejo, S. Lumbreras, A. Ramos, T. Huang, and E. Bompard, “An extended metric 

for the analysis of power-network vulnerability: the line electrical centrality”, 

PowerTech 2019, Milan, Italy, Jun. 2019.  

• Chapter 7 extracts conclusions and summarizes the main contributions of this thesis. 

Finally, it outlines further research.  
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2  A TRADITIONAL APPROACH TO POWER-

NETWORK TOPOLOGY 

2.1. Introduction to power-network topology 

The analysis of network topology is the previous step to the generation of synthetic power 

grids and the analysis of the power-network vulnerability. In the complex-network field, several 

studies have tried to characterize network topology by finding common structures or patterns 

in different networks. Albert et al. presented the case of scale-free networks, those networks 

in which the distribution of node degree (the number of lines attached to each node) follows a 

power law [37]. Scale-free networks are robust against random failures. However, they are 

incredibly vulnerable in case of deliberate attacks, since the loss of some prominent nodes or 

links has the potential to disrupt the whole network. Erdös et al. examined random graphs, 

which are characterized by a low network average clustering coefficient (the probability that 

the neighbors of one node are also connected among them) and short distances among nodes. 

Random networks are vulnerable under both random -accidental- and deliberate attacks [43]. 

Small-world networks have low characteristic path length, but their network average global 

clustering coefficient is higher than in the case of random networks [44]. 

The analysis of power-network topology is, therefore, of particular interest in the 

application of complex-network techniques in research into power systems. Existent works 

have studied whether power-network topology fits the models above or not [38]. Most of these 

works have focused on specific national power grids such as the Iranian, South Korean or North 

American power grids [45], [46], [39]. However, there is not a homogenous conclusion when 

defining power-grid topology, e.g. whether power grids are small-world networks or not, or 

what probabilistic function fits degree distribution better. This lack of consensus may lie on the 

heterogeneous data used in prior analyses, for instance by comparing networks with different 

voltage levels. We find it is necessary to present a consistent topological analysis of different 

power grids based on comparable data in order to obtain definite conclusions about power-

network topology. This would allow us to make a comparison among countries, extracting 

information about topological metrics and analyzing how complex-network metrics scale with 
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network size. Consequently, our work provides information about the metrics that better 

describe transmission power grids and their properties. 

This chapter introduces the analysis of the power grid as a complex network by presenting 

different ways of characterizing and modeling power grids as graphs in Section 2. Section 3 

analyzes fifteen European transmission networks from a topological point of view; it focuses 

on how complex-network metrics scale with network size. Section 4 discusses the implications 

of these results. Section 5 analyzes the impact of the analysis on the generation of synthetic 

power grids. Finally, Section 6 presents chapter takeaways. 

2.2. Modeling power grids as complex networks 

Complex systems are large sets of individual units that are highly interconnected among 

them [32]. Power networks are large infrastructure networks composed of power lines that 

interconnect demand with power generation plants (both demand nodes and generators can 

be understood as nodes or substations). Accordingly, power networks are complex networks, 

and they can be modeled as graphs. In this case, graphs, 𝐺(𝑁, 𝐿), are set of vertices or 

substations, 𝑁, that are linked through edges or transmission lines, 𝐿. 

Power networks, like other infrastructure networks such as roads, can be modeled as 

weighted graphs. In the case of power networks, edge weight may represent the maximum 

power that can flow between vertices (i.e., transmission capacity) or be used to characterize 

other electrical properties (such as line impedance) [47]. Pagani and Aiello make a thorough 

review of existing papers in which power grids are modeled as weighted or unweighted graphs 

[38]. In addition to weight, lines may be endowed with direction. Directed networks can be 

used to represent how power flows through the network in a specific scenario of demand and 

generation. A directed network is not always an accurate model since power can flow both 

ways. Therefore, in order to be general, power grids should be modeled as simple or non-

directed networks.  

Based on the previous considerations, power grids can be represented mathematically by 

an adjacency matrix, a matrix where non-zero elements reveal the existence of lines linking two 

nodes and their impedance if applicable. The adjacency matrix is symmetrical for non-

directional graphs.  

The analysis of power network topology is the prior step to the generation of synthetic 

power grids and the assessment of power-network vulnerability. Although several 

studies have been proposed to characterize the topology of power networks, results 

are not consistent. Divergent results may be the consequence of using different voltage 

levels, with different topological properties, or different model assumptions. This 

chapter focuses on transmission power networks. 
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As in the case of lines, nodes can be endowed with weights. Node weight may help to reflect 

the importance of a node in the system, leading to more accurate results [48]. In the case of 

power systems, weight can represent the amount of energy that is injected or withdrawn. In 

addition to weights, colors can be used to differentiate between demand or generation nodes 

or to classify generation nodes based on generation technology or cost.  

Power grids, as an example of transportation networks, are spatial networks (nodes are 

embedded in a geographical space). The location of nodes will directly affect the growth of the 

network and system dynamics. Several works have analyzed the implications of spatial 

embeddedness: node degree is limited by the physical space to be connected, the distance-

dependent cost of lines limits the probability of linking two distant nodes, and there is no 

correlation between clustering coefficient and node degree (based on the power grid of the 

Western United States) [49]. Finally, Barthélemy states that power grids are planar (they can 

be drawn in a two-dimensional space in such a way that edges do not cross each other) [50]. 

However, if we consider that power-networks are embedded, we cannot state that they are 

planar graphs.  

Finally, power grids are a clear example of interdependent systems. Their correct 

functioning depends on other networks, e.g., other power networks (higher or lower voltage 

networks) or other types of networks such as gas networks or communication networks [1], 

[51], [52]. In this case, every single network is represented as a layer of the whole system. If we 

model power grids as multilayer networks in which each voltage level is a different layer, the 

dependency between networks may be represented by a set of edges that connect different 

layers. These edges would represent the transformer impedance. Mathematically, each layer 

is represented by independent adjacency matrixes. 

2.3. Global statistics and power grids 

This section carries out a topological analysis of power grids by applying complex-network 

metrics to fifteen European transmission networks. The analyzed transmission networks are 

composed of two voltage levels, 400 kV, and 220 kV. This investigation analyzes both networks 

A graph 𝐺(𝑁, 𝐿) is a set of vertices 𝑁 that are linked through edges 𝐿.  

Regarding edges, graphs can be classified as: 

• Weighted / Unweighted 

• Directed / Non-directed (or simple) 

Nodes may be endowed with some features: 

• Weight 

• Color 

In spatial graphs nodes are embedded in the geographical space. 
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as independent grids and as a single one. When modeling both voltage levels as a whole, the 

model does not omit transformers: transmission lines connected to the primary and secondary 

windings are connected to different nodes, as shown in Figure 2-1. Therefore, the number of 

nodes, in that case, is equal to the number of buses in the 400-kV network plus the number of 

buses in the 220-kV network. Multiple lines connecting two buses are modeled as one single 

edge to enhance the use of complex-network techniques to describe power-network topology. 

This model is unweighted and non-directed. Data are obtained from ENTSO-e [12]. These data 

provide information about how nodes are connected irrespective of node location. 

Accordingly, it disregards the spatial nature of power networks. One of the critical points of this 

work is the use of comparable data that allows us the comparison among countries. As 

previously mentioned, prior studies were based on heterogeneous data; voltage levels included 

in those studies were not always clear and varied depending on the work. This made 

comparisons untrustworthy and made it difficult to draw definite conclusions. This section 

analyzes how the metrics scale with network size, intending to generalize power-grid 

topological properties. 
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Figure 2-1. Graph models for power networks. 

The 400 kV and 220 kV components as a single graph (center) or as independent layers (right) 

2.3.1. Network size 

Network size is the most basic metric when describing network structure. Network size is 

defined by the number of nodes, 𝑁, (number of substations) and the total number of edges, 𝐿, 

(transmission lines, considering only connections between two nodes regardless of the specific 

number of circuits). As shown in Table 2-1, the size of the European power grids that have been 

analyzed varies significantly among countries. This ranges from power grids with just 50 nodes 

as in the case of Hungary to 1,659 substations in France. Conspicuous factors that determine 

the number of nodes in each country were not found. Besides this, when considering different 

voltage levels, there is no correlation between network size and voltage level (400 kV or 220 
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kV).  

Table 2-1. Network size of European transmission power networks. 

Country 𝑁 𝑁400 𝑁220 𝐿 𝐿400 𝐿220 

Hungary 50 28 22 80 38 22 

Netherlands 55 35 20 63 40 18 

Greece 57 57 0 80 80 0 

Bulgaria 63 21 42 82 27 49 

Serbia 84 35 49 107 37 61 

Belgium  88 58 30 105 67 32 

Austria 89 31 58 119 40 69 

Romania 117 46 71 160 64 79 

Switzerland 158 37 121 221 46 157 

Portugal 159 57 102 237 79 148 

Poland 163 59 104 247 82 138 

Italy 634 262 372 812 321 437 

Germany 782 480 302 1090 671 341 

Spain 798 201 597 1115 284 731 

France 1659 386 1273 2160 477 1479 

𝑁 is the number of nodes, 𝐿 is the number of 
transmission lines. The indices 400 and 220 show network 
voltage level, in case of no index, the network is the 
combination of 400 kV and 220 kV.  

In the case of transmission lines, the number of lines in each country scales linearly with the 

number of nodes, as shown in Figure 2-2. This relation is valid in the three cases that have been 

analyzed, 𝐿 ∝ 1.32𝑁, (𝑅2 = 0.998), 𝐿400 ∝ 1.33𝑁400, (𝑅400
2 = 0.993) and 𝐿220 ∝ 1.17𝑁220, 

(𝑅220
2 = 0.999). As a direct consequence of the linear correlation between the number of 

nodes and number of lines, network connectivity (the number of existing connections divided 

by all possible combinations of lines in the graph) inversely scales with the number of nodes 

(following a power law), 𝑁𝐶𝑜𝑛. ∝ 2.48𝑁−0.985, (𝑅2 = 0.996).  

2.3.2. Degree distribution 

Not only the total number of lines in a graph but the number of lines attached to each node 

also determines the dynamical behavior of networks. Node degree is defined as the number of 

lines connected to each node. The local nature of node degree makes it a non-manageable 

metric in large networks.  

• Network size is defined by number of nodes 𝑁 and the number of edges 𝐿. In this 

work the number of nodes is equal to the number of substations. 

• In the European transmission power networks, size highly varies among countries. 

• The number of lines installed scales linearly with the number of nodes. The 400-kV 

network has a higher number of lines per node than the 220-kV network. 
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400 kV 220 kV 

  

400 kV and 220 kV 

 
Figure 2-2. Relation between the number of nodes and the number of edges in the European 

transmission power networks. 

 

Degree distribution (that is the probability of a node to have 𝑘 lines attached to it) provides 

a better approach to explain network topology. Barabási and Albert firstly pointed out that the 

degree distribution of real complex networks often follows a power law (𝛾 ∙ 𝑥−𝛼, the variable 

𝑥 is the node degree), with a 𝛼 of 4 in the case of power grids [37], several studies have 

discussed if the degree distribution in power grids follows a power law or an exponential 

function.  

Networks where degree distribution follows a power law are also called scale-free 

networks. One of the main properties of scale-free networks is scale invariance. That is, the 

degree distribution is always characterized by the same 𝛼, irrespective of sample size. In terms 

of vulnerability, scale-free networks are robust against random failure and vulnerable when 

suffering deliberate attacks [37]. However, the degree distribution of several real networks, 

such as the worldwide transportation network or mail network, was found to follow an 

exponential function (𝛼 ∙ 𝑒𝛽𝑥) [53].  
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Exponential-degree distributions are characterized by having a faster decay to zero than 

power laws. Accordingly, the probability of having nodes with a high degree is slightly larger in 

scale-free networks. Recent studies show that the degree distribution of power networks is 

best approximated by an exponential function [38]. In particular, we observe that when 

considering a single grid (200 kV + 400 kV), the exponential fitting provides better results than 

the power law. If power grids are analyzed considering voltage layers independently, a power-

law function fits best in some countries. As shown in Table 2-2, fitting empirical data to (𝛼 ∙

𝑒𝛽𝑥) results in values of 𝛽, the exponential decay ratio, that range -0.66 and -0.30. That means 

that the smaller the 𝛽, the faster the decay and therefore the probability of finding nodes with 

high a degree is lower, as Figure 2-3 shows.  

Finally, neither a power-law function nor an exponential function is a precise fit for the 

unweighted degree distribution of European transmission power networks from a graphical 

point of view (Figure 2-3). Representation of the degree distribution in a log-log plot would be 

a straight line in case of following a power law. Similarly, in the case of an exponential function, 

the degree distribution would be like a straight line in the linear-log plot. However, in the 

European transmission power networks, there are some divergences with those two patterns. 

There is no mathematical relation between 𝛽 and network size. Furthermore, the mode of 

the degree distribution also provides information when comparing different power-network 

topologies. The distribution mode varies between 1 or 2 (it is three just in the case of the 220 

kV- Portuguese power network) (see Table 2-2). 

Table 2-2. Degree properties of European transmission power networks.  

Country 〈𝑘〉 〈𝑘400〉 〈𝑘220〉 𝑀𝑜(𝑘) 𝑀𝑜(𝑘400) 𝑀𝑜(𝑘220) 
Assortativity 

coefficient  
𝛽 

Hungary 2.22 2.45 1.91 1 2 1 -0.521 -0.56 

Netherlands 2.10 2.00 1.80 2 2 1 -0.930 -0.61 

Greece 2.81 2.81 - 2 2 0 -0.050 -0.66 

Bulgaria 2.60 2.57 2.33 1 2 1 -0.367 -0.31 

Serbia 2.55 2.11 2.49 1 1 1 -0.228 -0.49 

Belgium  2.33 2.20 2.21 1 1 2 -0.240 -0.37 

Austria 2.67 2.58 2.31 2 2 2 -0.208 -0.60 

Romania 2.74 2.78 2.23 2 2 2 -0.144 -0.50 

Switzerland 2.78 2.36 2.60 2 2 2 -0.016 -0.66 

Portugal 2.98 2.77 2.90 3 1 3 -0.105 -0.30 

Poland 2.99 2.78 2.60 2 2 2 -0.118 -0.49 

Italy 2.53 2.4 2.35 1 1 1 -0.187 -0.37 

Germany 2.58 2.57 2.12 2 2 2 -0.159 -0.62 

Spain 2.79 2.83 2.45 2 2 2 -0.061 -0.64 

France 2.59 2.42 2.32 1 1 1 -0.215 -0.44 

〈𝑘〉 is average degree, 𝑀𝑜(𝑘) is the mode of degree distribution and 𝛽 is the coefficient 

of the exponential adjustment of degree distribution (𝛼 ∙ 𝑒𝛽𝑥). The indices 400 and 220 
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show network voltage level, in case of no index, the network is the combination of 400 kV 
and 220 kV.  

 

Linear-Log plot 

 
Log-Log plot 

 
Figure 2-3. Unweighted degree distribution of European transmission power networks. 

The average node degree, 〈𝑘〉, is reasonably constant among European transmission 

networks since the number of lines per node scales linearly with network size. Accordingly, the 

average degree of the 400-kV network is higher than the 220-kV network. When analyzing both 

networks together the average node degree is higher since they have a higher number of 

connections (they include transformers) for the same set of nodes.  

Finally, we analyze whether power networks are assortative or disassortative networks by 

calculating the network-assortativity coefficient 𝑟 (it ranges from -1 to 1). The network-

assortativity coefficient is the Pearson correlation coefficient of the degree at either end nodes 

of edges. This is calculated by equation (2-1), where 𝑗𝑖 and 𝑘𝑖  are the degree of the vertices at 
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the ends of the i-th edge [54]. Assortative networks (with a positive coefficient) are those in 

which nodes with high degree (also called hubs) tend to link to other hubs. Disassortative 

networks (with a negative coefficient) may present star-like features [36].  

𝑟 =  
𝐿−1 ∑ 𝑗𝑖𝑘𝑖 𝑖 −  [𝐿−1 ∑

1
2 (𝑗𝑖 + 𝑘𝑖 )𝑖 ]

2

𝐿−1 ∑
1
2

(𝑗𝑖
2 + 𝑘𝑖

2)𝑖 − [𝐿−1 ∑
1
2

(𝑗𝑖 + 𝑘𝑖 )𝑖 ]
2 (2-1) 

European power networks tend to be disassortative: hubs tend to be connected to nodes 

with low degrees. However, assortativity coefficients are low, and no definite conclusions can 

be obtained about network topology. As in the case of 𝛽, the network-assortativity coefficient 

does not scale with the total number of nodes.  

2.3.3. Shortest-path length 

In addition to degree distribution, distances among nodes also condition the dynamic 

behavior of transportation and communication networks, since the shortest path among nodes 

provides an optimal path for transmitting system units between two nodes [32]. Characteristic 

path length (the average shortest path between any two nodes) and network diameter 

(maximum shortest path) characterize distances among nodes in a network. 

In most analyzed power grids, the distribution of shortest-path lengths follows a quasi-

normal distribution. However, in some cases, distances spread out to larger values, with 

positive skewness. This indicates that while some nodes are relatively well-connected (lower 

values of shortest path) there is a set of nodes that are far from the core of the network. This 

might be explained by the existence of highly meshed cores weakly connected among them. It 

might also represent the existence of a big hub, which is the center of peripheral nodes. Results 

show topological differences among countries. For instance, while the French network size is 

twice the Italian one, the Italian network has a larger diameter for a similar characteristic path 

length (as shown in Table 2-3). This might be explained by country geography: in the case of 

Italy, two main corridors connect the north and the south of the country, which has a relatively 

long and narrow shape.  

In terms of scalability, although geographical properties may condition the shortest-path 

distribution, both characteristic path length, and diameter scale logarithmically with the total 

number of nodes in all our studied cases, 〈𝑙〉 ∝ 2.48 log 𝑛, (𝑅2 = 0.891); 〈𝐷〉 ∝ 6.24 log 𝑛, 

(𝑅2 = 0.791); 〈𝑙400〉 ∝ 2.35 log 𝑛, (𝑅2 = 0.951); 〈𝐷400〉 ∝ 5.98 log 𝑛, (𝑅2 = 0.881); 

• The number of edges attached to each node is the node degree.  

• Power-network degree distribution depends on network location. The average 

node degree is fairly constant in the European transmission networks.  

• European transmission power networks are disassortative. 
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〈𝑙220〉 ∝ 3.93 log 𝑛, (𝑅2 = 0.788); and 〈𝐷220〉 ∝ 10.33 log 𝑛, (𝑅2 = 0.850); as shown in 

Figure 2-4. This is also the case for random networks, where both metrics also scale with log 𝑛. 

However, in scale-free networks, characteristic path length and diameter scale with log log 𝑛  

[55]. 

Table 2-3. Distance-based properties in European transmission power networks. 

Country 〈𝑙〉 〈𝑙400〉 〈𝑙220〉 𝑑 𝑑400 𝑑220 𝛾1 𝛾1,400 𝛾1,220 

Hungary 3.56 3.58 3.53 8 8 7 0.359 0.4 0.291 

Netherlands 5.92 4.03 2.32 15 8 4 0.399 0.082 0.181 

Greece 4.57 4.57 - 12 12 - 0.358 0.358 - 

Bulgaria 4.65 3 4.9 10 6 11 0.001 0.071 0.238 

Serbia 4.9 4.41 4.44 11 9 12 0.244 0.144 0.732 

Belgium  7.04 5.32 3.82 20 12 9 0.765 0.348 0.328 

Austria 5.92 4.4 5.18 14 10 13 0.245 0.319 0.434 

Romania 5.82 4.42 11.16 11 10 30 -0.159 0.215 0.413 

Switzerland 6.02 4.76 6.22 15 13 15 0.354 0.731 0.27 

Portugal 6.10 5.05 6.27 13 13 15 0.074 0.557 0.201 

Poland 6.24 5.13 6.85 15 11 17 0.172 0.132 0.248 

Italy 11.98 9.62 10.17 32 27 30 0.437 0.463 0.369 

Germany 12.19 11.2 9.58 29 26 26 -0.018 0.032 0.561 

Spain 10.45 7.63 13.9 24 18 40 0.001 0.167 0.664 

France 12.17 8.86 23.69 30 20 54 0.016 0.13 -0.007 

〈𝑙〉 is the characteristic path length, 𝑑 is network diameter, 𝛾1 is skewness of distance distribution. The indices 400 
and 220 show network voltage level, in case of no index, the network is the combination of 400 kV and 220 kV.  

400 kV 220 kV 

  
400 kV and 220 kV 



 

 

2.3. Global statistics and power grids 

 

 

25 

 

 

 
Figure 2-4. Characteristic path length and network diameter versus network size. 

 

2.3.4. Betweenness centrality 

Betweenness centrality measures the centrality of a node in a network by counting the 

number of times a node or a line appears in the shortest path between other two nodes. In this 

chapter, betweenness centrality 𝐵(𝑢) refers to node betweenness centrality and it is defined 

by equation (2-2), where 𝑛𝑠,𝑡(𝑢) is the number of shortest paths from 𝑠 to 𝑡 through node 𝑢 

and 𝑁𝑠,𝑡 is the number of shortest paths from 𝑠 to 𝑡. Since we are modeling power networks 

as undirected graphs, shortest paths from 𝑠 to 𝑡 and 𝑡 to 𝑠 count as one path. 

𝐵(𝑢) =
1

2
∑

𝑛𝑠,𝑡(𝑢)

𝑁𝑠,𝑡
𝑠,𝑡≠𝑢

 (2-2) 

Betweenness centrality may be used as a vulnerability metric in power networks. However, 

a clear relation between the betweenness centrality and dynamical behavior is not easy to infer 

since power does not follow the shortest path in terms of links -power flows are determined 

by Kirchhoff’s laws-. Several works have modified the definition of betweenness centrality by 

the inclusion of electrical information (see Chapter 6). 

Prior studies showed that betweenness-centrality distribution follows a power law in 

transmission networks [38]. Accordingly, most of the nodes are not in the shortest paths. In the 

case of the European networks, we observe that the percentage of nodes with a value of 

betweenness centrality that is equal to zero (they might be expected to have a negligible effect 

• The characteristic path length of a network is the average shortest path among 

all pairs of nodes. Network diameter is the maximum distance (shortest path) 

among all pairs of nodes in a network. 

• In the European transmission power networks, characteristic path length and 

network diameter scale logarithmically with network size. Distances are slightly 

shorter in the 400-kV network.  
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on overall vulnerability) highly varies among countries and voltage levels. In the 400-kV 

network, it ranges from 13% in the case of Romania to 52% in France and the 220-kV network, 

68% in Hungary and 23% in Poland. Usually, this percentage is higher in 220 kV networks (38% 

of nodes on average) compared to 400 kV networks (30% of nodes), except in the case of 

France, Portugal, and Serbia. This is related to how transmission power networks mesh. If the 

betweenness centrality of a node in a certain voltage level is zero, the node is connected just 

to one line in that voltage level. However, if we analyze both voltage layers together (400 kV 

and 220 kV), we observe that most of those nodes are connected to other lines. Therefore, the 

variation in the percentage of nodes with a betweenness centrality that is equal to zero shows 

differences in network structure; network mesh can be built in the same or at a lower voltage 

level.  

The percentages above do not scale with network size. However, the mean and maximum 

value of betweenness centrality in power networks scale with the total number of nodes (see 

Table 2-4). As shown in Figure 2-5, mean betweenness centrality and maximum betweenness 

centrality may be characterized by a power law. When considering the 400 kV and 220 kV 

voltage levels together, the relationship is the following: 〈𝐵𝐶〉 ∝ 0.28 𝑁1.43, (𝑅2 = 0.965) and 

max(𝐵𝐶) ∝ 0.20 𝑁1.96, (𝑅2 = 0.979). In this network, the mean betweenness centrality may 

be also fitted with a linear regression 〈𝐵𝐶〉 ∝ 5.73 𝑁, (𝑅2 = 0.995). However, if we compare 

with the 400-kV layer and the 220-kV layer a linear regression is not an accurate fitting. The 

best regression for the 400 kV and 220 kV layers are the following: 〈𝐵𝐶400〉 ∝ 0.26 𝑁1.48, 

(𝑅2 = 0.993), max(𝐵𝐶400) ∝ 0.31 𝑁1.88, (𝑅2 = 0.989), 〈𝐵𝐶220〉 ∝ 0.21 𝑁1.46, (𝑅2 =

0.887) and max(𝐵𝐶220) ∝ 0.27 𝑁1.85, (𝑅2 = 0.937). 

Table 2-4. Betweenness centrality in European transmission power networks 

Country 〈𝐵𝐶〉 〈𝐵𝐶400〉 〈𝐵𝐶220〉 𝑚𝑎𝑥 (𝐵𝐶) max(𝐵𝐶400) 𝑚𝑎𝑥 (𝐵𝐶220) 

Hungary 3.12×101 3.48×101 2.66×101 1.81×102 1.81×102 1.37×102 

Netherlands 1.33×102 4.08×101 4.80×100 5.58×102 1.71×102 1.90×101 

Greece 1.00×102 1.00×102 - 7.64×102 7.64×102 - 

Bulgaria 1.13×102 2.00×101 7.99×101 5.15×102 9.35×101 4.51×102 

Serbia 1.62×102 5.79×101 8.26×101 1.33×103 3.40×102 7.31×103 

Belgium  2.51×102 1.23×102 2.20×101 1.37×103 6.27×102 1.12×102 

Austria 2.02×102 4.46×101 6.64×101 1.62×103 2.09×102 3.75×102 

Romania 2.79×102 7.69×101 3.26×102 2.63×103 2.98×102 1.12×103 

Switzerland 3.94×102 6.76×101 2.67×102 4.93×103 2.53×102 3.16×103 

Portugal 4.03×102 1.13×102 2.66×102 3.30×103 7.07×102 2.55×103 

Poland 4.24×102 1.20×102 2.87×102 4.55×103 7.96×102 1.39×103 

• The betweenness centrality of a node is the number of times that node is in the 

shortest path between all pairs of nodes in the network. 

• The mean and maximum value of betweenness centrality scale with network size in 

the European transmission networks. They follow a power law. 
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Italy 3.48×103 1.12×103 6.57×102 5.00×104 8.81×103 1.33×104 

Germany 4.37×103 2.44×103 3.26×102 1.05×105 4.25×104 4.70×103 

Spain 3.76×103 6.63×102 1.55×103 1.16×105 7.14×103 2.19×104 

France 9.23×103 1.51×103 1.35×104 3.32×105 1.99×104 2.49×105 

〈𝐵𝐶〉 is the mean value of betweenness centrality, 𝑚𝑎𝑥(𝐵𝐶) is the maximum value of 
betweenness centrality. The indices 400 and 220 show network voltage level, in case of no 
index, the network is the combination of 400 kV and 220 kV.  
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Figure 2-5. Maximum betweenness centrality and mean betweenness centrality versus network size 

 

2.3.5. Network average clustering coefficient 

In the previous sections, the analysis of distances and centrality might indicate the existence 

of highly clustered hubs. Similarly, the network average clustering coefficient may help to 

explain if there is a tendency to make clusters in power networks. The network average 
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clustering coefficient 〈𝑐𝑐〉 shows the probability that the neighbors of one node are also 

connected among them. The network average clustering coefficient (it is the average value of 

node clustering coefficient) is calculated using expression (2-3), where 𝑇𝑖 is the number of 

triangles in which node 𝑖 is a vertex. 

〈𝑐𝑐〉 =
1

𝑁
∑

2 𝑇𝑖

𝑘𝑖(𝑘𝑖 − 1)

𝑁

𝑖=1

 (2-3) 

This metric may help to understand why France and Germany have similar characteristic 

path lengths when the total number of nodes in France is twice larger than Germany. As shown 

in Figure 2-6, the network average clustering coefficient in Germany is three times larger than 

the one in France. That difference might explain the similarity in terms of distances: there is a 

higher tendency in Germany to form local clusters and therefore transmission lines reinforce 

those clusters in short distance rather than medium or long distances as in the case of France.  

Overall, there is a low tendency to form clusters in power grids. Most nodes have no lines 

connecting their neighbors (the node clustering coefficient is zero) and, only in two countries, 

the percentage of nodes with all their neighbors connected is above 10%.  

Finally, the network average clustering coefficient does not follow any relation with the total 

number of nodes, as shown in Figure 2-6. This might be a key indicator when comparing power 

grids. The network average clustering coefficient ranges between 0.05 and 0.15 when 

considering 400 kV and 220 kV layers together. By comparing node clustering coefficient and 

node degree, the node-clustering coefficient decreases with the degree, having a value of one 

only in nodes that are linked just to two or three neighbors. 
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 Figure 2-6. Network average clustering coefficient versus network size. 

 

 

2.3.6. Is the power grid a small-world network? 

Small-world networks are networks where most nodes are not neighbors among them, but 

they can be reached from other nodes by traversing only a few edges. In these networks, the 

characteristic path length grows logarithmically with network size 〈𝑙〉 ∝ log 𝑛. This property is 

similar to random graphs. However, small-world networks are characterized by having a higher 

network average clustering coefficient than random graphs. Based on previous considerations, 

Watts and Strogatz proposed an algorithm for generating random graphs with small-world 

properties [44].  

A network can be considered a small-world network if it has a similar characteristic path 

length than a random network and its network average clustering coefficient is much higher 

than the network average clustering coefficient of a random network, that is 〈𝑙〉~〈𝑙𝑟𝑎𝑛𝑑〉 and 

〈𝑐𝑐〉 ≫ 〈𝑐𝑐𝑟𝑎𝑛𝑑〉, where the network average clustering coefficient of a random network is 

defined by: 〈𝑐𝑐𝑟𝑎𝑛𝑑〉 ~ 〈𝑘〉/𝑁 and the characteristic path length of a random network by: 

〈𝑙𝑟𝑎𝑛𝑑〉 ~ ln(𝑁) /ln (〈𝑘〉). The small-world index 𝑆 compares the previous ratios to determine 

if networks are small-world (2-4) [56]. If 𝑆 is bigger than one, the network can be considered a 

small-world network. Values of 𝑆 for the European Transmission Networks are shown in Table 

2-5.  

• The network average clustering coefficient shows the tendency to make clusters 

(triangles) in the network.  

• In the European transmission power networks, the network average clustering 

coefficient highly varies among countries and voltage levels. Although it does not 

follow a pattern, the tendency to make clusters is low.  
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𝑆 =  

〈𝑙〉
〈𝑙𝑟𝑎𝑛𝑑〉

〈𝑐𝑐〉
〈𝑐𝑐𝑟𝑎𝑛𝑑〉

 (2-4) 

In prior studies, there was not a clear answer when analyzing whether power networks are 

small-world networks or not [38].  

According to previous research, low and medium-voltage networks do not appear to be 

small-world networks [57]. However, most high-voltage networks are small-world networks. 

Results obtained in this work show that if we consider the 400 kV and 200 kV levels together, 

all networks have a small-world index bigger than one, as shown in Figure 2-7. However, when 

analyzing both layers independently, there are some cases in which 𝑆 is under one, and 

therefore those networks cannot be considered small-world networks. Those cases are 

Belgium (400 kV), Romania (400 kV), Serbia (400 kV), Hungary (220 kV) and Netherlands (220 

kV). In the case of Belgium, Serbia, Hungary, and the Netherlands, their global clustering 

coefficient is small in comparison to a random graph.  

 

 
 
 

400 kV 220 kV 

  

400 kV and 220 kV 

• Small-world networks are networks where most nodes are not neighbors among 

them but can they be reached from other nodes by traversing only a few edges. 

• Not all European transmission power networks display the characteristic structure 

of small-world networks.  
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Figure 2-7. Small-world network index in the European transmission power networks 

 

Table 2-5. Small-world properties of the European transmission power networks. 

Country 〈𝑙𝑟𝑎𝑛𝑑〉 〈𝑙400,𝑟𝑎𝑛𝑑〉 〈𝑙220,𝑟𝑎𝑛𝑑〉 〈𝑐𝑐〉 〈𝑐𝑐400〉 〈𝑐𝑐220〉 〈𝑐𝑐𝑟𝑎𝑛𝑑〉 〈𝑐𝑐400,𝑟𝑎𝑛𝑑〉 〈𝑐𝑐220,𝑟𝑎𝑛𝑑〉 𝑆 𝑆400 𝑆220 

Hungary 4.90 3.72 4.77 0.13 0.22 0.02 0.04 0.08 0.08 4.2 2.7 0.3 

Netherlands 5.40 5.13 5.1 0.04 0.07 0.00 0.03 0.05 0.09 1.1 1.6 0.0 

Greece 3.92 3.92 - 0.13 0.13 - 0.04 0.04 - 2.3 2.3 - 

Bulgaria 4.33 3.22 4.41 0.09 0.14 0.06 0.04 0.12 0.05 2.0 1.2 1.5 

Serbia 4.74 4.75 4.27 0.1 0.04 0.15 0.03 0.06 0.05 3.2 0.7 2.8 

Belgium  5.28 5.16 4.3 0.09 0.03 0.24 0.02 0.03 0.07 2.6 0.8 3.7 

Austria 4.56 3.62 4.85 0.15 0.28 0.12 0.03 0.08 0.04 3.9 2.8 2.9 

Romania 4.73 3.74 5.33 0.08 0.06 0.1 0.02 0.06 0.03 2.7 0.9 1.6 

Switzerland 4.95 4.21 4.99 0.09 0.07 0.1 0.01 0.06 0.02 4.4 1.1 3.8 

Portugal 4.64 3.97 4.34 0.13 0.16 0.13 0.01 0.04 0.02 5.5 2.6 3.3 

Poland 4.65 3.99 4.85 0.08 0.1 0.09 0.01 0.04 0.02 3.5 1.7 2.5 

Italy 6.94 6.35 6.97 0.04 0.05 0.05 0.00 0.00 0.00 6.7 3.5 6.0 

Germany 7.02 6.54 7.61 0.12 0.15 0.11 0.00 0.00 0.00 22.1 16.6 13.4 

Spain 6.5 5.11 7.14 0.09 0.09 0.10 0.00 0.01 0.00 16.1 4.6 12.9 

France 7.79 6.75 8.48 0.07 0.02 0.06 0.00 0.00 0.00 29.2 3.1 11.9 

〈𝑙𝑟𝑎𝑛𝑑〉 is the characteristic path length of a random network with the same number of nodes, 〈𝑐𝑐〉 is the network 
average clustering coefficient, 〈𝑐𝑐𝑟𝑎𝑛𝑑〉 is the global clustering coefficient of a random network with the same 
number of nodes, 𝑆 is the small-world index. The indices 400 and 220 show network voltage level, in case of no index, 
the network is the combination of 400 kV and 220 kV.  



 

 

Chapter 2. A Traditional Approach to Power-Network Topology 

 

 

32 

 

 

2.4.  Inferring the topology of power grids 

2.4.1. Power networks, a matter of size 

Several global statistics traditionally used in complex networks have been applied in Section 

3 to fifteen transmission power networks to analyze network topology. Based on this analysis, 

we can differentiate two main groups of power networks when considering network size. The 

first group: Germany, Spain, France, and Italy with more than 600 nodes. The rest of the 

countries belong to a group in which networks have less than 160 substations. Those countries 

with more than 600 nodes are also the most extensive in terms of electricity consumption. 

However, the order in both lists is not the same. Besides, these four countries are also in the 

group of the biggest European countries in terms of area. However, the area of Poland is slightly 

larger than the area of Italy, and the number of substations in Italy is four times the number of 

substations in Poland; network size is more related to electrical consumption than geographical 

area. 

Furthermore, when analyzing the number of nodes in each voltage level, we observe that 

the size of the 220-kV layer and the 400-kV layer do not scale with network size. For example, 

although Spanish and German power grids are similar in terms of network size, the percentage 

of nodes belonging to the 400-kV layer and 200 kV layer is the opposite. In ten out of the fifteen 

countries, the 220-kV layer is larger than the 400-kV layer. Therefore, in Europe, we 

differentiate two main groups of transmission power networks in terms of network size. 

However, several factors such as electrical consumption or country area lead to topological 

differences among countries in both groups.  

As explained above, there is a linear correlation between the total number of lines and the 

total number of nodes in power networks. Results showed that the number of lines per node 

in 400-kV networks is around 13% larger than in 220-kV networks. That might be explained in 

terms of vulnerability, in power systems, the higher the voltage level, the higher the level of 

network reliability since the amount of energy that is transmitted in a power network grows 

with voltage level. Therefore, the 400-kV network has more lines per node; this means that 

network connectivity is higher in 400-kV networks, and they are more meshed than the 220-

kV networks. Similarly, prior studies that analyzed medium and low voltage networks showed 

that the number of lines per node in those voltage levels is much lower, 1.09 and 1.03 

respectively [57]. 

These results are in line with the ones obtained for other transmission-power networks such 

as the Iranian power network or North American power networks, where the number of lines 

per node is similar to the obtained for European countries [45], [39]. However, they differ from 

the results obtained for the South Korean power network. There, we observe three high-

voltage levels: 765 kV, 345 kV and 154 kV in which the ratios between the number of links and 

the number of nodes are 3.81, 3.22 and 1.64 [46]. Those ratios are significantly larger than the 

previous cases. We should point out that differences among studies may be explained by how 

power networks are modeled (model assumptions), for instance, whether several lines 
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connecting the same pair of nodes are considered as one edge or not. Furthermore, the 

topography may also condition network topology as discussed below.  

 

2.4.2. The meshed structure of transmission power networks 

A. Average node degree 

Since the number of lines can be approximated by the expressions given in Section 3.2.1 

that linearly scales with total number of nodes, and the average degree is defined as the ratio 

between total number of lines and total number of nodes, the expected average degree in a 

power network can be approximated in 2.64 for transmission networks (400 kV and 220 kV) 

and 2.66 and 2.34 if considered the 400-kV and 220-kV layers independently. However, these 

results contrast with some test cases such as the PEGASE-89 in which the average degree is 

4.72. The PEGASE-89 case study represents a fraction of the European high-voltage power 

network (400 kV, 220 kV, and 150 kV). Although other networks that are shown in reference 

[38] present differences concerning this study, those differences are not so significant as in the 

case of the South Korean power network that is mentioned above. As previously mentioned, 

those differences may be explained by how power networks are modeled as complex 

networks. On equal terms, the average degree distribution would be one of the first conditions 

to fit when validating a synthetic or test network since there is a clear correlation between the 

total number of nodes and the total number of lines.  

B. Degree distribution 

Although the number of lines correlates linearly with network size, how lines are distributed 

(degree distribution) varies among countries. Beyond the discussion, if degree distribution 

follows a power-law or an exponential function, we observe that the coefficients that 

characterize both functions vary by country. However, in all cases, we find a right-skew 

distribution where the maximum degree is lower than ten in most countries. Concerning the 

maximum degree, results obtained from this study are far from the maximum degree of the 

South Korean power grid, which is 18, or the U.S. Eastern Interconnect, U.S. Western 

Interconnect, and U.S. Texas Interconnect presented in which the maximum value of the node 

degree is 29 [39]. This might be explained by the inclusion of lower voltage layers.  

• Network size does not depend on country area.  

• We differentiate two groups of transmission power networks in Europe based on 

network size: large networks (> 600 nodes) and small networks (< 150 nodes).  

• The proportion of nodes in the 220 kV or in the 400 kV varies with location.  

• The 400-kV network has a more meshed structure than the 220-kV network.  
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Similarly, 𝛽 (i.e., exponential decay ratio) provides information about network structure. 

While Spain and Germany have a similar 𝛽, France has a lower one. This means that the decay 

of the degree distribution is faster in the case of France, and therefore, the number of nodes 

with a high degree is lower. This might have consequences regarding vulnerability: networks 

with highly connected hubs might be more vulnerable to specific attacks to these hubs. 

Although lines are differently distributed, all power networks are disassortative, nodes with a 

high degree tend to be attached to nodes with low degree. Therefore, in power networks, most 

nodes have a low degree (one or two connections) and only a few nodes have a higher degree. 

This might be explained by the capital-intensive nature of power networks. 

C. Network distances 

In the case of network distances among nodes, the 220-kV layer has higher values of 

network diameter and characteristic path length. This difference is substantial in France, where 

characteristic path length and diameter are almost three times larger in the 220-kV network. 

As previously mentioned, 220-kV networks are generally more extensive in terms of network 

size and less meshed. As explained in Section 2.3, the location does not determine distance 

distribution, as can be seen for instance in the cases of France and Italy. Although Italy has a 

smaller geographical area and number of nodes, it has a higher diameter (220 kV and 400 kV) 

than France does. In this case, the skewness index describes the difference between both 

countries: the distance distribution in France is more normally distributed than in Italy. In Italy 

we have two main cores (North and South) connected mainly through two corridors. 

Consequently, the analysis of network distances supports that the 220-kV network is less 

meshed than the 400-kV. Based on power-system considerations, the more critical nature of 

the 400-kV network leads to a more meshed structure. Similarly, 220-kV lines are built to 

connect lower distances than 400-kV lines. Therefore, this explains that the diameter of 220-

kV networks is larger than the 400-kV network and that the 220-kV network is larger in terms 

of size.  

Regarding distance analyses, results obtained in this work are consistent with the analyses 

of the Iranian and South Korean power networks. However, they are far from the results 

obtained in another study about North American power networks (Eastern, Western and Texas 

Interconnected power networks) where the values of network diameter are 94, 61, 37 

respectively [39]. Once again, it is necessary to clearly define network models in order to 

distinguish structural topological differences from differences that are introduced because of 

different model assumptions (e.g., voltage levels, corridors vs. circuits, transformers included 

or not). This will support the justification of some questions (for instance, the impact of 

geography in network topology), that are ambivalently answered in prior works, as shown in 
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reference [38]. 

 

2.4.3. About the small-world nature of power networks 

Network average clustering coefficient highly varies among countries and voltage level. It 

does not scale with network size. However, our study provides a range of values where the 

network average clustering coefficient of power networks can be expected to lie. We observe 

that the values of the network average clustering coefficient are low, which shows that there 

is not a tendency to make clusters in power networks. We also observe that in relatively large 

countries such as France, Spain, and Germany, the network average clustering coefficient is 30 

times larger than in the case of random networks with the same number of nodes. However, 

in small power networks, network average clustering coefficient values are similar to ones in 

random networks. This, therefore, conditions the categorization of power networks as small-

world networks. France, Spain, and Germany are small-world networks (𝑆>20). However, in the 

rest of the countries, the small-world index is significantly lower. For example, in the 

Netherlands, the network average clustering coefficient is quite similar to the theoretical 

network average clustering coefficient of a random network. This might reveal differing 

dynamics concerning network size: only as a power system grows does it make sense to build 

hubs or clusters that ensure the efficient exploitation of the system as a whole, which needs of 

shorter distances among any pairs of nodes overall. Smaller networks might have a more local 

structure, which much larger distances between nodes – which is less efficient but, on the flip 

side, can make them more resistant to attacks or failures. We can conclude that, in terms of 

clustering, power networks do not follow a similar pattern. However, this work provides a 

realistic range in which the network average clustering coefficient of synthetic power grids 

should lie. 

Furthermore, the values of the network average clustering coefficient in power networks 

are more extensive than in random networks. Prior studies have pointed out to several 

different answers when questioning whether power networks are small-world networks or not. 

While an analysis based on North American power grids states that power grids are not small-

• Average node degree is similar in the European transmission power networks. 

However, we find inconsistencies with prior works.  

• Degree distribution is conditioned by network location. Most nodes have a low 

number of connections. The presence of hubs is scarce, and they do not tend to 

be connected among them. They are disassortative networks.  

• Network characteristic path length and network diameter do not depend on 

country area. Distances are larger in the 400-kV network.  

• The analysis of the European transmission networks differs from prior works 

that analyzed the North American power network. Differences may lie on 

voltage levels and model assumptions.  
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world networks [39], other previous works confirm that power networks belong to that group 

[46]. However, as was discussed by Pagani and Aiello, the answer to that question is case 

dependent and influenced by the voltage level considered [38]. Results provided in this work 

show that with a homogenous treatment of data, transmission power networks could be 

characterized as small-world networks only if 400-kV and 220-kV layers are considered 

together. 

2.5. Topological consistency of synthetic power grids 

The analysis presented in this chapter might be used in the generation of synthetic power 

grids from a double perspective. On the one hand, the topology of resulting synthetic power 

grids should be validated by the comparison with real topologies. This chapter proposed several 

metrics in order to check the accuracy of synthetic power grids regardless of network size. As 

shown previously, while some properties scale with network size there are other properties 

where it is not possible to estimate those parameters based on the number of substations, as 

in the case of network average clustering coefficient. However, this study provides a reasonable 

range for those metrics. Synthetic power grids should meet those objectives before being 

considered as case studies. This topological validation is something that was missing in most of 

the prior work in which several algorithms were described to generate synthetic power grids 

[22], [21], [58]. Networks obtained with those algorithms should be therefore tested with the 

topological metrics used in this chapter. Those metrics should be used beyond other 

considerations related to the minimum spanning tree or the Delaunay triangulation as done in 

reference [59]. By using just those last two considerations, we cannot provide an accurate and 

complete validation of network topology.  

On the other hand, the conclusions obtained in this work show that network properties vary 

by country, so flexible algorithms are needed. Although some metrics scale with network size, 

we also observe a certain deviation level that depends on the country. Even when generating 

synthetic networks with the same number of substations, algorithms should be flexible to 

generate different topologies.  

• There is no consensus in the literature about the characterization of the power grid 

as small-world networks. 

• Based on the analysis carried out in this chapter, we cannot state that power grids 

are always small-world networks.  

Global statistics can be used to validate synthetic power grids. However, we should be 

cautious since not all statistics scale with network size. 

Models to generate synthetic power grids should be flexible enough to build network 

with different topologies. 
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2.6. The drawbacks of global statistics 

The use of global statistic allows for the characterization of power-network structure. 

However, there are questions that those metrics cannot solve. For example, we cannot clearly 

explain why the French 220-kV and the German 220-kV networks have similar values of 

network diameter if the French network is 4.31 times larger in terms of nodes than the German 

one. 

Furthermore, to compare network topologies, global statistics use average values (average 

node degree, characteristic path length, network average clustering coefficient, average 

betweenness centrality) or maximum values (network diameter, maximum betweenness 

centrality). Those values may guide to misleading results since they do not consider the shape 

of the distribution. Different distribution functions might have similar average values. This is 

discussed in Chapter 4.  

Although most of the global statistics used in this chapter scale with network size, there is a 

certain deviation concerning the regression lines. Sound analysis is necessary to explain that 

deviation and to compare networks with different sizes. Although we have found some 

patterns in the European transmission power networks, there are inconsistencies regarding 

prior works. Furthermore, those patterns might change when including in the analysis of other 

power networks such as the North American transmission power network. Accordingly, we 

need a new method to compare networks regardless of network size.  

 

2.7. Takeaways 

This chapter introduces to the topological analysis of fifteen European transmission power 

networks. The two main voltage levels, 400-kV, and 220 kV are included independently and as 

a whole (which leads to a total of 45 networks). Our results show that network size (number of 

nodes) varies with countries and it is not determined by conspicuous factors. The number of 

lines scales linearly with the total number of nodes. Therefore, average degree distribution 

might be approximated as a constant in power networks. 

Degree distribution varies across countries. However, all networks studied are 

disassortative (widely connected hubs tend to connect to poorly connected nodes). This means 

Global statistics might be insufficient to describe power network topology and to 

compare network structure. The main drawbacks are:  

• The use of average or maximum values might be misleading.  

• Metrics might not scale with network size. That hinders the comparison among 

networks of different size. 



 

 

Chapter 2. A Traditional Approach to Power-Network Topology 

 

 

38 

 

 

that power grids tend to present star-like features. 

In terms of distances, both characteristic path length and network diameter grow 

logarithmically with the number of nodes in all cases. The analysis of distances is completed 

with the skewness index, which shows whether distances are normally distributed or not. Most 

networks show a positive skew. This indicates that while some nodes are relatively well-

connected (lower values of shortest path) there are set of nodes that are far from the core of 

the network, which might describe the presence of big hubs that are the center of peripheral 

nodes. 

Regarding betweenness centrality, most nodes have low values (they do not tend to appear 

in shortest paths among nodes), which means the network is not vulnerable to losing them. 

Maximum and average values of betweenness centrality follow a power law with respect to 

the number of nodes. 

Finally, the network average clustering coefficient highly varies across countries and voltage 

levels, and it presents larger values in power networks compared to random graphs. When 

considering transmission networks as 400-kV and 220-kV voltage levels together, all countries 

have a small-world index above one, and they can be therefore considered small-world 

networks. This means that the shortest path between nodes is relatively low when compared 

to random networks, which points to efficiency in their design. However, not all networks are 

small-world networks if voltage levels are considered independently. When analyzing both 

layers independently we observe that 400-kV networks have a higher average degree (they 

have more lines per node and distances are lower). This points out to a more meshed structure 

in 400-kV networks. Although both layers are considered transmission power networks, they 

display differences from a topological point of view.  
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3  AN INNOVATIVE TOOL TO DESCRIBE 

NETWORK TOPOLOGY 

3.1. From global statistics to local descriptors 

The analysis of complex-network topology can support the understanding of the principles 

that guide network evolution and condition network behavior [32]. Although most works have 

described network topology with global statistics, like the ones used in Chapter 2, local statistics 

have been also used to explain network structure [36], [60]. While global statistics, such as 

characteristic path length or betweenness centrality, considered the topology of the network 

as a whole, local properties only consider the connections of each node and its closest 

neighbors’ connections. Some global statistics result from local descriptors. For example, the 

network average clustering coefficient is the average value of the node clustering coefficient, 

which measures the tendency of each node to make clusters. 

Both global and local metrics complement each other, since different communities may 

coexist in the same network with different topological properties (what is known as structural 

subunits) [61]. Global metrics, such as the degree distribution, provide a panoramic view of 

networks that may have implications on their dynamics. For instance, the particular degree 

distribution of computing networks, they are scale-free networks, makes them relatively 

resistant to accidental failures but vulnerable to targeted attacks [62]. However, global metrics 

disregard the complexity of local structures that might be crucial to understand the behavior 

of networks, as it has been shown for the case of the internet [63]. Furthermore, local processes 

condition the development of network topology [64]. Consequently, topological analyses 

should include the use of local statistics that focus on the local structure of complex networks. 

This chapter improves the characterization and understanding of network topology by 

proposing a twelve-dimensional metric, the GHuST framework, that is based on network local 

structures. Advantages of this novel framework are: 

• Enhanced topological description: the twelve dimensions fully describe the structure of 

networks, covering most relevant aspects of local and global topology systematically.  
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• Size independence: the proposed framework explains network properties regardless of 

network size. This enables comparisons among networks with a different number of 

nodes and edges. 

• Computational simplicity: this new statistic only considers 2-node and 3-node graphlets 

and they follow easily from the adjacency matrix. It reduces computational complexity 

with respect to prior analyses that require counting higher node graphlets. 

The application of the novel metric to a set of five real networks demonstrates the accuracy 

of the framework to explain network topology. Furthermore, this new framework enhances 

network classification, and it can be used as a tool to confirm the topological accuracy of 

synthetic networks. This validation is usually missing in the generation of synthetic power grids, 

where there is a weak topological validation, or it is done only by a few global statistics [65]. 

Therefore, this tool can be introduced to compare the topology of both real and synthetic 

networks systematically. 

The rest of the chapter is organized as follows: Section 2 introduces the use of local 

descriptors. Section 3 presents the GHuST, a novel framework to analyze network topology 

from graphlet decomposition. Section 4 applies the proposed framework to explain the 

topology of five real networks of different natures, and it compares results with other metrics 

traditionally used. Section 5 uses dimensionality reduction methods to evaluate the 

performance of the proposed framework when it is applied to a large sample of networks. 

 

3.2. An introduction to local descriptors 

An example of a local-topology statistic is the motif distribution. Motifs are recurring 

subgraph patterns that appear more often in a given network than in a random one (the base 

case against which the network under study is compared to is known as the null model). Motifs 

were proposed to understand the evolutionary design principles of complex networks from a 

local perspective [66]. They search for critical local structures that determine network behavior. 

However, the choice of the null model is often problematic [67]. Furthermore, motifs are partial 

subgraphs (they do not necessarily include all the connections between nodes), which leads to 

a loss of information that may be compelling to understand network structure [68]. 

• Global statistics analyze network topology as a whole. 

• Local descriptors only consider the connections of each node and its closest 

neighbors’ connections. 

• A novel framework, GHuST, is proposed to analyze the structure of complex 

networks. This framework is based on graphlet decomposition, a local 

descriptor.  

• The main strengths of the framework are: full topological description, size 

independence and computational simplicity. 
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Unlike motifs, graphlets allow for network decomposition in small subgraphs that preserve 

all connections among nodes. Graphlets are small connected induced (they preserve all edges 

among the subset of nodes) subgraphs of an extensive network [69]. The presence of graphlets 

in a network is not conditioned by a null model; they appear at any frequency. Although 

graphlets may be comprised of an arbitrarily large number of nodes, the most commonly 

studied graphlets are 2- to 5-node subgraphs, given that higher degrees are more difficult to 

calculate and interpret. 

The automorphism orbit of a graphlet is defined as the set of nodes that are topologically 

symmetric in the graphlet [70]. Orbits, therefore, define the relative position of nodes 

concerning the rest of the nodes in the graphlet. A node can appear in more than one orbit in 

the network. When a node is in orbit 𝑛, it is said that node touches 𝑂𝑛.  

In the case of 𝐺4 (a four-node graphlet in which three nodes are connected to a central one) 

the node with three connections (green node) is in (touches) 𝑂7. The three nodes (blue nodes) 

with only one connection are in (touch) 𝑂6, as shown in Figure 3-1. Accordingly, the three nodes 

that are in 𝑂6 have the same relative position in the graphlet (they have the same topological 

properties) and they are in the same orbit. However, they are topologically different from the 

central node (there is only one node in that orbit). Consequently, nodes that belong to 𝐺4 can 

be in 𝑂6 or in 𝑂7. We can only differentiate two different orbits or positions inside that graphlet. 

The main drawback of using graphlets to describe networks is that counting them is 

computationally intensive; recent works have proposed more efficient algorithms for graphlet 

counting though [71]–[75]. Figure 3-1 shows all 2- to 5-node graphlets and their automorphism 

orbits. The description of network topology is therefore limited by graphlet size. Although larger 

graphlets may complete the description of network topology, this would be unmanageable 

from a computational point of view.  
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Figure 3-1. All 2- to 5-node graphlets and their automorphism orbits. 
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Figure 3-2. An example of the motif and graphlet decomposition. 

Figure 3-2 shows an example of the motif and graphlet analyses. The graph used as an 

example is formed by 4 nodes and five edges. In the case of motif decomposition, the graph 

can be divided into six different subgraphs. Those subgraphs are not necessarily induced. 

Subgraphs a, c, and f hold all the connections among the subset of nodes taken (they are 

induced). However, subgraphs b, d, and e omit one of the existing connections among nodes 

in the original graph. Therefore, they do not preserve all the edges from the real network, and 

they are not induced subgraphs. 
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In the case of graphlets, they should preserve all edges connecting nodes. Consequently, 

we can only find four types of graphlets in the example.  

In motif analysis, beyond the decomposition of the graph in smaller structures, we need to 

analyze whether those subgraphs are statistically significant or not. For example, to state that 

there is an overabundance of triangles, we have to compare the number of triangles 

concerning a null model. We may generate a random 4-node graph to compare its structure 

with the graph used as an example. There are several algorithms to generate random graphs 

(with different model assumptions) that generate different topologies. Accordingly, results will 

be conditioned by the algorithm used to generate the null model.  

Graphlet analyses only define the frequency of each graphlet in the network. The frequency 

of each graphlet is not compared with a null model (a comparison with a null model would be 

needed to enhance the understanding of results, as discussed in Section 3.4.1). Accordingly, 

the graph used as an example results from the combination of the following graphlets: 𝐺0 (5), 

𝐺1 (2), 𝐺2 (2), 𝐺7 (1) (as shown in Figure 3-2).  

Furthermore, we know the automorphism orbits that each node touches. Nodes that have 

two connections touch 𝑂0 (2), 𝑂1 (2), 𝑂3 (1), 𝑂12 (1) (they are part of 𝐺0, 𝐺1, and 𝐺7). Nodes 

with three connections touch 𝑂0 (3), 𝑂2 (1), 𝑂3 (2), 𝑂13 (1). The frequency of each graphlet in 

a network results easily from the frequency of the automorphism orbits. For instance, the 

number of triangles in a network is equal to the frequency of 𝑂3 in the network divided by 

three. In this example, the total frequency of 𝑂3 is 6 (2 for nodes with three connections and 1 

for nodes with two connections), and the number of triangles, 𝐺2, is 2.  

Graphlet decomposition considers all possible induced topologies for a subset of nodes. This 

is a strength with respect to motif decomposition, where the user should define the structure 

that should be found. In the prior example, users should define the subgraphs to be identified 

in the real network. However, in the case of graphlets decomposition, those subgraphs are 

already defined. Users only have to compare the real case with those predefined structures. 

The number of non-induced topologies highly increases with the subgraph size. In both motif 

analyses and graphlets analyses, the main drawback is the need for computationally intensive 

models.  

Several models developed for the network alignment problem prove the adequacy of 

graphlets as a local topological descriptor [76]–[79]. The network alignment problem aims to 

find corresponding nodes between different networks. Nodes that play a similar role in both 

networks from a topological point of view. In this field, graphlet decomposition has been 

revealed as a crucial tool to solve the problem. The basis of those models is the degree 

signature of a graphlet [70]. The degree signature of a graphlet is an extension of the node 

degree that quantifies the number of times each node in the network appears (touches) in an 

orbit. Consequently, graphlets provide a complete description of local network topology (the 

orbits each node touches) that enhances the solution of the network alignment problem. 

Similarly, graphlets might support the comparison among networks or the study of the role 

played by nodes in the network [80], [81]. Despite being a good descriptor of local properties, 
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the use of graphlet distribution (or graphlet degree signature) is not enough to have an insight 

into the global topological properties of networks. Yaveroğlu et al. propose the analysis of orbit 

correlation (whether there are graphlets that tend to appear together) to characterize network 

structure and to ease the interpretation and implications of topological properties in real 

applications [82]. 

3.3. Understanding network structure from local properties  

As explained above, graphlets can be a convenient tool for explaining the local structure of 

networks. Unfortunately, graphlet decomposition does not consider any interaction between 

graphlets. Besides, in large networks, counting graphlets is computationally intensive. It also 

supplies a substantial number of dimensions that are difficult to interpret (30 graphlets and 73 

orbits in the case of using from 2- to 5-node graphlets). Motivated by this desire to simplify and 

improve topological analyses through graphlet decomposition, this section proposes a novel 

method that reduces the topological analysis of networks to a twelve-dimensional metric, the 

GHuST framework. This metric can be calculated in any non-directed and unweighted network.  

3.3.1. The GHuST framework 

The twelve dimensions are obtained from the decomposition of networks in 2-node and 3-

node graphlets, comprising three graphlets (𝐺0, 𝐺1 and 𝐺2) and four orbits (𝑂0, 𝑂1, 𝑂2, 𝑂3). 

The adjacency matrix succinctly reveals the number of times a node touches those orbits. In 

non-directed networks, the adjacency matrix is symmetric, and the sum of the elements in the 

𝑖th row (or 𝑖th column) is, therefore, the degree of a node or 𝑂0,𝑖 (3-1). 

𝑂0,𝑖 =  ∑ 𝐴𝑑𝑗𝑖,𝑗,   ∀ 𝑗 

𝑗

 (3-1) 

The number of times a node 𝑖 touches 𝑂1 is equal to the number of nodes 𝑗 that are 

connected to node 𝑖 by a two-edge path (through node 𝑘) (3-2). If a node 𝑗 can be reached 

from node 𝑖 through one or two edges simultaneously, nodes 𝑖 and 𝑗 are vertices of a triangle, 

and they touch 𝑂3. Alternatively, the non-zero elements of 𝐴𝑑𝑗2 show the number of two-

edge paths that connect two nodes. However, this matrix does not consider if those nodes are 

vertices of a triangle or not. 

• Motifs are recurring subgraphs that are statistically relevant in a network. To 

determine the presence of motifs in a network is necessary a null model to 

compare with.  

• Graphlets are small connected induced subgraphs of a large network. A network 

may be described by the frequency of graphlets (independently of a null model). 

• Motif and graphlet decompositions need of computationally intensive models. 
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𝑂1,𝑖 =  ∑ ∑(𝐴𝑑𝑗𝑖,𝑗𝐴𝑑𝑗𝑗,𝑘)(1 − 𝐴𝑑𝑗𝑖,𝑘  ),

𝑘

  ∀ 𝑗, 𝑘 ≠ 𝑖

𝑗

 (3-2) 

𝑂2,𝑖 is the binomial coefficient (𝑛
2

) where 𝑛 is the number of edges attached to a node that 

is not connected among them attached to node 𝑖. 𝑂2,𝑖 can also be obtained from (3-3).  

𝑂2,𝑖 =  ∑ ∑(𝐴𝑑𝑗𝑖,𝑗𝐴𝑑𝑗𝑖,𝑘)(1 − 𝐴𝑑𝑗𝑗,𝑘  ),

𝑘

  ∀ 𝑗, 𝑘 ≠ 𝑖

𝑗

 (3-3) 

As an extension of 𝑂1, a node 𝑖 touches 𝑂3 when it is the vertex of a triangle (3-4). In this 

case, the number of times node 𝑖 is a vertex of a triangle is also equal to 
1

2
𝐴𝑑𝑗𝑖,𝑖

3 . 

𝑂3,𝑖 =  ∑ ∑(𝐴𝑑𝑗𝑖,𝑗𝐴𝑑𝑗𝑗,𝑘)(𝐴𝑑𝑗𝑖,𝑘  )

𝑘

,   ∀ 𝑗, 𝑘 ≠ 𝑖

𝑗

 (3-4) 

Besides, for the four orbits, 𝑃𝑡,𝑖 is a binary variable that is 1 if node 𝑖 is at least once in orbit 

𝑡 or 0 otherwise (3-5).  

𝑃𝑡,𝑖 = {
1, 𝑂𝑡,𝑖 > 0

0, 𝑂𝑡,𝑖 = 0
 (3-5) 

To enhance readability, the twelve dimensions are classified into four categories: Global 

connectivity, Hubs, Strings, and Triangles. Those categories cover different aspects of network 

structure that might condition network behavior. Furthermore, these categories allow for an 

intuitive interpretation of topology implications in real-world applications. For instance, in 

power networks, the higher presence of strings might mean a lower level of network 

robustness (higher probability of having energy not supplied in the network in case of line 

failure, given that when there is a failure in a string all the nodes that are downstream will be 

affected). Similarly, the presence of large strings in an email graph (nodes stands for community 

members and edges connect the people who send an email with the people who receive the 

email) will show that the community may follow a clearly defined hierarchical structure.  

To enhance network comparison, it is desirable that the twelve dimensions of the metric 

range between 0 and 1. In cases where a dimension does not do it, we propose a scaling factor. 

The twelve dimensions are defined as follows: 

A. Global connectivity 

Line-surplus coefficient, 𝝆𝟏. It stands for the surplus of lines in the network with respect to 

the minimum number of lines needed to build a connected graph (3-6). Given a set of nodes, 

𝑁, the minimum number of lines, 𝐿0, to have a connected graph is 𝐿0 = 𝑁 − 1, in case of large 

networks 𝐿0 ≈ 𝑁. As we only consider connected graphs, 𝑁 = ∑ 𝑃0,𝑖𝑖 . The number of lines 

installed in a network is  
∑ 𝑂0,𝑖𝑖

2
 . This dimension is therefore related to the average node degree, 
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and it supplies information about line density in a network. In networks with a radial structure 

(trees), 𝜌1 tends to zero. The higher the value of 𝜌1 the more meshed a network is. 

𝜌1 =  
1

2
 
∑ 𝑂0,𝑖𝑖

∑ 𝑃0,𝑖𝑖
− 1 (3-6) 

We define 𝜌′1 (3-7) to scale 𝜌1 between 0 and 1. Networks with 𝜌′1close to 1 have a highly 

meshed structure. 

𝜌′1 = 1 −
1

𝜌1 + 1
 (3-7) 

Leaf rate, 𝝆𝟐. This ratio compares the proportion of nodes with just one connection, known 

as leaf nodes, to the rest of nodes in the network that are not vertices of a triangle. This ratio 

discerns between networks in which edges may form a homogenous mesh that touches most 

nodes and networks characterized by the presence of hubs connecting low-degree nodes. This 

metric is calculated as the complementary of the ratio between the number of nodes that 

touches 𝑂1 but does not touch 𝑂3 and the number of nodes that touches 𝑂2 but does not 

touch 𝑂3 (3-8).  

All sets of three-connected nodes are either in graphlets 𝐺1 or 𝐺2. For those nodes that 

belong to 𝐺2 and they are not part of 𝐺3, they may touch 𝑂1, 𝑂2 or both simultaneously. A 

node is only in 𝑂2 if it is the center of an isolated star, that is, the rest of the network nodes are 

connected to it. By assuming that networks have a more complex structure, no nodes can touch 

exclusively 𝑂2. However, a node can touch exclusively 𝑂1. This occurs in cases where nodes 

have only one connection, or they are the non-common vertex of two triangles that share one 

or two vertices. Accordingly, leaf nodes are defined by: 𝑃1,𝑖 = 1, 𝑃2,𝑖 = 0 and 𝑃3,𝑖 = 0. Nodes 

that are not leaf nodes or vertices of a triangle are defined by: 𝑃1,𝑖 = 1, 𝑃2,𝑖 = 1 and 𝑃3,𝑖 = 0. 

When 𝜌2 is close to one, the presence of leaf nodes is high. The lower this coefficient, the lower 

the number of nodes that have just one connection; this is characteristic of star graphs. 

𝜌2 = 1 −  
∑ 𝑃2,𝑖(1 −  𝑃3,𝑖)𝑖

∑ 𝑃1,𝑖𝑖 (1 −  𝑃3,𝑖)
 (3-8) 

Leaf-base strength, 𝝆𝟑. This ratio analyses if leaf nodes are connected to either hubs or low-

degree nodes. This is the average number of times leaf nodes touch 𝑂1(3-9). The value of 𝑂1 

for leaf nodes is equal to the degree of its neighbor. Thus, the higher the value of 𝑂1, the higher 

the degree of the node to which they are connected. Large values of 𝜌3 may signal the presence 

of hubs in the network.  

𝜌3 =  
∑ 𝑂1,𝑖 𝑃1,𝑖 (1 −  𝑃2,𝑖)(1 −  𝑃3,𝑖)𝑖

∑ 𝑃1,𝑖 (1 −  𝑃2,𝑖)𝑖 (1 − 𝑃3,𝑖)
 (3-9) 

This dimension might be scaled with the maximum value of node degree, max (𝑂0,𝑖), in the 

network (3-10). If 𝜌3 tends to zero, leaf nodes are connected to low-degree nodes. They may 

be the end nodes of node strings. 
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𝜌′3 =
𝜌3

𝑚𝑎𝑥 (𝑂0,𝑖)
 (3-10) 

B. Hubs 

Hub coefficient, 𝝆𝟒. This dimension studies whether there is a tendency to form hubs in the 

network or not. It measures the average number of times nodes touch 𝑂2 (3-11). All nodes 

touch 𝑂2 except for leaf nodes and nodes that are only in 𝐺2(they are only vertices of triangles). 

The larger the number of connections of a node, the larger the value of 𝑂2,𝑖. Large values of 𝜌4 

therefore shows there is a tendency to make hubs in the network. Unlike 𝜌3, the hub coefficient 

does not linearly correlate with node degree; 𝑂2,𝑖 is given by the binomial coefficient (𝑛
2

) where 

𝑛 is the number of non-connected edges attached to node 𝑖 when the 𝑂0,𝑖 is greater than 2. If 

two networks have similar values of 𝜌1, but different values of 𝜌4, there is a higher tendency 

to make hubs in one network than in the other. 

𝜌4 =  
∑ 𝑂2,𝑖𝑖

∑ 𝑃2,𝑖𝑖
 (3-11) 

To range between 0 and 1, 𝜌4 can scale with the maximum value of 𝑂2,𝑖 in the network (3-

12). 

𝜌′4 =
𝜌4

max (𝑂2,𝑖)
 (3-12) 

Hub-connectivity coefficient, 𝝆𝟓. It analyzes if hubs tend to connect among them. This 

dimension is defined by the Spearman’s rank correlation between 𝑂1and 𝑂2, (3-13) where 

𝑐𝑜𝑣(𝑟𝑔𝑂1
, 𝑟𝑔𝑂2

) is the covariance of the rank variables of 𝑂1and 𝑂2 and 𝜎𝑟𝑔𝑂1
, 𝜎𝑟𝑔𝑂2

are the 

standard deviation of both rank variables. This is one of the correlations proposed by Yaveroğlu 

et al.[82]. If 𝜌5 tends to one means that nodes with high 𝑂2 are also nodes with high values of 

𝑂1. The number of times a node touches 𝑂1,𝑖 increases with the degree of a node and its 

neighbors’ degree. However, the value of 𝑂2,𝑖 only depends on node degree; the higher the 

number of connections of a node, the higher the value of 𝑂2,𝑖. Consequently, nodes with a high 

value for 𝑂1 and 𝑂2 have a high node degree, they are hubs, and they are connected to other 

hubs. Therefore, a value close to 1 means that hubs tend to connect among them. 

𝜌5 =  
𝑐𝑜𝑣(𝑟𝑔𝑂1

, 𝑟𝑔𝑂2
)

𝜎𝑟𝑔𝑂1
𝜎𝑟𝑔𝑂2

 (3-13) 

 

This dimension is also scaled to range from 0 to 1 (3-14).  

𝜌′5 =
𝜌5

2
+ 0.5 (3-14) 
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C. Strings 

String coefficient, 𝝆𝟔. This coefficient measures the proportion of nodes in the network that 

are in the middle of a string. A string is formed by two end nodes (one or both nodes are linked 

to the rest of the network and there is no edge connecting them) and a set of intermediate 

nodes that are connected consecutively and have no links with the rest of the network. 

Consequently, a node is in the middle of a string if it has two connections, it touches 𝑂2,𝑖 only 

once (𝑈2,𝑖 = 1) and it is not a vertex of a triangle (𝑈3,𝑖 = 1). Therefore, 𝜌6 is the ratio between 

the number of nodes that are in the middle of a node string and the total number of nodes that 

touch 𝑂2 (3-15). Not all degree-two nodes touch 𝑂2 once (triangle vertices do not touch 𝑂2). 

In addition, not all nodes that touch 𝑂2 once are in the middle of a node string. A node might 

touch 𝑂2 only once if it is a shared vertex of a triangle (𝑂3,𝑖 > 0 and 𝑈3,𝑖 = 0), so the node is 

not part of a string.  

𝜌6 =
∑ 𝑈2,𝑖𝑈3,𝑖𝑖

∑ 𝑃2,𝑖𝑖
 (3-15) 

𝑈2,𝑖 = {
1, 𝑂2,𝑖 = 1

0, 𝑂2,𝑖 ≠ 1
 (3-16) 

𝑈3,𝑖 = {
1, 𝑂3,𝑖 = 0

0, 𝑂3,𝑖 ≠ 0
 (3-17) 

Characteristic string length, 𝝆𝟕. This dimension is the average length of node strings 

(considering only middle nodes and disregarding the end nodes of the string) in the network as 

shown in (3-18), where 𝑛 is the number of node strings in the network. If 𝜌7 is equal to one, it 

means that all node strings have two end nodes and only one middle node.  

𝜌7 =  
∑ 𝑈2,𝑖𝑈3,𝑖𝑖

𝑛
 (3-18) 

To enhance network comparison, 𝜌7 is scaled as its inverse (3-19) 

𝜌′7 =  
𝑛

∑ 𝑈2,𝑖𝑈3,𝑖𝑖
 (3-19) 

D. Triangles 

Triangle rate, 𝝆𝟖. This coefficient studies whether there is a tendency to make triangles in 

the network or not. It measures the proportion of triangles (𝐺2) in a network with respect to 

the total three-node graphlets (3-20). The number of 𝐺2 in the network is equal to 
∑ 𝑂3,𝑖𝑖

3
 and 

the number of 𝐺1 is equal to ∑ 𝑂2,𝑖𝑖 . This ratio is similar to the global clustering coefficient. 

However, many works in the literature use the network average clustering coefficient to 

analyze network properties. The network average clustering coefficient weights more nodes 

with a low degree (as discussed in Section 3.4.2). Thus, it is not a correct measure to analyze 
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network with a non-homogenous degree distribution. The average network clustering 

coefficient, therefore, differs from the value of 𝜌8 which considers the whole topology of the 

network. 

𝜌8 =
∑ 𝑂3,𝑖𝑖

3 ∑ 𝑂2,𝑖𝑖 + ∑ 𝑂3,𝑖𝑖
 (3-20) 

Triangle concentration, 𝝆𝟗. This coefficient shows if triangles tend to be concentrated in 

networks. Triangles are concentrated when there are nodes that are vertices of two or more 

triangles. The dimension 𝜌9 is complementary to the ratio between the number of nodes that 

are vertices of triangles and the number of triangles in the network (3-21). The higher the 

number of triangles that share some vertices the lower the value of 𝜌9. If triangles have no 

shared vertices, the maximum value of 𝑂3,𝑖 is 1, and 𝑂3,𝑖 =  𝑃3,𝑖. Therefore, the number of 

nodes that are in a triangle is three times the number of  𝐺2 in the network ( 3 𝐺2 =  ∑ 𝑂3,𝑖𝑖 =

∑ 𝑃3,𝑖𝑖 ). However, if triangles share vertices, ∑ 𝑃3,𝑖𝑖 < 3 𝐺2. As 𝜌9 converges to 0, the number 

of graphlets of type 𝐺7, 𝐺8, 𝐺17, 𝐺19, 𝐺22, 𝐺23, 𝐺24, 𝐺25, 𝐺26, 𝐺27, 𝐺28 and 𝐺29 (graphlets 

composed of triangles with shared vertices) converges to 0 too.  

𝜌9 = 1 −  
∑ 𝑃3,𝑖𝑖

∑ 𝑂3,𝑖𝑖
 (3-21) 

Triangle pervasiveness, 𝝆𝟏𝟎. This dimension analyzes if triangles tend to cover the whole 

network or if they are concentrated around a few nodes. It measures the proportion of nodes 

in the network that are vertices of triangles (3-22). If a node is a vertex of a triangle, 𝑃3,𝑖 = 1. 

As explained, in connected graphs, the number of nodes in a network is ∑ 𝑃0,𝑖𝑖 . This coefficient 

compliments 𝜌8 and 𝜌9, since it sheds light whether triangles form a mesh that comprises most 

nodes in a network or not. A high value of 𝜌8 might be a consequence of networks in which 

triangles are connected to hubs and low-degree nodes have a non-meshed structure or 

networks in which all nodes are connected by a triangle mesh. Therefore, 𝜌10 allows for the 

discernment between those types of networks, this coefficient would have a low value in the 

first case, and it would be close to one in the second network. 

𝜌10 =  
∑ 𝑃3,𝑖𝑖

∑ 𝑃0,𝑖𝑖
 (3-22) 

Triangle connectivity, 𝝆𝟏𝟏. It measures if triangles are isolated in the network or they are 

part of a highly meshed structure. A triangle is isolated if one or two of its vertices are not 

connected to the rest of the network. Consequently, those vertices have only two connections, 

they touch 𝑂1,𝑖 and 𝑂3,𝑖 and they do not touch 𝑂2,𝑖. Thus, 𝜌11 is the ratio between the number 

of triangle vertices that are not connected to other nodes (𝑈2,𝑖=1) and the total number of 

nodes that are vertices of triangles (∑ 𝑃3,𝑖𝑖 ) (3-23). The lower the value of 𝜌11, the lower the 

number of isolated triangles in the network. 
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𝜌11 =  
∑ 𝑃3,𝑖 𝑈2,𝑖𝑖

∑ 𝑃3,𝑖𝑖
 (3-23) 

Triangle degree, 𝝆𝟏𝟐. This dimension shows if triangles tend to be connected to hubs or to 

low-degree nodes. It is the average degree of triangle vertices (3-24). That is the mean value of 

𝑂0,𝑖 for those nodes that are in a triangle (𝑃3,𝑖 = 1). High values of 𝜌12 mean that triangles are 

connected to hubs. The lower the value of 𝜌12, the lower the average node degree of triangle 

vertices. 

𝜌12 =  
∑ 𝑂0,𝑖 𝑃3,𝑖 𝑖

∑ 𝑃3,𝑖𝑖
 (3-24) 

To range between 0 and 1 𝜌12 is scaled with the maximum value of node degree (3-25).  

𝜌′12 =
𝜌12

max (𝑂0,𝑖)
 (3-25) 

Table 3-1 summarizes the definition and interpretation of the twelve dimensions of the 

GHuST framework. All dimensions, except 𝜌1, 𝜌5 and 𝜌8, are new indices proposed in this 

thesis. As explained, 𝜌1 is related to the average node degree, 𝜌5 was proposed by Yaveroğlu 

et al.[82], and 𝜌8 is the global clustering coefficient.  

 

3.4. Explaining the topology of real networks 

This section applies the twelve-dimensional metric to a set of five real networks to prove 

the usefulness of the proposed framework. It aims to prove if the information provided by the 

GHuST framework is consistent with the global-topology statistics usually used to describe 

network structure. 

The set of five networks includes: two infrastructure networks the Minnesota road network 

and a power grid that represents the Western States Power Grid of the United States [44], [83], 

two social networks: an extract of Facebook and the email interchanges among members of a 

Spanish university [83], [84], and a network that represents the metabolic reaction of the E.coli 

bacteria [85]. For this analysis, all networks are modeled as unweighted and undirected graphs.  

 

The new metric, the GHuST framework, is defined by twelve dimensions that cover four 

aspects of network topology: Global connectivity, Hubs, Strings and Triangles. 

To enhance network comparison, we propose a set of scale factors. Accordingly, all 

dimensions range between 0 and 1. 
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Table 3-1. Name, definition, and values of GHuST dimensions. 

Name: Definition: Values: 

Line-surplus 
coefficient 

𝜌1 = 1 − 
2 ∑ 𝑃0,𝑖𝑖  

∑ 𝑂0,𝑖 𝑖

 
𝜌1 → 1: highly meshed structure 

𝜌1 → 0: no meshed structure 

Leaf rate 𝜌2 = 1 − 
∑ 𝑃2,𝑖(1 − 𝑃3,𝑖)𝑖

∑ 𝑃1,𝑖𝑖 (1 − 𝑃3,𝑖)
  

𝜌2 → 1: large presence of leaf nodes 

𝜌2 → 0: low presence of leaf nodes 

Leaf-base strength 𝜌3 =  
∑ 𝑂1,𝑖  𝑃1,𝑖  (1 − 𝑃2,𝑖)(1 − 𝑃3,𝑖)𝑖

∑ 𝑃1,𝑖  (1 − 𝑃2,𝑖)𝑖 (1 − 𝑃3,𝑖)
 

1

max (𝑂0)
 

𝜌3 → 1: leaf nodes connected to high-
degree nodes 

𝜌3 → 0: leaf nodes connected to low-
degree nodes 

Hub coefficient 𝜌4 =  
∑ 𝑂2,𝑖𝑖

∑ 𝑃2,𝑖𝑖

 
1

max (𝑂2)
 

𝜌4 → 1: presence of hub nodes 

𝜌4 → 0: no presence of hub nodes 

Hub-connectivity 
𝜌5 =

1

2
 
𝑐𝑜𝑣(𝑟𝑔𝑂1

, 𝑟𝑔𝑂2
)

𝜎𝑟𝑔𝑂1
𝜎𝑟𝑔𝑂2

+ 
1

2
 

𝜌5 → 1: hubs tend to connect to other 
hubs 

𝜌5 → 0: hubs do not tend to connect to 
other hubs 

String coefficient 𝜌6 =
∑ 𝑈2,𝑖𝑈3,𝑖𝑖

∑ 𝑃2,𝑖𝑖

 
𝜌6 → 1: high presence of strings 

𝜌6 → 0: low presence of strings 

Characteristic 
string length 

𝜌7 = 1 −  
𝑛

∑ 𝑈2,𝑖𝑈3,𝑖𝑖

 
𝜌7 → 1: long strings 

𝜌7 → 0: short strings 

Triangle rate 𝜌8 =
∑ 𝑂3,𝑖𝑖

3 ∑ 𝑂2,𝑖𝑖 + ∑ 𝑂3,𝑖𝑖

 
𝜌8 → 1: high presence of triangles 

𝜌8 → 0: low presence of triangles 

Triangle 

concentration  
𝜌9 =  1 −

∑ 𝑃3,𝑖𝑖

∑ 𝑂3,𝑖𝑖

 

𝜌9 → 1: triangles tend to share vertices 

𝜌9 → 0: triangles do not tend to share 
vertices 

Triangle 

pervasiveness 
𝜌10 =  

∑ 𝑃3,𝑖𝑖

∑ 𝑃0,𝑖𝑖

 

𝜌10 → 1: most nodes are part of a triangle 

𝜌10 → 0: most nodes are not part of a 
triangle 

Triangle 

connectivity 
𝜌11 =  

∑ 𝑃3,𝑖 𝑈2,𝑖𝑖

∑ 𝑃3,𝑖𝑖

 

𝜌11 → 1: triangle vertices tend to be 
unconnected to the rest of network nodes  

𝜌11 → 0: triangle vertices tend to be 
connected to the network  

Triangle degree 𝜌12 =  
∑ 𝑂0,𝑖  𝑃3,𝑖  𝑖

∑ 𝑃3,𝑖𝑖

 
1

max (𝑂0)
 

𝜌12 → 1: triangle vertices are high-degree 
nodes 

𝜌12 → 0: triangle vertices are low-degree 
nodes 
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These five networks have different sizes and display completely different structures, as 

shown in Figure 3-3. The two social networks and the metabolic network are in the range of 

1,000 to 1,500 nodes, and the two infrastructure networks are two and five times larger, 

respectively. However, the number of edges is much higher in the social networks; in the case 

of the Facebook network, the number of edges is twenty times larger than in the road 

networks. Differences in network size obscure the comparison among networks with global 

statistics. In some cases, as in distance-based metrics, it is not always possible to infer if there 

is a change in a variable because of network size or network structure.  

3.4.1. Graphlets a matter of interaction  

Scalability is one of the problems when using graphlets to describe network topology. The 

number of graphlets that a node touches depends on its degree and its neighbors’ degree, but 

it also depends on the entire structure of the network. Subsequently, two networks with the 

same size (same number of nodes and edges) may have a different number of total graphlets. 

To make a comparison among networks regarding graphlets, we scale the frequency of a 

graphlet concerning the frequency of all same-size graphlets, as shown in Figure 3-4. 

Considering 3-node graphlets, the distribution shows that the percentage of triangles 𝐺2 

looks extremely low in the five networks; in the metabolic and road network, the percentage 

of triangles is under 1.5%. Only in the network representing Facebook friendships does it reach 

10%. However, a null model is necessary to compare results. Unless a network is formed 

exclusively by triangles, that is a network in which all nodes are connected among them, the 

frequency of 𝐺1 in the network is not zero. Therefore, the value of 𝐺2 has an upper bound. 

About 4- and 5-node graphlets, the frequency distribution shows that a few frequencies 

prevail over the rest. In the case of 4-node graphlets, 𝐺5 to 𝐺8 account for 9% of the power-

grid and 2.5% of the road-network distribution. Similarly, in the metabolic network and in the 

road networks, 𝐺12 to 𝐺29 account for less than 7.4% of 5-node graphlets. The presence of 

more connected graphlets (𝐺12 to 𝐺29) is only relevant to Facebook, where they represent 38% 

of 5-node graphlets. 

Two graphlets dominate the metabolic network: 𝐺4 (92% of 4-node graphlets) and 𝐺11 

(87% of 5-node graphlets). That distribution of frequencies contrasts with the other networks 

in which predominant frequencies are 𝐺3 (4-node graphlets) and 𝐺9 and 𝐺10 (5-node 

graphlets). The number of times a node is in 𝐺4 and 𝐺11 is the binomial coefficient (𝑛
𝑘

) where 

𝑛 is the number of non-connected edges attached to node 𝑖 and 𝑘 is three or four respectively. 

Therefore, those frequencies rapidly increase with the presence of hubs. The largest value of 

node degree in the metabolic network is 638 and the average node degree is 9.13, indicating a 

network with a few hubs connected to low-degree nodes. The predominance of those 

frequencies makes it impossible to infer a sound description of the metabolic network topology 

based on graphlet distribution will be limited to relatively low degrees.  
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Road network Power-grid network 

  

Email network Social network 

  

Metabolic network 

 

Figure 3-3. Graph representation of five real networks. 
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Graphlet distribution: 3-node and 4-node graphlets 

 

Graphlet distribution: 5-node graphlets 

 
Figure 3-4. 3- to 5-node graphlet distribution of five real networks. 

In infrastructure networks, connections are cost-intensive and highly connected subgraphs 

are not as frequent as in social networks. If we compare the two infrastructure networks, we 

see that there is a lower tendency to make triangles in the road network (3-node graphlets). 

However, the number of triangles in the power grid is not necessarily larger than in the road 

network, since the total number of graphlets depends on network structure. In the power grid, 

the value of 𝐺4 is twice larger than the road network. There are nodes with a higher degree 

than in the road network. Indeed, the global statistics show that the maximum degree is four 

times higher in the power-grid case. When analyzing 5-node graphlets, 𝐺9 and 𝐺10 explain 95% 

and 75% of power-grid and road-network graphlet distribution, respectively. As in the prior 

case, the main conclusion is that the average node degree is higher in the power grid and local 

structures tend to be more connected than in the road networks (since highly connected 

graphlets have a slightly higher frequency). However, this information is not enough to 

characterize network topology accurately, and it might be misleading. 
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In the case of Facebook, it is not possible to infer if the values of 𝐺9 and 𝐺10 are because of 

the presence of hubs or not. This also requires a more in-depth analysis with a correct null 

model. When comparing the two social networks, the email network looks to have a less 

connected structure, since the frequency of highly connected graphlets in the email network is 

much lower than in the Facebook network. If we compare the mean absolute error (𝑀𝐴𝐸 =

 ∑
|𝐺𝑖,𝑎−𝐺𝑖,𝑏|

𝑛𝑖 ), the most similar networks in terms of graphlets frequencies are the power grid 

and the email network (𝑀𝐴𝐸 = 0.008). The 𝑀𝐴𝐸 between Facebook and email network is 

0.021. However, when analyzing the global topological statistics (see Table 3-2), we see that 

the power grid and the email networks display entirely different structures. 

Based on prior results, the use of graphlet distribution cannot infer the topological 

characteristics of complex networks. Other statistics should complete that topological analysis.  

The analysis of graphlet distribution shows that in some networks, as in the case of 

infrastructure networks, only a few graphlets characterize network structure, so that 

calculating higher orders does not bring much additional information. Our method only uses 

𝐺0, 𝐺1 and 𝐺2. This reduces the complexity of measuring 30 graphlets and 72 orbits. 

 

3.4.2. Spinning edges to connect nodes 

The proposed method overcomes the limitations of graphlet distributions to explain 

network topology by a twelve-dimensional metric. To analyze results, Table 3-2 shows a set of 

global statistics used to analyze the five real networks, and Table 3-3 shows the value of the 

GHuST framework for those networks. In Table 3-3 values are not scaled. Figure 3-5 shows the 

scaled values of GHuST dimensions. 

Table 3-2. Global topological properties of five real networks. 

 𝑁 𝐿 𝐷 〈𝑘〉 max (𝑘) Ass. Coeff. 〈𝑙〉 𝑑 〈𝐵𝐶〉 max (𝐵𝐶) 〈𝑐𝑐〉 

Road 2,642 3,303 0.02 % 2.5 5 -0.187 35.35 99 4.52×104 6.95×105 0.016 

Power-grid  4,941 6,594 0.03 % 2.7 19 0.004 18.98 46 4.44×104 3.51×106 0.080 

Mail  1,133 5,451 0.43 % 9.6 71 0.078 7.21 8 1.47×103 2.52×104 0.220 

Social  1,446 59,589 2.85 % 82.5 375 0.067 2.22 6 887 1.88×104 0.323 

Metabolic  1,039 4,741 0.44 % 9.13 638 -0.251 2.47 6 766 2.46×105 0.377 

 

 

Graphlet distribution is not an accurate tool to infer the topological characteristics of 

complex networks. The use of graphlets provide an incomplete description of network 

structure.  
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A. Global connectivity 

The first dimension, 𝜌1, relates the number of nodes and edges. This dimension scales 

linearly with network size. This is a strength concerning other metrics such as edge density. 

While the number of edges to have a complete graph increases with ∆𝑁(∆𝑁 − 1)𝑁0, where 

∆𝑁 is the increase in nodes and 𝑁0 the first set of nodes, the minimum number of lines to have 

a connected graph increases with ∆𝑁. In the five real networks used, there is no discrepancy 

in the order provided by edge density, 𝐷, and 𝜌1. However, there would have been 

discrepancies in the comparison of the following two networks: a network with 1,000 nodes 

and 2,000 edges and another network with 1,100 nodes and 2,200 nodes. The number of edges 

per node is the same in both networks. They have twice the number of edges needed by the 

minimum spanning tree, and there is no variation in 𝜌1. However, the edge density of the 

second network is lower than the edge density of the first (0.20% and 0.18% respectively). 

Therefore, results provided by 𝜌1 give a better understanding of the relation between the 

number of nodes and edges.  

Table 3-3. Values of GHuST dimensions for a set of five real networks 

     𝜌1   𝜌2     𝜌3       𝜌4     𝜌5      𝜌6   𝜌7 𝜌8  𝜌9  𝜌10   𝜌11      𝜌12 

Road  0.25 0.04 1.85 2.18 0.72 0.57 1.55 0.01 0.03 0.05 0.01 3.42 

Power grid  0.34 0.31 3.520 4.86 0.78 0.42 1.53 0.04 0.51 0.19 0.23 4.43 

Email  3.81 0.51 16.25 85.97 0.96 0.08 1.04 0.06 0.95 0.74 0.06 12.34 

Social  40.21 0.61 93.06 3965.03 0.98 0.01 1.00 0.10 1.00 0.98 0.01 84.02 

Metabolic  3.56 0.04 321.00 472.05 0.80 0.06 1.06 0.01 0.96 0.84 0.05 10.31 

𝜌𝑖 is the dimension 𝑖 of the GHuST framework. 

For the infrastructure networks, 𝜌2 is lower in the power grid than in the road network. 

Indeed, the number of leaf nodes is 3.67% in the road network and 24.81% in the power grid. 

Therefore, we can infer that the power grid has nodes with a higher degree than the road 

network since the number of nodes per line and the percentage of nodes with only one 

connection is higher. The global statistic, maximum value of node degree, confirms that 

hypothesis. 

In the case of the social networks, 𝜌2 is lower than in the other networks (0.607 in the 

Facebook network and 0.515 in the email network). However, the percentages of nodes with 

just one connection are 1.17% and 13.23%. The dimensions 𝜌8 and 𝜌9 explain this 

inconsistency. Both social networks have a significant presence of triangles concerning other 

networks (friends of friends tend to be friends themselves). Indeed, only 1.93% of Facebook 

nodes are not part of a triangle and 25.86% of nodes in the email network. Therefore, 𝜌2 only 

applies to those nodes that are not vertices of triangles. Accordingly, most nodes that are not 

vertices of a triangle are nodes with one connection. Similarly, in the metabolic network, 15% 

of nodes are not vertices of triangles, and the number of nodes with only one connection is 

scarce (0.5% of total nodes). Consequently, the value of 𝜌2 is 0.036 in the metabolic network. 
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Road network Power-grid network 

  

Email network Social network 

  

Metabolic network 

 

Figure 3-5. Graphical representation of the GHuST framework for a set of five real networks 

The value of 𝜌3 shows that in the power grid the neighbors of nodes with one connection 

have a higher node degree than in the road network. Therefore, we infer that the road network 

has a more homogenous mesh, and the range of node-degree distribution is smaller than in 

the power grid which tends to create hubs, as shown in Figure 3-3. The presence of hubs is also 

a characteristic of the metabolic network, where we see that 𝜌3 is 321. This value is 

considerably larger than the Facebook network with a greater number of edges per node. This 

leads to the existence of a small number of hubs that concentrate most connections. The ratio 

between maximum node degree and average node degree is 70, a huge value in comparison 

with the other four networks. 
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B. Hubs 

The tendency of a network to make hubs is supported by 𝜌4. As in the case of 𝜌3, the value 

of 𝜌4 is 5.5 times larger in the metabolic network than in the email network (both networks 

have a similar number of nodes and edges). The maximum degree is 638 in the metabolic and 

71 in the email network. Both networks have a similar number of edges per node (𝜌1), the 

percentage of nodes with only one connection is lower in the metabolic network (𝜌2), and 𝜌3 

is extremely large, so we may confirm the prior hypothesis that the high value of 𝜌4 is the 

consequence of a few nodes with a high node degree. Accordingly, the third quantile of the 

degree distribution is 8 in the metabolic network and 13 in the email network. Therefore, 

although the hubs in the metabolic network have more connections on average, the number 

of nodes with a high degree is higher in the email network. In the case of the Facebook network, 

𝜌′4 is slightly larger than in the metabolic and in the mail network. We infer that in Facebook, 

the difference between high-degree nodes and low-degree nodes is not so big as in the other 

two networks.  

In the case of the two infrastructure networks, the higher the value of 𝜌4 in the power grid 

reinforces our first insight about their network topological properties. Furthermore, 𝜌′4 shows 

that in the road network the mean value of 𝑂2 is closer to the maximum value. That means 

that the road network has a more homogeneous mesh than the power grid where there should 

be a few nodes with large values of 𝑂2,𝑖. 

Finally, 𝜌5, shows if hubs tend to connect to other hubs. That correlation is clear in the social 

networks. If we choose the 50 nodes with the highest degree in the Facebook network, we see 

those nodes have connections to 50% (average value) of those nodes. However, in the 

infrastructure networks and in the metabolic network we cannot state whether hubs tend to 

connect among them or not, 𝜌5 are around 0.75 in the range [0,1]. The values of 𝜌5 diverge 

from the network assortativity coefficient, which has values close to zero (as shown in  Table 

3-2). Therefore, based on the network assortativity coefficient, nodes tend to connect high-

degree nodes and low-degree nodes indifferently. The network assortativity coefficient 

measures if the degree of a node is correlated with its neighbors’ degree. A positive correlation 

means that high degree nodes have connections with other hubs. Furthermore, low degree 

nodes are connected to nodes with a low number of connections. By contrast, in a network 

with a negative correlation, low degree nodes are only connected to high degree nodes. 

Moreover, hubs are not connected among them. In large networks, this coefficient might be 

misleading. We cannot state if hubs tend to connect to other hubs considering the network 

assortativity coefficient since it is conditioned to the way in which low degree nodes are also 

connected. Because of network size, hubs might be connected to other hubs and low-degree 

nodes at the same time. Therefore, the network assortativity coefficient would be close to zero 

(there is not a linear correlation between node degree and its neighbors’ degree) and we will 

not obtain accurate information about the connection of hubs among them. The dimension 𝜌5 

overcomes this limitation. 
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C. Strings 

Based on 𝜌5, we may think that in networks in which hubs connect among them, distances 

will be smaller. Accordingly, the characteristic path length of the Facebook network is 2, and 

the diameter is 6. Here, it is difficult to compare changes in the characteristic path length and 

the diameter since it does not scale linearly with network size. We see that the diameter is 

lower in networks with hubs (social and metabolic) than in the infrastructure networks. To 

reinforce this analysis, 𝜌6 shows that in the two infrastructure networks there are many nodes 

that are part of strings. The presence of those strings on Facebook is almost zero, and the length 

of those strings, 𝜌7, is 1. Similarly, the closer the value of 𝜌′7 to 0, the shorter the node string. 

In the email network and in the metabolic network, there are a few more strings, but their 

length is also close to 0. However, in the infrastructure networks, there is a higher presence of 

strings. In the case of the road network, the average length of node strings is similar to the case 

of the power-grid network. 

D. Triangles 

The dimensions 𝜌8, 𝜌9, 𝜌10, 𝜌11, 𝜌12 supply detailed information about network clustering. 

As previously mentioned, the network average clustering coefficient, 〈𝑐𝑐〉, places more weight 

on low-degree nodes. In the case of the metabolic network, 〈𝑐𝑐〉 is 0.377. That might lead to 

the conclusion that nearly 40% of each node’s neighbors form a complete connected subgraph. 

However, this contrasts with 𝜌8 that shows the metabolic network as the one with the lowest 

numbers of triangles. As shown in the graphlet distribution, less than 1.4% of three-connected 

nodes are triangles. The high value of 〈𝑐𝑐〉 concerning 𝜌8 shows that triangles in the metabolic 

network are connections of low-degree nodes. This is something that can be easily checked 

with 𝜌10. In the metabolic network, the average degree of triangle vertices is 10.3, this value is 

close to the average node degree and far from the maximum degree in the network, 638. The 

number of edges needed by a node whose degree is 638 to have a value of local clustering 

coefficient equal to 1 is 215,644. Furthermore, 𝜌9 shows that 96% of triangles share vertices, 

which reinforces the idea of low-degree nodes whose neighbors tend to form clusters. Those 

three dimensions explain network clustering, and they improve the information provided by 

the traditionally used network average clustering coefficient 〈𝑐𝑐〉. 

The road network has a similar value of 𝜌8. However, we see that more triangles do not 

share vertices; the average vertex degree is 3.41 and based on the first metric dimensions, we 

can conclude that the total number of triangles in the road network is lower (159 and 1,998 

respectively). The total number of 𝐺1 and 𝐺2 in the road network is lower and therefore 𝜌8 has 

similar values. To support this, we see that in the road network only 5% of nodes are vertices 

of a triangle, 𝜌9. However, in the metabolic network, 84% of nodes are part of at least one 

triangle. Comparing the two infrastructure networks, the power grid has a higher number of 

triangles (651) and 𝜌8 is larger. Unlike the road network, 26% of triangle vertices are not 

connected to the rest of the network. However, since in the power grid the maximum node 

degree is much higher than in the road network, the value of 𝜌′12 is higher in the road network. 
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In the power grid, 50% of triangles share one of their vertices, there are more lines per node 

than in the road network (𝜌1) and more isolated nodes (𝜌2), this might lead to the conclusion 

that in the power grid there are more triangle vertices that are not connected to other nodes, 

(that is whose node degree is two). In the power grid, 20% of triangle vertices have degree 

equals to 2, in the road network that percentage is 0.6%. This is something that we see in 𝜌11, 

23% of nodes that are vertices of triangles have no more connections in the power grid.  

Regarding the two social networks, both have a large number of triangles. In the case of 

Facebook, 10% of 3-node graphlets are triangles; this is a high value considering the presence 

of hubs, 𝜌4, which increases the number of total 3-node graphlets. Indeed, 98% of Facebook 

nodes are part of a triangle, as shown in 𝜌10. Furthermore, almost all triangles share their 

vertices since 𝜌9 is close 0. In the case of the email network, the presence of triangles in the 

network is 6%; this value is high in comparison with the network average clustering coefficient 

of another email network [86]. Only 5% of triangle vertices in the email network are not part of 

two or more triangles. Finally, if we compare the email network with the metabolic network, 

we can observe that in both networks 𝜌12 is similar. In the metabolic network, it looks like 

triangles are not part of hubs, since 𝜌12 is much lower than the maximum node degree (low 

value of 𝜌12
′). 

Table 3-4. Information provided by the GHuST model for 5 real networks 

 Global connectivity Hubs Strings Triangles 

Road  Low number of lines per node 

Scarce presence of leaf nodes 

Low number of hubs Presence of 
strings formed by 
several nodes 

Low presence of triangles that 
do not share vertices 

Power grid  Low number of lines per node 

Presence of leaf nodes 

Low number of hubs Presence of 
strings formed by 
several nodes 

Low presence of triangles 

Email  High number of lines per node 

Presence of leaf nodes 

Low presence of hubs 
with respect to social 
networks. Hubs are 
connected among them 

Scarce presence 
of strings 

High presence of triangles 
that tend to share vertices 
and cover the whole network 

Social  Highly meshed structure 

Leaf nodes connected to hubs 

High presence of hubs 
that are connected 
among them 

Scarce presence 
of strings 

High presence of triangles 
that tend to share vertices 
and cover the whole network 

Metabolic  High number of lines per node 

Scarce presence of leaf nodes 

High presence of hubs, 
tendency to be 
connected lower than 
in social networks 

Scarce presence 
of strings 

High presence of triangles 
that tend to share vertices 
and cover the whole network 

The description provided by the GHuST framework fully describes the topology of real 

networks.  

Result are consistent with global statistics traditionally used in complex networks. 

Furthermore, this framework overcomes the main drawbacks of global statistics. 
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3.5. A panoramic view offered by local properties 

The previous section has illustrated the application of the proposed metric as a tool for 

summarizing the main topological features of complex networks. This section aims at 

evaluating the performance of this technique using a large sample, 1404 graphs, of real 

networks from different domains: Autonomous Systems, Enzymes, Facebook, Power Network, 

Retweet, Roads, and Web. 

The autonomous-systems set stands for 733 daily instances of graphs of routers comprising 

the internet [87]. The enzymes, Facebook, retweet, roads, web, and some power-network 

graphs are obtained from an open-access network repository [83]. The enzyme dataset 

includes 476 samples (the analysis only considers graphs with more than 20 nodes). The 

Facebook set consists of 108 networks of friendship connections. The power-network graphs 

comprise the transmission (220 kV and 400 kV) power networks of fifteen European countries, 

and a set of power networks (7 graphs) obtained from the open-access repository (voltages 

levels are not specified) [12], [83]. The retweet networks form a set of 32 graphs. The road set 

includes 16 instances. Finally, 17 networks are part of the web graphs. 

Once we compute the twelve-dimensional metric for each network, a Principal Component 

Analysis (PCA) is used to reduce the dimensionality of the proposed statistic. It enables visual 

inspection of our data. PCA is a statistical technique that seeks to obtain a linear combination 

of the original variables in such a way that the maximum variance is explained. This allows us 

to obtain a low-dimensional representation of the data that captures most of the original 

information. Varimax rotation was applied to improve the understanding of PCA analysis. 

However, results obtained with varimax rotation did not improve the results shown in this 

section. Furthermore, any network with unusual topological properties will be highlighted in 

our analysis, providing a tool for detecting outliers. 

 

Figure 3-6. Variance explained and cumulative variance explained by each of the principal components 

resulting from the PCA analysis to a set of 1404 networks. 
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Figure 3-6 shows the proportion of variance explained by the principal components. By 

selecting the first three components, we are able to capture 93.4% of the variance of the 

original data, allowing us to obtain a low-dimensional view of the distribution of our data. The 

weights of the twelve dimensions of our metric for each component are shown in Figure 3-7, 

and they can be used to obtain an interpretation of each component. The first component 

(68.7% of variance), accounts for a positive contribution of 𝜌′4, 𝜌10, 𝜌′12 and a negative 

contribution of 𝜌2, 𝜌6 and 𝜌11. Therefore, the main topological differences among the 

networks analyzed lie on the proportion of leaf-nodes, presence of hubs and strings, as well as 

the triangle pervasiveness and connectivity coefficients and triangle degree. A similar 

interpretation can be obtained for the second component (19.4% of variance) and the third 

component (5.3% of variance) based on Figure 3-7. 

By projecting the coordinates of our twelve-dimensional data on the space spanned by the 

first 3 principal components, we can visualize the distribution of the metric for each network in 

this new axis system. As seen in Figure 3-8 and in Figure 3-9, networks from different processes 

tend to have similar topological properties, hence showing clear groupings in the principal-

component space.  

 

Figure 3-7. Contribution of each dimension of GHuST to the three first principal components. 
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Figure 3-8. Graphical representation of 1,404 networks in the 3D space defined by the three first 

principal components 

 

 

 

Figure 3-9. 2D projections of the 1,404 networks in the space defined by the three first principal 

components 
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Autonomous Systems Enzymes Facebook 

   

Power Network Retweet Roads 

   

Web 

 

Figure 3-10. Range of variation and median value of each metric dimension for the seven sets of 

networks analyzed. 

The autonomous-system and Facebook networks form two bounded clusters in the three-

first principal-component space. Despite being the category with more instances, all the 

autonomous-system instances are close to -0.5 in the first component and to 0 in the second 

and third components. Since in the first principal component, 𝜌𝑖 have positive and negative 

loadings, we cannot state if those values close to zero are the consequence of low values of all 

components, or they are the consequence of the balance between positive and negative 

loadings. Figure 3-10 shows the range in which the twelve dimensions vary. We see that in the 

autonomous systems, the value of the second component is the balance between positive 

loadings (𝜌′1, 𝜌9 and 𝜌10) and negative loadings (𝜌′3, 𝜌6 and 𝜌′7); the other dimensions are 

close to zero. Similarly, the analysis of ranges for each type of network allows for the 

classification of graphs. In the case of Facebook graphs, most analyzed instances have values of 
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𝜌′3, 𝜌′4, 𝜌6, 𝜌′7, 𝜌8, 𝜌11, 𝜌′12 that are close to zero and the values of 𝜌′1, 𝜌′5, 𝜌9, 𝜌10 are close 

to one. In Exhibit A, the reader can find a detailed explanation of 𝜌𝑖 distribution for each type 

of network.  

Regarding the two infrastructure networks, roads and power networks comprise two 

independent clusters. Although some road networks are close to some power grids in the space 

defined by the first and second principal components, they are clearly delimited in the other 

two projections of the three first principal components.  

Both roads and power networks have low values for the second component, that is low 

values of 𝜌′1, 𝜌9 and 𝜌10. Accordingly, the number of connections in comparison with the 

minimum spanning tree is low, there is a low number of triangles in the network, and they do 

not tend to share vertices. The instances of roads and power networks that have similar values 

for the second principal component have a similar number of edges per node. They are the 

power networks with the lowest number of lines per node concerning other power networks 

and the roads with a higher number of lines per node in their category.  

Unlike social networks, connections in infrastructure networks are cost-intensive, and they 

are conditioned by topological, morphological, technical, economical, permitting, 

environmental, managerial and political factors [88]. Consequently, the influence of all those 

factors may lead to different topological properties depending on regions. Furthermore, in the 

case of power networks, graphs may include different voltage levels, or they may be the result 

of different model assumptions [89]. This uncertainty leads to a lack of consensus about some 

of the topological properties of power networks [38].  

The cluster with the most variation among its members belongs to the enzymes group. This 

shows that a network cannot be classified in the enzyme group, such as Facebook networks. 

The green area that shows the range in Fig. 6 almost covers all the dodecagon. The topological 

properties of enzymes are case dependent. 

Finally, we can also see two clusters considering the web and retweet group. In the case of 

web networks, there is a significant variation in the third component. It ranges from -0.3 to 0.7. 

This variation is caused by the significant difference in 𝜌11 (triangle-connectivity coefficient). 

Although the median of the analyzed instances has a low value, this coefficient ranges from 0 

to 1. In the web case, we also see that although most instances have a triangle coefficient (𝜌8) 

close to zero, there is an instance in which 𝜌8 tends to 1 (the network is mainly formed by 

triangles). This coefficient is coherent with the network average clustering coefficient [83]. 

Accordingly, this framework also supports the quick detection of potential outliers. 

PCA analysis can be used for each set of networks independently. Therefore, the dimensions 

with more significant loadings for the first components are the ones that exhibit the most 

variance in each original set; hence those dimensions will provide information about the 

topological differences between networks of the same set. Dimensions that have similar values 

for all networks in the set will have a low contribution to the first components as they are 

characteristics of those networks. 
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The explained variance for each principal component and the coefficient that shape the first 

component are shown in Figure 3-11 and Figure 3-12, respectively. Low-Dimensional 

representation of the projections of the metrics in the three first principal components for each 

set of networks can be seen in Exhibit B. In the case of the road networks; the first component 

explains 88.5% of the variance. This component is mainly defined by 𝜌6 and 𝜌′7. Therefore, the 

difference among roads networks lies on the number of nodes that are part of a node string in 

the network and the length of those strings. 

When analyzing power networks, we observe that the first component only explains 44% 

of the variation. Consequently, the number of coefficients to describe and to explain 

differences among power networks is larger. The first component is mainly described by 𝜌′1, 

𝜌2, 𝜌′3, 𝜌′4, 𝜌9, 𝜌′12. It is necessary to include five principal components, to explain 95% of the 

variance of the data. This increases the number of metric dimensions required to have a deep 

understanding of power-network topology. In the case of Facebook, the first component 

explains 72% of the variance. Consequently, the main differences lie in the leaf coefficient, leaf-

connection degree, and triangle degree. 

 

Figure 3-11. Variance explained and cumulative variance explained by each of the principal components 

of the resulting PCA applied independently to each type of network analyzed. 
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Figure 3-12. Contributions of each dimension of the GHuST framework to the first principal component 

obtained for each set of networks analyzed. 

 

Results show the strengths of the proposed method to compare networks of different 

nature and to find the topological differences among same-nature networks. 

 

 

The use of PCA to reduce the dimensions of the GHuST framework allows for graphical 

representation of networks in the three-dimensional space. 

Networks form different processes tend to have similar topological properties, hence 

showing clear groupings in the principal-component space.  
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3.6. Takeaways 

The analysis of network graphlets, a local-topological statistic, gives rise to a new description 

of the global topology of complex networks. This thesis introduces an innovative method that 

analyzes the interaction among graphlets to explain and characterize network topology. This 

method is based on 2- and 3-node graphlets (three graphlets and four orbits) that are easily 

derived from the adjacency matrix. Therefore, it overcomes the limitation of counting high 

degree graphlets that might be cost-intensive for large networks. 

The application of the novel framework to five real networks shows that the proposed 

method is consistent with the global statistics traditionally used to characterize network 

structure. Furthermore, it overcomes two of their main drawbacks: the use of metrics based 

on average values and the application of metrics that do not scale linearly with network size. 

Accordingly, the comparison among networks of different sizes does not require any analysis 

of metric scalability.  

The proposed method has been also validated with a large sample study of networks that 

arise in different fields. Results prove that the information provided by this novel metric can be 

used to identify the underlying topological features of the networks and even to provide us 

with a visual tool to distinguish networks with different properties. 

Consequently, this method might explain the evolution in both local and global properties 

of networks in which growth affects the whole structure. It can also be used to compare 

networks where network growth does not necessarily imply a change in local properties. This 

is common in infrastructure networks. 

Finally, this work sets up a systematic analysis consisting of a twelve-dimensional metric to 

explain the properties of the network structure. Moreover, the proposed method allows for 

the translation of topological properties into other scientific dimensional languages. This is 

possible because global properties are explained from local structures that are easily 

interpretable. 
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4  THE ROLE OF TOPOLOGY IN SYNTHETIC 

POWER GRIDS 

4.1. Applying the GHuST framework to power networks 

The use of global statistics, such as network average clustering coefficient, characteristic 

path length, or network diameter, are not enough to provide a sound explanation of power-

network topology, as explained in Chapter 2 and Chapter 3. For instance, based on those global 

statistics, we cannot explain why the French 220-kV and the German 220-kV networks have 

similar values of network diameter if the French network is 4.3 times bigger than the German 

one. Furthermore, the use of global statistics may lead to misleading conclusions, as discussed 

in previous chapters with the network average clustering coefficient. Moreover, global statistics 

do not always scale with network size. This hinders the correct characterization of power-

network topology and the comparison among networks. 

Not only may the use of global statistics give an incomplete description of network topology, 

but they can also condition the topological validation of synthetic power grids. As explained 

previously, synthetic power networks are non-real, albeit realistic, power networks that are 

topologically and electrically consistent with real networks. Accordingly, it is necessary to define 

a transparent methodology to validate the structure of synthetic networks. This method should 

compare the topology of synthetic and real networks regardless of network size. 

This chapter proposes the use of the GHuST framework to complete the topological 

description of power networks and to analyze the topological consistency of synthetic power 

grids. First, the use of this novel framework will allow us to have a better understanding of 

network topology, solving those questions about network topology that cannot be answered 

in Chapter 2. Second, the GHuST framework will set up a complete method to analyze the 

topological consistency of synthetic networks. 

The rest of the chapter is organized as follows; Section 2 compares the European 

transmission power networks based on GHuST dimensions. Section 3 proposes the use of the 

GHuST framework for the validation of synthetic power grids. Section 4 analyzes the topological 

consistency of published synthetic power networks. Finally, Section 5 discusses the results.  
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4.2. Completing the topological description of power networks 

The introduction of the GHuST framework showed that the topology of power networks is 

different from the topology of other networks such as social or road networks. In Chapter 3, 

we could observe that those networks were clearly differentiated in the topological space. We 

also saw that the variance in the power-network cluster was higher than in the Facebook or 

autonomous-system clusters. Accordingly, topological differences among power-network 

instances were higher. We stated that the lack of information about voltage level or network 

location was leading to that dispersion. We, therefore, assumed that we might find some sub-

clusters inside the power-network region. 

The lack of a large set of real power networks makes it impossible to carry out statistical 

analysis to verify the existence of sub-clusters based on the power-network structure. 

However, a more in-depth analysis of power-network topology with the GHuST framework may 

complete the description of power-network topologies given in Chapter 2. We apply the GHuST 

framework to the fifteen European transmission power networks presented in Chapter 2 (we 

also consider the 400-kV and the 200-kV networks both as a single network and as independent 

networks). This allows for a comparative analysis based on location (country) and voltage level. 

4.2.1. Relating voltage level and topology 

To analyze if voltage level conditions the topology of the European transmission power 

networks, we apply the GHuST framework to both voltage levels independently (400 and 220 

kV) and to the network that includes both voltage levels linked by transformers. Figure 4-1 

shows the range, the first, second, and third quartile for each dimension of GHuST. 

The twelve dimensions show that the 220-kV network has a slightly less meshed structure 

than the 400-kV network. Based on the difference between quartiles, in the 220-kV network, 

the number of lines installed is lower, there is a higher number of leaf nodes, the average 

degree of leaf connections is lower, and there is a lower tendency to make hubs. Regarding 

node strings, the number of node strings and the length of those strings is slightly higher in the 

220-kV network. Similarly, the presence of triangles is lower in the 220-kV network; they cover 

a lower number of vertices, and the percentage of shared vertices is also lower. When analyzing 

both voltage levels together, the structure has a higher number of lines per node, since it 

includes transformers. Beyond that change, there is no remarkable difference that can be 

obtained from GHuST concerning the analysis of both voltage levels independently. 

The GHuST framework overcomes the limitations of global statistics traditionally used 

in complex networks. The main applications of the GHuST framework in power 

networks are: 

• Full topology description of power networks.  

• Topological validation of synthetic power grids. 
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European Transmission Networks 400 kV and 220 kV 

 
European Transmission Networks 400 kV 

 
European Transmission Networks 220 kV 

 

Figure 4-1. Range of variation for each dimension of the GHuST framework for the European transmission 

power networks 
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The differences seen between the 220-kV and 400-kV network are in line with the results 

showed in Chapter 2. The less meshed structure leads to higher distances among nodes (higher 

values of characteristic path length and network diameter) in the 220-kV network. Moreover, 

the maximum and mean betweenness centrality are higher in the 220-kV network since the 

number of alternative paths to go from one node to another is lower. 

 

4.2.2. Countries define network structure 

Chapter 2 showed that European transmission power networks followed some topological 

patterns. We found the number of lines, characteristic path length, network diameter and 

betweenness centrality (mean and maximum values) scale with network size. However, most 

countries have a certain deviation regarding the regression line. This could not be explained by 

global statistics. The topological information provided by the GHuST framework sheds light on 

the analysis done in Chapter 2. Values of GHuST for the 220-kV network, the 400-kV network, 

and 200-kV and 400-kV network together are shown in Table 4-1 to Table 4-3.  

Results show that networks with equivalent size may display completely different 

topologies. This is the case of the Portuguese and the Swiss 400-kV and 200-kV networks. Both 

have similar size, 159 and 158 nodes respectively. However, the Portuguese network has more 

lines installed and a higher presence of leaf nodes, hubs, and triangles. Those triangles share a 

higher number of vertices in the Portuguese network. Furthermore, the number of node strings 

and their length are larger in the Swiss network. It shows that the Swiss network has a more 

homogeneous structure with lower complex local structures. This explains the topological 

differences between both countries regarding characteristic path length, network diameter, or 

betweenness centrality that are not so intuitive. The mean value of betweenness centrality is 

higher in the case of Portugal since the presence of hubs and leaf nodes may lead to the 

presence of network components with higher values of centrality in the network. The presence 

of hubs may also lead to a lower network diameter. However, a more homogeneous mesh with 

a smaller number of leaf nodes may reduce the characteristic path length. 

The tendency to form hubs in the Portuguese 400-kV network is exceeded only by France. 

While in France 𝜌4 is twice the mean value for the European countries, the number of lines 

installed per node is one of the lowest values in the European networks. We also see that the 

percentages of node strings in the French networks are low and the characteristic string lengths 

are also the lowest values among the fifteen countries.  

 

Voltage level slightly conditions the topology of transmission power networks. The 400-

kV network has a more meshed structure with a higher presence of hubs and triangles. 

The number of strings is lower than in the 220-kV network.  
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Table 4-1. GHuST values for 400-kV and 220-kV European transmission networks. 

Country 𝑁 𝜌1 𝜌2  𝜌3 𝜌4 𝜌5 𝜌6 𝜌7 𝜌8 𝜌9 𝜌10 𝜌11  𝜌12 

Hungary (50) 0.17 0.60 0.62 0.29 0.51 0.33 0.13 0.04 0.17 0.30 0.33 0.56 

Netherlands (55) 0.13 0.33 0.61 0.29 0.67 0.47 0.39 0.03 0.22 0.13 0.14 0.71 

Greece (57) 0.29 0.13 0.34 0.17 0.67 0.45 0.32 0.05 0.33 0.32 0.17 0.53 

Bulgaria (63) 0.23 0.43 0.61 0.31 0.70 0.28 0.09 0.03 0.06 0.27 0.18 0.64 

Serbia (84) 0.21 0.49 0.45 0.09 0.72 0.33 0.07 0.03 0.43 0.20 0.35 0.32 

Belgium  (88) 0.16 0.38 0.54 0.25 0.66 0.40 0.23 0.03 0.14 0.20 0.28 0.59 

Austria (89) 0.25 0.23 0.39 0.20 0.72 0.42 0.26 0.05 0.31 0.30 0.33 0.50 

Romania (117) 0.27 0.22 0.50 0.20 0.85 0.40 0.49 0.03 0.13 0.22 0.15 0.53 

Switzerland (158) 0.29 0.20 0.22 0.09 0.78 0.43 0.19 0.02 0.14 0.23 0.31 0.40 

Portugal (159) 0.33 0.37 0.32 0.12 0.74 0.26 0.17 0.05 0.47 0.35 0.16 0.39 

Poland (163) 0.34 0.16 0.40 0.17 0.82 0.38 0.16 0.03 0.25 0.26 0.19 0.54 

Italy (634) 0.22 0.36 0.38 0.10 0.77 0.37 0.27 0.02 0.18 0.15 0.14 0.44 

Germany (782) 0.28 0.26 0.31 0.08 0.72 0.40 0.27 0.04 0.26 0.3 0.25 0.33 

Spain (798) 0.28 0.20 0.32 0.10 0.79 0.44 0.29 0.03 0.13 0.25 0.23 0.41 

France (1659) 0.23 0.41 0.23 0.03 0.73 0.41 0.24 0.02 0.22 0.19 0.25 0.23 

𝜌𝑖 is the dimension 𝑖 of the GHuST framework. 

 

 

Table 4-2. GHuST values for 400-kV European transmission networks. 

Country 𝑁 𝜌1 𝜌2  𝜌3 𝜌4 𝜌5 𝜌6 𝜌7 𝜌8 𝜌9 𝜌10 𝜌11  𝜌12 

Bulgaria (21) 0.22 0.27 0.8 0.34 0.72 0.33 0.2 0.04 0.00 0.29 0.33 0.63 

Hungary (28) 0.26 0.38 0.58 0.36 0.62 0.35 0.17 0.06 0.20 0.43 0.42 0.60 

Austria (31) 0.23 0.13 0.42 0.22 0.65 0.43 0.44 0.12 0.46 0.42 0.46 0.53 

Serbia (33) 0.05 0.53 0.62 0.29 0.67 0.41 0.29 0.01 0.00 0.09 0.33 0.50 

Netherlands (35) 0.13 0.33 0.54 0.28 0.64 0.50 0.33 0.04 0.22 0.20 0.14 0.71 

Switzerland (37) 0.20 0.25 0.31 0.22 0.88 0.50 0.43 0.03 0.00 0.24 0.22 0.67 

Romania (46) 0.28 0.14 0.60 0.24 0.75 0.43 0.29 0.03 0.17 0.22 0.10 0.63 

Greece (57) 0.29 0.13 0.34 0.17 0.67 0.45 0.32 0.05 0.33 0.32 0.17 0.53 

Portugal (57) 0.28 0.56 0.45 0.32 0.71 0.24 0.13 0.09 0.59 0.37 0.19 0.62 

Belgium  (58) 0.13 0.42 0.56 0.27 0.65 0.43 0.33 0.01 0.00 0.10 0.17 0.67 

Poland (59) 0.28 0.20 0.44 0.28 0.83 0.43 0.33 0.06 0.37 0.32 0.11 0.66 

Spain (201) 0.29 0.19 0.41 0.16 0.78 0.47 0.32 0.03 0.14 0.28 0.21 0.52 

Italy (262) 0.18 0.39 0.39 0.10 0.71 0.38 0.28 0.02 0.11 0.15 0.15 0.39 

France (386) 0.19 0.59 0.37 0.11 0.72 0.32 0.12 0.01 0.21 0.13 0.08 0.42 

Germany (480) 0.28 0.21 0.34 0.09 0.69 0.45 0.29 0.04 0.29 0.34 0.27 0.36 

𝜌𝑖 is the dimension 𝑖 of the GHuST framework. 
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Table 4-3. GHuST values for 220-kV European transmission networks. 

Country 𝑁 𝜌1 𝜌2  𝜌3 𝜌4 𝜌5 𝜌6 𝜌7 𝜌8 𝜌9 𝜌10 𝜌11  𝜌12 

Greece (0) - - - - - - - - - - - - 

Netherlands (20) 0.00 0.44 0.66 0.40 0.45 0.60 0.83 0.00 0.00 0.00 0.00 0.50 

Hungary (22) 0.00 0.79 0.67 0.40 0.31 0.29 0.00 0.02 0.00 0.14 0.00 0.76 

Belgium  (30) 0.09 0.47 0.43 0.32 0.63 0.40 0.17 0.10 0.20 0.41 0.42 0.62 

Bulgaria (42) 0.14 0.52 0.51 0.29 0.56 0.33 0.13 0.04 0.08 0.26 0.18 0.61 

Serbia (49) 0.20 0.54 0.54 0.11 0.71 0.32 0.25 0.04 0.48 0.29 0.36 0.34 

Austria (58) 0.16 0.32 0.49 0.31 0.52 0.38 0.29 0.04 0.07 0.25 0.36 0.64 

Romania (71) 0.10 0.31 0.44 0.19 0.71 0.55 0.56 0.05 0.11 0.23 0.25 0.52 

Portugal (102) 0.31 0.28 0.36 0.12 0.70 0.30 0.17 0.04 0.35 0.34 0.17 0.40 

Poland (104) 0.25 0.21 0.48 0.19 0.78 0.43 0.26 0.03 0.11 0.23 0.25 0.55 

Switzerland (121) 0.24 0.21 0.25 0.10 0.69 0.47 0.19 0.03 0.18 0.23 0.33 0.40 

Germany (302) 0.12 0.39 0.36 0.11 0.61 0.47 0.31 0.04 0.15 0.23 0.33 0.40 

Italy (372) 0.15 0.38 0.32 0.09 0.75 0.42 0.31 0.03 0.23 0.16 0.19 0.43 

Spain (597) 0.19 0.24 0.33 0.09 0.72 0.52 0.39 0.03 0.12 0.23 0.31 0.40 

France (1273) 0.14 0.44 0.26 0.05 0.70 0.43 0.31 0.02 0.18 0.15 0.24 0.27 

𝜌𝑖 is the dimension 𝑖 of the GHuST framework. 

That may explain why France has a similar characteristic-path length and network diameter 

than Germany in the 400 kV and 220 kV network, but the number of nodes in France is more 

than twice the number of nodes in the German 400-kV and 220-kV network. 

Results also show divergences concerning the network average clustering coefficient 

showed in Chapter 2. The Italian 220-kV network has a lower network average clustering 

coefficient than the French 220-kV network. However, the number of triangles is lower in the 

French network. Additionally, the average degree of those triangles is also lower in the French 

network. Consequently, this leads to a higher value of network average clustering coefficient 

as discussed in Chapter 3. The comparison of the twelve dimensions shows that the Portuguese 

400-kV network is one of the fifteen countries with large values of lines per node. However, a 

large number of lines installed does not necessarily imply a lower number of leaf nodes. 

Portugal is one of the countries with a higher number of leaf nodes (𝜌2 is 0.56). Therefore, lines 

are concentrated in some areas. Indeed, the Portuguese 400-kV network is the second network 

with a higher tendency to make hubs. Furthermore, we find a high presence of triangles in the 

network, and they tend to share vertices. Consequently, the Portuguese network has highly 

complex local structures that cannot be explained with global statistics. We also may find 

networks with similar structures. The Spanish and German 400-kV networks have similar values 

for global statistics. Those countries also have similar values for GHuST. The slight differences 

between them lie on the percentage of shared vertices and vertices degree.  

Network topology displays substantial differences depending on location. We have not 

found electrical considerations that explain those differences. Consequently, the generation of 

synthetic power grids should be flexible enough to adapt resulting in networks to the 

complexity of the country they stand for. Furthermore, the analysis of network topology with 

global statistic has been revealed insufficient to give a sound explanation of network topology. 
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4.3. Topological validation of test cases 

Based on the topological description given by the GHuST framework along with results in 

Chapter 2, we can conclude that although there are structural similarities among power 

networks, each country displays different topologies. Those differences may impact on 

network operation or network robustness. Consequently, the topology of synthetic power 

networks should be tested to analyze the topological consistency concerning real networks.  

Several models have been proposed for the generation of synthetic power grids, both 

spatial and non-spatial networks [21], [22], [65], [90]. However, some of those works did not 

give enough attention to topological validation [65]. That validation is usually based on global 

statistics, that as explained in this chapter, have two main drawbacks: the use of average values 

that might be misleading and the use of distance-based metrics that do not scale linearly with 

the number of nodes. Accordingly, the use of global statistics may lead to wrong validation. 

We propose the use of the GHuST framework to validate the topology of synthetic power 

networks. The twelve dimensions are complementary, and they should not lead to biased 

conclusions. Furthermore, they are size-independent, and it is not necessary to analyze metric 

scalability. 

The twelve dimensions of GHuST in a synthetic network should be similar to the dimensions 

of GHuST in the real power network it represents. In case real data are not available, the 

synthetic network can be compared with the results obtained for the European transmission 

power networks. These data, provided by ENTSO-e, show the real topology of fifteen 

transmission networks. However, the topology of other real networks might display different 

topologies. Consequently, based on the comparison with those networks, we can only conclude 

whether the topology of the synthetic network is consistent (from a statistical point of view) 

with the European power network topologies or not. We cannot conclude that a network with 

different values of GHuST is incorrect. 

Since values in the second and third quartiles are close (see Figure 4-1), the higher the 

difference in a dimension, the lower the probability of finding that topology in a real network. 

In this thesis, we consider that a synthetic network is topologically consistent if the twelve 

dimensions of GHuST are in the range defined by the European transmission networks. Because 

of the wide range for some dimensions, we will point out if a dimension is in the first or fourth 

quartile. This does not mean that the topology of the synthetic network is inaccurate; it is just 

a sign of caution. The use of a higher number of real power-network instances would increase 

The GHuST framework shows that the idiosyncrasy of a country highly conditions the 

structure of transmission power networks. The twelve dimensions show topological 

differences among countries that were not explained by global statistics. 
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the statistical consistency of the ranges defined for each dimension of the GHuST framework 

(the methodology to validate the topology of synthetic power grids would be the same).  

This chapter only focuses on the topological validation of synthetic power grids. A complete 

validation of synthetic power grids should also include electrical considerations. However, if a 

synthetic power grid is not topologically consistent with real networks, we can conclude that 

the synthetic network is not an accurate network model. Once synthetic power grids are 

validated from a topological point of view, they should be validated considering electrical 

considerations such as network operation.  

 

4.4. Analyzing the topology of synthetic networks 

This section analyzes the topology of four sets of non-real power networks: ACTIVSg, 

Columbia University synthetic network, PEGASE, and SDET. Those network models are available 

in the open-access repository DR Power [91]. 

The ACTIVSg and the Columbia University synthetic networks are spatial networks; their 

nodes are geographically distributed. Both sets of networks result from two novel algorithms 

proposed to generate spatial synthetic power grids (those algorithms are fully described in 

Chapter 5). Consequently, an in-depth topological analysis would also help to understand the 

behavior and effectiveness of both algorithms to generate realistic synthetic power networks. 

The PEGASE and the SDET networks are non-spatial, and there is no information about the 

generation process that has been followed to create them. Accordingly, the GHuST framework 

would highlight exclusively the topological differences or similarities between those networks 

and the European transmission networks used as a reference.  

4.4.1. ACTIVSg 

This set of six synthetic grids stands for some parts of the North American power grid. 

Network size ranges from 200 nodes to 70,000 nodes. Those networks have been developed 

in the context of the US ARPA-E Grid Data research project [20]. Both topological and electrical 

considerations drive the generation process of those networks [59].  

 

 

The GHuST framework allows for a sound topological comparison between real and 

synthetic network topologies. It compares network structures regardless of network 

size. A synthetic network is consistent from a topological point of view if the twelve 

dimensions of GHuST are similar to the real network it stands for. 
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A. ACTIVSg 200 

This 200-node network is located in the central part of Illinois (US), and it includes two 

voltage levels: 230 kV and 115 kV. The 230-kV network has 17 nodes, and the 115-kV network 

has 134 nodes. The rest of the nodes are low-voltage nodes (13.8 kV) connected to the 

transmission network through transformers; they are leaf nodes. To analyze the structure of 

this network, we compare the ACTIVSg-200 network with the 220-kV European networks. Since 

transformers are not included in the reference networks, we also analyze the topology of the 

ACTIVSg 200 after removing low-voltage nodes. The values of GHuST are shown in Table 4-4. 

We see that in the analysis of the entire network (including low-voltage nodes), the twelve 

dimensions are consistent with the reference. Although some dimensions are in the first or 

third quartile, all of them are in the reference range. However, after removing low-voltage 

nodes, the reduction in the number of leaf nodes leads (𝜌2) out of the range. Moreover, the 

tendency of hubs to be connected among them (𝜌5) is also extremely high. This might be 

caused by a lower value of maximum node degree in the synthetic network (differences in the 

degree distribution of the synthetic and the reference networks).  

From the analysis of each voltage level independently, we can conclude that the 230-kV 

network has an extraordinarily large number of triangles. The value of 𝜌8 (0.12) is three times 

larger than the mean value for the fifteen European countries. Similarly, the number of nodes 

that is part of a triangle, 𝜌10, (47%) is also far from the mean value of the European 220-kV 

power networks (26%). 

The number of lines per node that is an input of the algorithm is consistent with the 

reference in all cases. The 115-kV layer has a lower number of lines per node than the 220-kV 

network. The properties of the 115 kV are expected to be slightly different, and we have no 

reference to compare them. However, all values are in the range defined by the 220-kV 

reference networks. 

Although values of GHuST are in the range in most cases, the presented differences may 

lead to infer that the algorithm generates a more homogenous structure than the observed in 

the European case. With a similar number of lines per node, this mesh has a lower number of 

nodes with one connection and a higher number of triangles. This might be caused by the use 

of the Delaunay triangulation to build the network, as explained in the next chapter. 

Table 4-4. GHuST values for the ACTIVSg 200 network 

 𝜌1 𝜌2  𝜌3 𝜌4 𝜌5 𝜌6 𝜌7 𝜌8 𝜌9 𝜌10 𝜌11 𝜌12 

Entire network 0.18 0.43 0.48 0.09 0.71 0.42 0.45 0.02 0.21 0.16 0.06 0.40 

Excluding low-volt. Nodes 0.23 0.19 0.53 0.20 0.82 0.47 0.49 0.03 0.21 0.21 0.06 0.66 

115 kV network 0.15 0.25 0.48 0.17 0.77 0.53 0.51 0.03 0.15 0.17 0.09 0.61 

230 kV network 0.19 0.33 0.40 0.35 0.70 0.42 0.40 0.12 0.33 0.47 0.25 0.65 

𝜌𝑖 is the dimension 𝑖 of the GHuST framework. 
Green values are in the second or in the third quartile, orange values are in the first or in the fourth quartile, red 
values are out of the range. 
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B. ACTIVSg 500 

The ACTIVSg-500 network is located in the northwestern part of South Carolina, and it 

comprises two voltage levels: 345 kV and 138 kV. As in the prior case, this synthetic network 

also includes 13.8 kV nodes. Before applying the GHuST framework, we focus on network size. 

The number of nodes in the 138-kV network is more than twelve times larger than in the 345-

kV network. In the reference networks, the maximum ratio between the number of nodes in 

both voltage levels is lower than 4. This difference may lead to misleading results when 

analyzing the network as a whole. In this case, GHuST values for the entire network are 

compared with the 400-kV and 220-kV reference networks. We compare the 345-kV synthetic 

network with the 400-kV reference networks and the 138-kV synthetic network with the 220-

kV reference networks. The values of GHuST are shown in Table 4-5. 

In the case of considering the 345-kV and 138-kV networks together, we find several 

inconsistencies. The number of nodes that are part of a string, 𝜌6, is low. The average length of 

those strings, 𝜌7, is shorter than the reference. Moreover, the number of triangles, 𝜌8, the 

number of nodes that are vertices of a triangle, 𝜌10, and the percentage of isolated triangles, 

𝜌11, are out of the range. The rest of the dimensions are in the third or fourth quartile in the 

case of the entire network.  

As in the prior case, in the 138-kV network, we observe that the number of nodes in a string 

is low. The rest of the values are in range. For the 345-kV network, the only inconsistency is 

related to string length, 𝜌7.  

According to prior results, the large number of 138-kV nodes with low values of 𝜌8, 𝜌10, 𝜌11 

leads to low values of those dimensions in the entire network. As in the ACTIVSg-200 network, 

we observe that the algorithm tends to make a large number of triangles for the 345-kV 

network (𝜌8 and 𝜌10 are in the fourth quartile), and the percentage of shared vertices is low. 

However, the 135-kV network is featured by an extremely low number of triangles. 

Table 4-5. GHuST values for the ACTIVSg 500 network 

 𝜌1 𝜌2  𝜌3 𝜌4 𝜌5 𝜌6 𝜌7 𝜌8 𝜌9 𝜌10 𝜌11 𝜌12 

Entire network 0.14 0.57 0.30 0.07 0.68 0.09 0.00 0.01 0.11 0.08 0.02 0.33 

Excluding low-volt. nodes 0.17 0.46 0.30 0.14 0.68 0.13 0.07 0.01 0.11 0.10 0.02 0.47 

138 kV network 0.11 0.49 0.29 0.13 0.67 0.18 0.11 0.01 0.12 0.08 0.07 0.46 

345 kV network 0.18 0.25 0.48 0.31 0.84 0.45 0.50 0.06 0.08 0.35 0.36 0.64 

𝜌𝑖 is the dimension 𝑖 of the GHuST framework. 
Green values are in the second or in the third quartile, orange values are in the first or in the fourth quartile, red 
values are out of the range. 

C. ACTIVSg 2000 

This network is located in the State of Texas, and the voltage levels included are 500 kV, 230 

kV, 161 kV, and 115 kV. As in prior cases, it also includes low-voltage nodes (24 kV, 22 kV, 20 

kV, 28 kV, 13.8 kV, and 13 kV). However, in the real ERCOT system, there is no 500-kV nor 230-
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kV power network. The results of the topological study are shown in Table 4-6.  

In the analysis of all voltage levels together (including low-voltage nodes), the tendency of 

hubs to be connected among them, 𝜌5, is out of the range, and the percentage of triangles in 

the network (𝜌8) is almost null. Indeed, the percentage of nodes that are vertices of a triangle 

(𝜌10) is 2% (the minimum value of this dimension in the reference networks is 12%). Moreover, 

the percentage of shared vertices (𝜌9) and the percentage of isolated vertices (𝜌11) are out of 

the range. 

In the case of excluding the low-voltage nodes, 𝜌2 is close to zero. That means that most 

nodes have at least two connections. Consequently, the presence of leaf nodes is scarce after 

removing transformers; only 7 nodes out of 1,151 were connected to the network through one 

transmission line. This is unusual in the analyzed networks, where the mean value of 𝜌2 is 0.32. 

Additionally, 𝜌3 and 𝜌4 are low (first quartile) and 𝜌5 is high (fourth quartile). This might reflect 

differences in the degree distribution of the synthetic network in comparison with the 

reference networks. Furthermore, triangle properties are not consistent with the reference. 

When considering the 500-kV network independently, only 𝜌3 and 𝜌12 are also out of range. 

This reinforces the idea about the presence of inconsistencies related to the degree 

distribution. High values of 𝜌3 and 𝜌12 might reflect that the maximum node degree of that 

network is low in comparison with the reference. This network has the same problem with 

triangles than the prior cases. In the 115-kV and 161-kV networks, the value of 𝜌2 (leaf nodes) 

is 0.11 below the minimum value in the 220-kV reference networks. It is expected that the 

lower the voltage level, the lower the mesh and the higher the number of leaf nodes. 

Accordingly, the lack of triangles in this subnetwork might not be so relevant. 

As in prior synthetic networks, there is a significant difference between the number of 

nodes in the 500-kV network (120 nodes) and the 230-kV, 161-kV, 115-kV networks (1,431 

nodes). The topology of this network reinforces the idea that the algorithm used may lead to 

homogenous structures with a low number of leaf nodes. Thus, it cannot replicate the 

clustering (triangulation) of real networks.  

Table 4-6. GHuST values for the ACTIVSg 2,000 network 

 𝜌1 𝜌2  𝜌3 𝜌4 𝜌5 𝜌6 𝜌7 𝜌8 𝜌9 𝜌10 𝜌11 𝜌12 

Entire network 0.25 0.23 0.46 0.04 0.86 0.39 0.33 0.00 0.00 0.02 0.03 0.26 

Excluding low-volt. nodes 0.30 0.00 0.24 0.09 0.88 0.42 0.35 0.00 0.00 0.02 0.03 0.40 

115 kV network 0.20 0.09 0.26 0.16 0.85 0.52 0.43 0.00 0.00 0.03 0.05 0.54 

161 kV network 0.18 0.07 0.30 0.22 0.83 0.53 0.43 0.00 0.00 0.01 0.17 0.63 

230 kV network 0.20 0.15 0.24 0.11 0.79 0.49 0.30 0.00 0.00 0.02 0.00 0.46 

500 kV network 0.22 0.12 0.41 0.28 0.87 0.45 0.40 0.01 0.00 0.05 0.17 0.70 

𝜌𝑖 is the dimension 𝑖 of the GHuST framework. 
Green values are in the second or in the third quartile, orange values are in the first or in the fourth quartile, red 
values are out of the range. 
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D. ACTIVSg 10k  

This network stands for the US part of the Western Electricity Coordinating Council (WECC) 

system. The ACTIVSg-10k network comprises seven voltage levels: 115 kV, 138 kV, 161 kV, 230 

kV, 345 kV, 500 kV and 765 kV as well as distribution nodes (1 kV, 13.2 kV, 13.8 kV, 18 kV, 20 

kV, 22 kV and 24 kV). However, there is no 765-kV network in the actual WECC transmission 

power network. As in prior cases, the GHuST framework is calculated for the entire network, 

and for each voltage level independently, results are shown in Table 4-7.  

In the case of the entire network, we observe that 𝜌3, 𝜌8, 𝜌10, and 𝜌11 are out of the 

reference range. The degree of leaf-node connections, the number of triangles, the percentage 

of nodes that are part of a triangle, and the percentage of isolated triangles are not consistent 

with the European networks. There is only 6% of nodes that are vertices of triangles, and the 

number of isolated triangles is null. Furthermore, the low values of 𝜌4 (tendency to make hubs) 

and the high value of 𝜌5 (hubs tend to be connected among them) question the degree 

distribution of the synthetic network. 

In the analysis of each voltage level independently, we see that the number of leaf nodes is 

higher in the 138-kV, 161-kV network than in 345-kV, 500-kV, and 765-kV networks. As 

mentioned, it is expected that the higher the voltage level, the higher the mesh and the lower 

the number of nodes with one connection. In this test case, triangulation in the 765-kV and 

500-kV networks is consistent with the reference networks.  

As in the case of 𝜌1, the number of leaf nodes is lower in the 115-kV, 138-kV, and 161-kV 

networks. Those values are in the fourth quartile of the 220-kV reference network.  

Although these networks have a lower number of evident inconsistencies (red cells), it 

continues showing differences that require a more in-depth analysis before concluding the 

accuracy of the network. 

Table 4-7. GHuST values for the ACTIVSg 10,000 network 

 𝜌1 𝜌2  𝜌3 𝜌4 𝜌5 𝜌6 𝜌7 𝜌8 𝜌9 𝜌10 𝜌11 𝜌12 

Entire network 0.18 0.36 0.20 0.03 0.78 0.32 0.17 0.01 0.18 0.06 0.07 0.26 

Excluding low-volt. Nodes 0.20 0.26 0.17 0.05 0.79 0.38 0.20 0.01 0.18 0.07 0.10 0.31 

115 kV network 0.17 0.29 0.27 0.11 0.77 0.38 0.23 0.02 0.25 0.10 0.13 0.47 

138 kV network 0.13 0.29 0.30 0.14 0.75 0.43 0.24 0.01 0.07 0.05 0.15 0.51 

161 kV network 0.13 0.27 0.34 0.20 0.73 0.45 0.22 0.01 0.00 0.06 0.14 0.59 

230 kV network 0.15 0.39 0.30 0.17 0.80 0.41 0.21 0.05 0.33 0.23 0.18 0.54 

345 kV network 0.14 0.37 0.20 0.07 0.78 0.40 0.27 0.02 0.21 0.13 0.14 0.35 

500 kV network 0.15 0.39 0.37 0.16 0.78 0.35 0.29 0.04 0.22 0.20 0.11 0.51 

765 kV network 0.16 0.39 0.40 0.26 0.77 0.35 0.29 0.03 0.23 0.17 0.13 0.65 

𝜌𝑖 is the dimension 𝑖 of the GHuST framework. 
Green values are in the second or in the third quartile, orange values are in the first or in the fourth quartile, red 
values are out of the range. 
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E. ACTIVSg 25k  

This synthetic network has been referred to as the Northeast and Mid-Atlantic regions of 

the US. It includes 69-kV, 100-kV, 115-kV, 138- kV, 161-kV, 230-kV, 345-kV, 500-kV and 765-kV 

networks. For the topological analysis, we only consider the 230-kV network that is compared 

with the 220-kV reference network and the 345-kV, 500-kV and 765-kV networks that are 

compared with the 400-kV reference network. We do not include the analysis of the entire 

network due to its large size and the inclusion of low voltage levels that might lead to misleading 

results. In this case, several components (disconnected graphs) may appear for each voltage 

level; for instance, the 100-kV network is formed by 13 components. The 230-kV network has 

three components, one of them is formed but a few lines, and it is not considered in the 

analysis. Table 4-8 shows the value of GHuST for those networks.  

We see that the 230-kV network has a low number of lines per node; its structure is close 

to the minimum spanning tree. The number of leaf nodes is consequently high, and the average 

length of strings is also low (high value of 𝜌7). In the case of 𝜌3 the value of the first component 

(1,444 nodes) is out of range and 𝜌4 is low. This directly leads to question the degree 

distribution. Furthermore, the percentage of triangles and the number of nodes that are part 

of a triangle are low. Indeed, only 6% of nodes are vertices of a triangle (in the reference 

network the mean value is 22%).  

In the first component of the 765-kV network (218 nodes), the number of lines per node is 

extremely low (𝜌1 = 0.05), this value is similar to the 230-kV network. The number of nodes 

with one connection is high (they are in range). As in prior cases, main inconsistencies come 

from low values of 𝜌3 and 𝜌4 and high values of 𝜌5 as well as triangle-related dimensions. The 

low values of 𝜌1 may lead to low-connected structures. This contrasts with the topology of prior 

synthetic networks with meshed structures in which the number of leaf nodes was low. 

Table 4-8. GHuST values for the ACTIVSg 25,000 network 

 𝜌1 𝜌2  𝜌3 𝜌4 𝜌5 𝜌6 𝜌7 𝜌8 𝜌9 𝜌10 𝜌11 𝜌12 

230 kV network Comp. 1 0.06 0.45 0.21 0.10 0.85 0.41 0.16 0.01 0.13 0.06 0.06 0.47 

230 kV network Comp. 2 0.06 0.46 0.38 0.24 0.69 0.32 0.00 0.01 0.00 0.07 0.00 0.67 

345 kV network 0.13 0.49 0.30 0.19 0.87 0.34 0.06 0.03 0.25 0.15 0.02 0.63 

500 kV network 0.09 0.45 0.21 0.10 0.86 0.39 0.13 0.02 0.29 0.08 0.01 0.49 

765 kV network Comp. 1 0.05 0.46 0.33 0.20 0.84 0.40 0.12 0.02 0.08 0.10 0.18 0.56 

765 kV network Comp. 2 0.18 0.47 0.28 0.19 0.88 0.36 0.13 0.07 0.74 0.15 0.00 0.67 

𝜌𝑖 is the dimension 𝑖 of the GHuST framework. 
Green values are in the second or in the third quartile, orange values are in the first or in the fourth quartile, red 
values are out of the range. 

F. ACTIVSg 70k  

This network has been referred to as the Eastern US. The voltage levels included are the 

same that in the ACTIVSg-25k network (69-kV, 100-kV, 115-kV, 138-kV, 161-kV, 230-kV, 345-

kV, 500-kV and 765-kV). In this synthetic network the number of components for each voltage 
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level is higher: 4 components in the 230-kV network, 3 components in the 345-kV network, 4 

components in the 500-kV networks and 2 components in the 765-kV network. As in the 

ACTIVSg 25k network, components with a low number of nodes are not included in the analysis 

that is shown in Table 4-9.  

The topological inconsistencies found are similar to the inconsistencies displayed by the 

ACTIVSg-25k case. The number of lines per node is low in all the subnetworks. This ratio is 

higher in the 138-kV and 115-kV subnetworks. This contrasts with the European networks. 

Similarly, although values of 𝜌3, 𝜌4 and 𝜌5 might be in range in some cases, they are close to 

the limits. The degree of leaf-node connections is low in most cases, the tendency to make 

hubs is high in the 500-kV networks, and the tendency to connect hubs among them is 

extremely high. Consequently, degree distribution may differ concerning the reference 

networks. 

Additionally, triangle properties continue to be incoherent. For instance, in the 230-kV 

network, the number of triangles is considerably low. The percentage of nodes that are vertices 

of a triangle is just 7% (the mean value in the reference network is 22%). If we compare the 

230-kV network with the entire 220-kV European network (including all countries as one 

network), the percentage of nodes that are vertices of a triangle is 18%.  

The 365-kV, 500-kV, and 765-kV networks have high values of leaf-nodes. Three 

components of the 500-kV network have a structure with the minimum number of lines to have 

a connected graph. Although those values are in the reference range, they are far from the 

median value. In those networks, values of 𝜌5 are high and 𝜌10 is inconsistent. Finally, the 

number of triangles is only consistent in the first component of the 765-kV network.  

Table 4-9. GHuST values for the ACTIVSg 70,000 network 

 𝜌1 𝜌2  𝜌3 𝜌4 𝜌5 𝜌6 𝜌7 𝜌8 𝜌9 𝜌10 𝜌11 𝜌12 

230 kV network Comp. 1 0.06 0.45 0.16 0.06 0.89 0.42 0.12 0.02 0.30 0.07 0.02 0.37 

230 kV network Comp. 2 0.09 0.41 0.23 0.10 0.84 0.41 0.22 0.01 0.16 0.07 0.08 0.46 

345 kV network 0.10 0.45 0.24 0.15 0.92 0.41 0.13 0.02 0.37 0.09 0.01 0.56 

500 kV network Comp. 1 0.07 0.42 0.25 0.16 0.90 0.45 0.15 0.02 0.27 0.08 0.02 0.60 

500 kV network Comp. 2 0.00 0.33 0.33 0.44 0.71 0.83 0.40 0.00 0.00 0.00 0.00 0.67 

500 kV network Comp. 3 0.00 0.38 0.33 0.47 0.78 0.80 0.25 0.00 0.00 0.00 0.00 0.67 

500 kV network Comp. 4 0.00 0.39 0.29 0.26 0.91 0.64 0.33 0.00 0.00 0.00 0.00 0.40 

765 kV network Comp. 1 0.11 0.48 0.32 0.19 0.91 0.36 0.15 0.04 0.33 0.17 0.06 0.59 

765 kV network Comp. 2 0.03 0.50 0.35 0.23 0.86 0.47 0.18 0.02 0.00 0.09 0.17 0.64 

𝜌𝑖 is the dimension 𝑖 of the GHuST framework. 
Green values are in the second or in the third quartile, orange values are in the first or in the fourth quartile, red 
values are out of the range. 

4.4.2. Key points about the topology of ACTIVSg networks 

The application of the GHuST framework to the ACTIVSg networks shows that in most cases 

there are inconsistencies with respect to the European transmission networks. On the one 

hand, those inconsistencies may be a consequence of the model used to generate the 
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networks. On the other hand, North American power networks may display different 

topologies concerning European networks. Consequently, it would be necessary to apply the 

GHuST framework to the real North American power grid to have a better comparison with 

synthetic networks. However, data for real North American power grids are not available. With 

the information available, we can only compare synthetic North American power grids with real 

European power grids. 

Regarding results, we observed that some networks display a homogenous structure with 

a low number of leaf nodes. This contrasts with the analysis of the European transmission 

power networks. Furthermore, we detect inconsistencies regarding the tendency to make hubs 

and the tendency to connect hubs among them. This might reflect that the algorithm is not 

able to fit a realistic degree distribution. This is crucial because of the impact of node degree 

on network vulnerability, as discussed in Chapter 2. 

The algorithm is not able to build topologies in which triangles are similar to the reference 

networks. This is related to the complexity of local structures that might condition the 

operation and robustness of networks.  

As previously explained, those inconsistencies do not mean that the topology of those 

synthetic networks is inaccurate. However, further studies would be required to use the 

proposed model to generate European synthetic power grids.  

 

4.4.3. Columbia University synthetic power grid with geographical coordinates 

The Network Imitating Method Based on Learning (NIMBLE) is used to generate a synthetic 

network based on the properties of the North American and Mexican power networks (this 

algorithm is explained in Chapter 5) [58], [90]. The resulting network stands for the Western 

Interconnection (WI) power network that includes the Western Electricity Coordinating Council 

in the United States and the Western Electricity Coordinating Council in Canada [92].  

Regarding connections, the dataset includes information about the end nodes of 

connections and line/transformer impedance. However, it does not differentiate between lines 

and transformers, and there is no information about the voltage level. According to the 

ACTIVSg-10k network that stands for the US part of the WECC system (it does not include the 

Canadian portion), the Columbia University synthetic power grid may include 765-kV, 500-kV, 

345-kV, 230-kV, 161-kV, 138-kV, and 115-kV transmission networks.  

The lack of voltage information hinders the topological validation of the network since we 

cannot compare the topology by voltage level. The values of GHuST are shown in Table 4-10; 

the network is compared with the 400-kV and 220-kV reference network.  

The ACTIVSg synthetic networks are not topologically consistent with respect to the real 

European networks. Number of leaf nodes, tendency to make hubs and to connect 

among them as well as triangulation are the main inconsistencies found in most cases. 
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Table 4-10. GHuST values for the Columbia University synthetic network 

 𝑁 𝜌1 𝜌2  𝜌3 𝜌4 𝜌5 𝜌6 𝜌7 𝜌8 𝜌9 𝜌10 𝜌11 𝜌12 

Columbia U. 14430 0.14 0.37 0.16 0.03 0.77 0.45 0.28 0.01 0.10 0.10 0.31 0.23 

𝜌𝑖 is the dimension 𝑖 of the GHuST framework. 
Green values are in the second or in the third quartile, orange values are in the first or in the fourth quartile, red 
values are out of the range. 

Our analysis shows that the number of lines installed, 𝜌1, is close to the minimum value in 

the European transmission networks. This might be a consequence of the inclusion of low 

voltage networks, with a low meshed structure. The value of 𝜌2 is close to the median. 

Consequently, the number of leaf nodes is consistent with the reference. However, we might 

expect a higher number of leaf nodes, when considering lower voltage levels. The value of 𝜌3 

and 𝜌4 is extremely low. The degree of leaf-node connections is low, and there is no tendency 

to make hubs in the networks. Those low values might be a consequence of the maximum value 

of node-degree. The highest number of connections in the synthetic network is 16, and the 

average maximum node degree in the reference networks is 9.4. Consequently, low values of 

𝜌3 and 𝜌4 show inconsistencies regarding degree distribution. Moreover, the tendency of hubs 

to be connected among them, 𝜌5, is high (fourth quartile). Regarding strings, 𝜌6, 𝜌7 are 

consistent with the reference.  

In the paper presenting this synthetic grid, the authors show that the network average 

clustering coefficient is similar to the real network one. However, 𝜌8 is low. We introduced in 

Chapter 3 that the use of the network average clustering coefficient might be misleading. 

Furthermore, the average degree of triangles is lower than in the ACTIVSg (both networks are 

supposed to stand for the same real power grid), we may think that in real network triangles 

may be located in higher degree nodes. Thus, this would lead to having similar values of 

network average clustering coefficient with a lower number of triangles in the network. We 

confirm this hypothesis with the absolute value of 𝜌12 (without being scaled). This is 3.9 in the 

Columbia Synthetic network and 4.48 in the ACTIVGs case.  

The validated network average clustering coefficient for this synthetic network (WI system) 

is 0.048. However, Cotilla et al. state that the network average clustering coefficient of the WI 

is 0.073 [39]. Characteristic path length also presents divergent values in both works. 

Assumptions used to model the networks as a graph or voltage levels included may be the 

cause of this difference. The authors should look through it in order to do an accurate validation 

of the synthetic network. As in the ACTIVSg-10k case, triangle properties are not consistent 

with the European reference. In the Columbia network, only 10% of nodes are vertices of a 

triangle (𝜌10), and only 10% of vertices are shared among triangles (𝜌9). Furthermore, the 

number of isolated triangles (𝜌11) is high.  

The NIMBLE model only uses a topological criterion to generate synthetic networks. Beyond 

the electrical features that might be consistent with real networks, the topology is not realistic 

in comparison with the European transmission networks. As in the prior case, it would be 

necessary to check if those inconsistencies lie on the model itself or in the topology of the North 

American Power grid.  
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4.4.4. PEGASE 

A set of networks were designed to represent the European transmission network. In the 

context of a European Commission project, the Pan European Grid Advanced Simulation and 

State Estimation (PEGASE) aims to work in the field of real-time control and operation planning 

of the pan-European network [93]. Five fictitious, albeit realistic, networks form the PEGASE 

test cases [94]. The voltage levels included, and the number of components for each voltage 

level is the following:  

• PEGASE 89: 150 kV (2 components), 220 kV (2 components), 380 kV (1 component).  

• PEGASE 1354: 220 kV (30 components), 380 kV (2 components).  

• PEGASE 2869: 110 kV (2 components), 150 kV (17 components), 220 kV (34 

components), 380 kV (2 components).  

• PEGASE 9241: 110 kV (47 components), 120 kV (7 components), 150 kV (24 

components), 154 kV (14 components), 220 kV (53 components), 380 kV (4 

components), 400 kV (1 component), 750 kV (1 component).  

• PEGASE 13659: 110 kV (47 components), 120 kV (7 components), 150 kV (154 

components), 220 kV (53 components), 380 kV (4 components).  

Since PEGASE networks stand for the Pan-European network and node location is not given 

(we cannot split up the network by country), we compare the PEGASE networks with the values 

of GHuST obtained for the network that includes the 220-kV and 400-kV network of the fifteen 

countries. The values of GHuST for the ENTSO-e network are shown in Table 4-11 and for 

PEGASE networks in Table 4-12. The ENTSO-e network is compounded of the 24 countries 

included in the 2016 TYNDP [12]. 

 

Table 4-11. GHuST values for the Continental Europe 220-kV and 400 kV network 

 𝑁 𝜌1 𝜌2  𝜌3 𝜌4 𝜌5 𝜌6 𝜌7 𝜌8 𝜌9 𝜌10 𝜌11 𝜌12 

ENTSO-e 5757 0.28 0.32 0.22 0.03 0.76 0.41 0.26 0.03 0.25 0.29 0.29 0.21 

𝜌𝑖 is the dimension 𝑖 of the GHuST framework 
 
 

The Columbia-University synthetic network displays topological inconsistencies with 

respect to the European transmission networks, and to another synthetic network that 

stands for the same real network. It also diverges from other published studies. 
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Table 4-12. GHuST values for the PEGASE networks 

 𝜌1 𝜌2  𝜌3 𝜌4 𝜌5 𝜌6 𝜌7 𝜌8 𝜌9 𝜌10 𝜌11 𝜌12 

PEGASE 89 0.57 0.26 0.42 0.18 0.88 0.32 0.13 0.22 0.95 0.40 0.08 0.54 

PEGASE 1354 0.21 0.46 0.34 0.08 0.76 0.37 0.21 0.02 0.17 0.16 0.20 0.34 

PEGASE 2869 0.28 0.34 0.30 0.07 0.79 0.40 0.26 0.04 0.55 0.23 0.21 0.30 

PEGASE 9241 0.35 0.22 0.10 0.02 0.80 0.48 0.37 0.17 0.92 0.24 0.21 0.13 

PEGASE 13659 0.27 0.48 0.16 0.02 0.76 0.42 0.35 0.12 0.92 0.16 0.19 0.15 

𝜌𝑖 is the dimension 𝑖 of the GHuST framework. 
Green values are in the second or in the third quartile, orange values are in the first or in the fourth quartile, red 
values are out of the range. 

The PEGASE-89 case is an example of network reduction. Accordingly, topology is not 

expected to fit the properties of the real network. Indeed, we observe that the number of lines 

installed per node (0.57) is much larger than the maximum value of 𝜌1 for the European 

countries (0.34). Furthermore, as PEGASE 89 includes the 110-kV network, we might expect 

that the total number of lines per node would be lower than in the 220-kV and 400-kV. In this 

test case, we also see the presence of more complex local structures. Indeed, there is a high 

tendency to make clusters. The proportion of triangles is seven times larger than in the 

reference network. Moreover, those triangles tend to share vertices among them (95% of 

triangle vertices are part of two or more triangles). 

In the rest of PEGASE networks, the number of lines installed per node is consistent with 

the reference. Although we observe some small differences, for example, in the PEGASE-

13,659 network the number of leaf nodes is huge (this might be the consequence of including 

110-, 120- and 150-kV network), the main inconsistencies are related to triangles. In the 

PEGASE-1,354 network and in the PEGASE-2,869 network, the proportion of triangles is 

according to the reference. However, in the PEGASE-9,241 network and PEGASE-13,659 

network, where the presence of triangles is expected to be low, 𝜌8 is really high. This significant 

presence of triangles contrasts with the percentages of nodes that are part of a triangle, 𝜌10, 

which is lower than the reference. So, those networks do not represent the complexity of local 

structures.  

Finally, there are topological differences concerning the network provided by ENTSO-E. 

Although PEGASE networks include lower voltage levels, they display a more complex structure 

than the ENTSO-E network. Since location is not provided, we cannot detect if those 

inconsistencies are presented in all countries or not. Furthermore, ENTSO-E classifies networks 

according to Continental Europe, Baltics, and Great Britain. The networks used as reference are 

countries that are part of Continental Europe. PEGASE networks might include other countries. 

This might introduce some deviation concerning the reference. Finally, since all PEGASE 

networks stand for the same real network, but they have different sizes; they might be the 

result of network reduction or clustering techniques.  
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4.4.5. Sustainable Data Evolution Technology (SDET) 

The Sustainable Data Evolutionary Technology project aims to develop: “Evolvable open-

access large-scale datasets to accelerate the development of next-generation power grid 

optimization” [95]. They introduce the concept of Data Evolvability in order to “disrupt the 

current ad hoc cycles of static dataset generation”. However, there is no explanation about the 

implications of this novel concept in the generation of synthetic power networks. 

Although four synthetic networks have been published in an open-access repository (SDET 

500, SDET 2000, SDET 3000, SDET 4000), there is no information about the methodology 

followed in the synthetic network generation. There is only a succinct presentation about the 

project, where authors state that the generation of synthetic networks would be based on real-

data anonymization and algorithms that are based on graph theory [96]. We assume that these 

networks are preliminary results, since their objective is to generate networks with more than 

100,000 nodes, and the size of those four networks ranges from 588 to 4,661 nodes.  

The voltage levels and the number of components of each voltage level are the following:  

• SDET 500: 500 kV (2 components), 345 kV (4 components), 230 kV (1 component), 161 

kV (1 component), 138 kV (9 components), 69 kV (5 components).  

• SDET 2000: 500 kV (5 components), 345 kV (11 components), 138 kV (67 components), 

69 kV (14 components), 66 kV (13 components). 

• SDET 3000: 500 kV (3 components), 345 kV (12 components), 138 kV (40 components), 

115 kV (3 components), 110 kV (4 components), 66 kV (2 components).  

• SDET 4000: 500 kV (5 components), 345 (11 components), 138 kV (150 components), 66 

kV (14 components). 

From the analysis of voltage levels and components, we observe a high number of 

components for each voltage level. In the SDET 3000, the number of components of the 345-

kV network is 4 times larger than the 115-kV network. It contrasts with the European network, 

where the 220-kV network (around 3400 nodes) has 47 components, and the 400-kV network 

(around 2100 nodes) has 5 components. Thus, the assignment of voltage level should be 

checked, since a large number of components might have a direct consequence on network 

operation. 

We have applied the GHuST framework to the 500-kV, 345-kV, 230-kV components with 

more than five nodes. Results are shown in Table 4-13 to Table 4-16. 

There are slight differences between the PEGASE networks and the European 

transmission networks. They might be the consequence of network reduction 

techniques or the voltage levels and countries included in the analysis.  
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Table 4-13. GHuST values for the SDET 500 network 

 𝜌1 𝜌2  𝜌3 𝜌4 𝜌5 𝜌6 𝜌7 𝜌8 𝜌9 𝜌10 𝜌11 𝜌12 

Entire network 0.13 0.25 0.29 0.08 0.76 0.58 0.47 0.01 0.00 0.04 0.14 0.45 

230 kV network  0.00 0.23 0.37 0.18 0.49 0.80 0.56 0.00 0.00 0.00 0.00 0.40 

345 kV network Comp. 1 0.05 0.24 0.36 0.23 0.48 0.81 0.46 0.00 0.00 0.00 0.00 0.40 

345 kV network Comp. 2 0.09 0.31 0.44 0.40 0.81 0.45 0.30 0.02 0.00 0.09 0.33 0.67 

500 kV network Comp. 1 0.17 0.10 0.75 0.39 0.64 0.67 0.33 0.00 0.00 0.00 0.00 0.50 

500 kV network Comp. 2 0.05 0.21 0.44 0.31 0.75 0.67 0.50 0.00 0.00 0.00 0.00 0.50 

𝜌𝑖 is the dimension 𝑖 of the GHuST framework.  
Green values are in the second or in the third quartile, orange values are in the first or in the fourth quartile, red 
values are out of the range. 
 
 

Table 4-14. GHuST values for the SDET 2,000 network 

 𝜌1 𝜌2  𝜌3 𝜌4 𝜌5 𝜌6 𝜌7 𝜌8 𝜌9 𝜌10 𝜌11 𝜌12 

Entire network 0.18 0.27 0.32 0.05 0.79 0.55 0.45 0.01 0.19 0.05 0.16 0.33 

345 kV network Comp. 1 0.14 0.24 0.26 0.05 0.76 0.60 0.44 0.01 0.17 0.06 0.13 0.41 

345 kV network Comp. 2 0.00 0.50 0.50 1.00 0.50 1.00 0.50 0.00 0.00 0.00 0.00 1.00 

345 kV network Comp. 3 0.00 0.71 0.68 0.55 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.40 

345 kV network Comp. 4 0.16 0.24 0.40 0.16 0.67 0.55 0.29 0.01 0.00 0.07 0.33 0.57 

345 kV network Comp. 5 0.00 0.81 0.82 0.60 0.07 0.33 0.00 0.00 0.00 0.00 0.00 0.25 

345 kV network Comp. 6 0.00 0.71 0.68 0.55 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.40 

500 kV network Comp. 1 0.00 0.75 0.67 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 

500 kV network Comp. 2 0.13 0.50 0.47 0.08 0.77 0.48 0.35 0.00 0.00 0.04 0.17 0.40 

500 kV network Comp. 3 0.13 0.54 0.53 0.09 0.73 0.37 0.13 0.00 0.00 0.05 0.00 0.33 

500 kV network Comp. 4 0.06 0.33 0.55 0.42 0.61 0.40 0.25 0.00 0.00 0.00 0.00 0.50 

𝜌𝑖 is the dimension 𝑖 of the GHuST framework.  
Green values are in the second or in the third quartile, orange values are in the first or in the fourth quartile, red 
values are out of the range. 
 
 

Table 4-15. GHuST values for the SDET 3,000 network 

 𝜌1 𝜌2  𝜌3 𝜌4 𝜌5 𝜌6 𝜌7 𝜌8 𝜌9 𝜌10 𝜌11 𝜌12 

Entire network 0.22 0.38 0.21 0.01 0.77 0.50 0.39 0.06 0.84 0.11 0.21 0.19 

230 kV network Comp. 1 0.00 0.45 0.53 0.67 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.67 

230 kV network Comp. 2 0.00 0.33 0.44 0.44 0.50 0.83 0.60 0.00 0.00 0.00 0.00 0.67 

345 kV network Comp. 1 0.19 0.32 0.38 0.11 0.77 0.48 0.30 0.05 0.52 0.20 0.29 0.45 

345 kV network Comp. 2 0.00 0.11 0.33 0.42 0.68 0.88 0.71 0.00 0.00 0.00 0.00 0.67 

345 kV network Comp. 3 0.00 0.60 0.56 0.67 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.67 

345 kV network Comp. 4 0.00 0.40 0.50 1.00 0.50 1.00 0.67 0.00 0.00 0.00 0.00 1.00 

345 kV network Comp. 5 0.33 0.00 0.80 0.67 0.00 0.00 0.00 0.38 0.67 0.83 0.60 0.68 

500 kV network  0.35 0.23 0.24 0.05 0.75 0.48 0.34 0.14 0.87 0.25 0.12 0.33 

𝜌𝑖 is the dimension 𝑖 of the GHuST framework. 
Green values are in the second or in the third quartile, orange values are in the first or in the fourth quartile, red 
values are out of the range. 
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Table 4-16. GHuST values for the SDET 5,000 network 

 𝜌1 𝜌2  𝜌3 𝜌4 𝜌5 𝜌6 𝜌7 𝜌8 𝜌9 𝜌10 𝜌11 𝜌12 

Entire network 0.19 0.23 0.27 0.05 0.80 0.56 0.47 0.01 0.11 0.05 0.20 0.33 

345 kV network Comp. 1 0.18 0.21 0.25 0.05 0.80 0.51 0.44 0.00 0.13 0.03 0.10 0.39 

345 kV network Comp. 2 0.00 0.56 0.60 0.63 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.50 

345 kV network Comp. 3 0.00 0.81 0.82 0.60 0.07 0.33 0.00 0.00 0.00 0.00 0.00 0.25 

345 kV network Comp. 4 0.07 0.33 0.47 0.38 0.71 0.53 0.30 0.02 0.00 0.11 0.00 0.83 

345 kV network Comp. 5 0.00 0.60 0.56 0.67 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.67 

345 kV network Comp. 6 0.00 0.39 0.42 0.35 0.82 0.57 0.63 0.00 0.00 0.00 0.00 0.50 

345 kV network Comp. 7 0.00 0.50 0.50 1.00 0.50 1.00 0.50 0.00 0.00 0.00 0.00 0.00 

500 kV network  0.16 0.38 0.39 0.10 0.78 0.40 0.32 0.01 0.00 0.06 0.19 0.41 

𝜌𝑖 is the dimension 𝑖 of the GHuST framework.  
Green values are in the second or in the third quartile, orange values are in the first or in the fourth quartile, red 
values are out of the range. 

The values of GHuST show that SDET networks are not topologically consistent with the 

European transmission networks. Indeed, most dimensions are out of the range or in the third 

and fourth quartile.  

Although the SDET networks do not provide the location, we might assume that they stand 

for the North American power network. The values of GHuST are also far from the values of the 

ACTIVSg or the NIMBLE networks. Results might lead to think that these networks have been 

published without being tested. Since there is no information about the power networks they 

stand for, or the methodology followed to generate those networks, we cannot provide a 

sound analysis of topological inconsistencies. 

 

4.5. Takeaways 

The application of the GHuST framework enhances the topological characterization of 

power networks. The analysis of the European transmission networks shows that differences 

in the structure of the 400-kV and the 220-kV networks are low. Nevertheless, the network 

location clearly conditions the topology of power grids. Those differences are apparent in the 

twelve dimensions of the GHuST framework. Moreover, results are consistent with the global 

statistics used in Chapter 2. 

Furthermore, the GHuST framework allows for the validation of synthetic power grids. This 

chapter has analyzed the topology of four sets of synthetic networks: ACTIVSg, Columbia-

University synthetic network, PEGASE, and SDET. The ACTIVSg and the Columbia-University 

synthetic network stand for North American power networks, and they display topological 

inconsistencies concerning the European networks. We cannot state if those differences are a 

The SDET networks are completely inconsistent with the topology of the European 

transmission power network. 
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consequence of the model used to generate the networks or if the real North American power 

network has a different structure. However, we observe that both sets of networks have 

topological differences among them. Consequently, it is highly likely that the models used to 

generate them cannot replicate the topology of real networks accurately. We find that those 

algorithms have difficulties to replicate the complexity of local structures, that is, triangles. In 

most cases, dimensions related to triangles are out of the reference ranges. Furthermore, the 

analysis reveals problems that might be related to the degree distribution of those networks 

(e.g., the number of leaf nodes or the tendency to make hubs in the network).  

The PEGASE networks also present some differences concerning the European transmission 

networks. They have a large number of triangles, and they are not well distributed through the 

network. However, since all PEGASE networks stand for the same real network (but they have 

different sizes) we may infer that the use of network-reduction techniques may lead to 

topological differences concerning the real network. Finally, the SDET networks are entirely 

inconsistent with the topology of the European transmission networks. The lack of information 

about the real network they represent, or the algorithm used to generate those networks 

makes it impossible to determine the cause of those inconsistencies.  

The GHuST framework is a useful tool to analyze the topology of synthetic networks since it 

allows for the detection of inconsistencies. Furthermore, those inconsistencies are easily 

interpretable, so this analysis may support the introduction of changes in the existing 

algorithms to improve results. 
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5   A NOVEL ALGORITHM TO GENERATE 

SYNTHETIC POWER GRIDS 

5.1. What are synthetic grids? 

The generation of synthetic power grids is a practical alternative to the lack of public 

network models. Synthetic networks are non-real, albeit realistic, power grids that are 

topologically and electrically consistent with a real network. Accordingly, the operation and 

control of synthetic networks are similar to real networks. 

Chapter 4 analyzes the topology of existing synthetic power networks. It shows that 

published synthetic-network algorithms are not topologically consistent with the European 

transmission power networks. Indeed, we found some topological properties of real networks 

that were not replicated in synthetic networks (existing algorithms cannot imitate the 

complexity of local structures in power networks). Furthermore, some of them lack node 

location, which is essential in applications such as Transmission Expansion Problem. 

This chapter makes a review of the existing algorithms to generate synthetic networks, and 

it proposes a novel algorithm for the generation of synthetic spatial power grids (synthetic 

networks in which nodes are endowed with geographical location). The algorithm is articulated 

in two steps: 

1. The first step focused on building a basic network to meet generation and demand. 

2. The second step targeted at increasing network robustness whilst achieving topological 

attributes. 

We also showed that different power networks might have different topologies, so any 

synthetic generation procedure must be adjustable in order to generate representative grids. 

The proposed algorithm has adjustable parameters that enable it to generate synthetic power 

grids with different topological properties.  

The rest of this chapter is organized as follows. Section 2 reviews existing works. We 

introduce a new algorithm to generate synthetic power grids in section 3. Section 4 presents a 

case study. Finally, section 5 summarizes results. 
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5.2. State-of-the-art review 

The generation of synthetic networks has attracted the attention of several studies in the 

complex-network field. Those works focus on the generation of networks (graphs) that fit with 

some topological properties. Based on their nature, we differentiate between purely 

topological algorithms and hybrid models. The pure topological algorithms connect nodes 

disregarding network nature (in this case, the electrical nature of power grids). Those networks 

lack electrical parameters. Hybrid models combine complex-network techniques with power-

system methods to generate synthetic networks that are endowed with electrical information.  

5.2.1. Purely topological algorithms  

Based on the idea “the rich get richer”, Barabási and Albert presented their preferential 

attachment model [37]. In this model, nodes are consecutively added to the network and linked 

to existing ones. The probability of being linked to a node is correlated with the degree of 

existing nodes so that already well-connected nodes have a higher probability of being selected 

for new links. The preferential attachment model generates scale-free networks, networks in 

which node degree follows a power-law. As discussed in Chapter 2, the power grid cannot be 

considered a scale-free network.  

Wats and Strogatz presented a method to generate small-world networks [44]. These 

networks are characterized by having a high network average clustering coefficient concerning 

random networks and small characteristic path length. As in the case of the scale-free network, 

Chapter 2 questions the systematic characterization of transmission power networks as small-

world networks.  

Other models to generate pure topological networks include the Erdős–Rényi model that 

generates random networks [43]. However, the topological properties of power grids do not fit 

with the structure of random networks. Moreover, several versions or prior algorithms have 

been proposed to generate synthetic networks [36]. However, the lack of electrical 

considerations makes them an inaccurate tool to build synthetic power networks. All prior 

models generate networks without considering their electrical nature. They may lead to 

evident inconsistencies such as demand nodes that cannot satisfy demand because of a lack of 

transmission capacity. 

Synthetic power grids are non-real, albeit realistic, power grids that are topologically 

and electrically consistent with real power grids. They are a practical alternative to the 

lack of public power-network models. 

A novel algorithm is proposed to generate spatial synthetic power grids.  

The model is flexible enough to adapt results to different topologies. 
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5.2.2. Hybrid models 

Hybrid models combine complex-network theory with power-system principles; they may 

be classified concerning the network location. We differentiate between algorithms that 

endow nodes with geographical location and algorithms that do not consider the spatial nature 

of power grids. 

A. Non-spatial models 

The RT-nested-Smallworld is an algorithm that generates synthetic power grids based on 

purely statistical information [21]. Based on the assumption that power networks are small-

world networks, it generates synthetic networks with electrical features such as line 

impedance. The algorithm was improved by the introduction of an electrical classification of 

nodes into load, generation, or connection nodes [97], [98]. However, based on prior results, 

power networks cannot be always described as small-world networks [38], [89].  

The cluster-and-connect model generates synthetic networks based on purely topological 

information and can potentially fit any degree distribution [99]. Nevertheless, it takes an 

existing network as a starting point and merely reshuffles its connections. Scaling to new sizes 

is not possible with this algorithm. Although the resulting networks have the same target 

degree distribution, other topological properties are not tested. This may make them 

completely different from a topological point of view. 

Despite not considering the geographical location of nodes, other approaches have 

introduced the distance between pairs of nodes as a design parameter, the probability of 

linking two nodes decreases as distances increases [100], [101].  

The prior models, as well as most pure topological algorithms, disregard the geographical 

location of nodes. Therefore, the resulting synthetic grids do not bear any geographical 

significance. Node location is a crucial factor in applications such as Transmission Expansion 

Planning. 

B. Spatial models 

Based on the distance among nodes, Patania et al. and Wang et al. go one step beyond, and 

they propose algorithms to effectively generate spatial networks [102], [103]. In the first case, 

the Epsilon-disc model connects nodes if the distance between them is below a specific limit. 

In the second case, lines are distributed following a length distribution that should be 

introduced as an input. As distance is correlated with the cost of installing a line, the decision 

Purely topological algorithms generate synthetic networks disregarding the electrical 

nature of power grids. This may lead to inconsistencies regarding network operation or 

control.  
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process resorts to a soft economic approach. The Epsilon-disc model also includes the electrical 

characterization of resulting synthetic grids. However, as they show in their paper, the 

topological properties of resulting networks do not fit well with the properties of real networks. 

The idea of considering distance as an economic criterion has been used in other studies such 

as in the model proposed by Deka and Vishwanath [104]. The degree distribution of resulting 

networks tends to follow an exponential function. 

In an attempt to generate a synthetic spatial network similar to the US power network in 

properties, a model was proposed to make an in-depth electrical characterization of lines and 

nodes [105]. Based on the North American Eastern Interconnect grid, lines are linked using the 

Delaunay triangulation. Although the network could fit a realistic degree distribution, the 

authors do not check if it fits other topological metrics. A further improvement of this work was 

proposed where an iterative process decides which line should be added to the system [22], 

[59]. The algorithm chooses the set of lines that better contribute to the performance of the 

resulting grid in terms of power flow. The set of candidate lines is also based on the Delaunay 

triangulation. Besides, this model only considers the average degree as a topological input. The 

ACTIVSg networks showed in Chapter 4 are generated with this algorithm. As shown in that 

chapter, the topology of those networks is not consistent with the properties of the European 

transmission networks. The use of an average node degree as the unique topological input is 

not sufficient to ensure the topological consistency of resulting networks. Moreover, this model 

always generates the same network for the same set of nodes. Consequently, this model 

cannot adapt to the heterogeneity of power-network topologies shown in Chapter 4. 

Schultz et al. [106] present an algorithm that first generates a minimum spanning tree. 

Second, it adds new lines to connect nearby nodes. However, these assumptions are not 

consistent with the historical evolution of power networks leading to unrealistic topologies. A 

similar approach is the base of the NIMBLE algorithm [90]. First, the algorithm adds nodes and 

connect them to their closest nodes to form a connected graph (the resulting network is not 

necessarily a minimum spanning tree). Second, new lines are added to the network based on 

degree distribution is similar to scale-free networks (there are differences in nodes with one 

connection and highly connected nodes), line length is limited and the higher the density of the 

area the higher the node degree. This algorithm, therefore, adds line regarding degree 

distribution. As a result of the algorithm, a synthetic network is published. The analysis carried 

out in Chapter 4 shows that the network is inconsistent with the topological properties of the 

European transmission power networks. Furthermore, its structure differs from the topology 

of other synthetic power grid that stands for the same real network and from prior works. 

Despite the introduction of an electrical characterization, existing models for generating 

synthetic power grids do not provide results that are consistent with the topology of real 

networks, apart from matching a degree distribution in some particular cases. Considering this, 

we propose a new algorithm that mimics the evolution of real power networks to generate 

synthetic spatial power networks. Moreover, existing algorithms are not parametrizable, and 

they cannot adapt to the structure of the resulting synthetic network to different topologies, 

as explained in Chapter 4. 
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5.3. Algorithm description 

This section proposes a new algorithm to generate spatial synthetic power grids. Although 

node generation is described, the novelty of the algorithm lies in the wiring process (how nodes 

are connected). Furthermore, this section highlights the need for a parametrical algorithm to 

generate networks with different topologies. 

5.3.1. The need for a parametrical algorithm 

The growth of power networks, as a case of infrastructure networks, is conditioned by 

topological, morphological, technical, economical, permitting, environmental, managerial or 

political factors [88]. These factors are not aligned with the optimal power flow method, and 

different network topologies may appear depending on countries or regional areas (as shown 

in Chapter 2 and Chapter 4). Besides, because of network evolution, power plants that were 

built decades ago may become underused, and new generation investments are allocated. 

Accordingly, the generation of synthetic power grids cannot be tackled with optimization 

models as performed in transmission expansion planning. Following this, a non-parametrical 

algorithm cannot be the solution for generating synthetic power grids. Even when we have the 

same set of nodes, we might generate different topologies due to geography, political decisions 

or electricity generation mix. We, therefore, propose a parametrical algorithm that is flexible 

enough to adopt different topologies depending on economic and technical factors.  

This new algorithm considers the economic and technical dimensions as the most relevant 

factors that explain the structure of power networks. Those factors guide the construction of a 

base network in which demand is supplied. Accordingly, we generate networks that meet with 

the design target. However, their structure may differ from real networks since other relevant 

factors such as environmental constraints were not considered. Once the algorithm has 

provided a network that can meet demand, and it is robust in case of some component failures, 

new lines are added to achieve topological consistency.  

 

Hybrid models generate networks combining complex-network techniques and power-

systems theory. Hybrid models may generate spatial or non-spatial networks. This work 

focuses on spatial networks.  

Synthetic power networks generated with existing spatial algorithms are not 

topologically consistent with real networks. Furthermore, those algorithms are not 

flexible to adapt network structure to different topologies. 



 

 

Chapter 5. A Novel Algorithm to Generate Synthetic Power Grids 

 

 

96 

 

 

 

5.3.2. Node Generation  

The algorithm starts with node creation; it distributes substations where power is 

demanded, or generators are connected. The algorithm considers two types of nodes: demand 

nodes (which include interconnection substations) and generation nodes. If there are demand 

and generation connected to a node, this is classified as demand or generation node based on 

the balance between power demand and generation capacity.  

Since power networks are spatial, the algorithm can assign node location according to a 

spatial probability distribution function. Geographical characteristics, the availability of the fuel 

or renewable resources, as well as transportation infrastructures (e.g., gas pipelines), might 

determine the location of nodes. Probability functions must be introduced as an input. 

After locating nodes, the algorithm endows them with electrical properties. In the case of 

demand, the algorithm requires the total power demanded by the network and how it is 

distributed (for instance, with an exponential distribution function [102]). Demand can also be 

distributed based on economic considerations such as GDP per region [59]. It should be noted 

that, although magnitudes such as GDP per region or renewable resource availability might be 

chosen to represent a specific region, this is not necessary for the algorithm –nodes can be 

generated randomly based on any distribution defined by the user. 

Once demand is set, the algorithm addresses generation features. Total generation capacity 

and electricity generation mix are parameters of the model; it will distribute generators in the 

area where the synthetic network is generated under those parameters.  

As explained previously, this thesis does not introduce a novel methodology regarding the 

random generation of nodes and their characteristics; it assumes the prior work described in 

the literature. The novelty of the proposed methodology lies in the creation of the network also 

called the wiring process. 

5.3.3. Building a connected graph 

Once nodes are set, the algorithm links them with a basic network in which demand is met. 

In this first step, the algorithm tries to minimize network costs while preserving the physical 

principles that govern power networks. Accordingly, the decision to install a line is based on 

The heterogeneous topology of transmission power networks leads to the need for 

flexible algorithms to generate synthetic power grids. Accordingly, algorithms should 

be able to generate networks with different topologies.  

The proposed algorithm considers technological and economic considerations as the 

most relevant factors that guide network design.  
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installation cost (that is assumed to be proportional to the distance between two nodes) and 

line contribution to demand-supply (transmission-line-capacity constraints). If line cost linearly 

increases with distance, a minimum spanning tree would be the cheapest solution to have a 

connected graph. However, this is only valid if all lines installed have similar properties. In the 

case of considering a set of different transmission lines, e.g. different transmission capacity, the 

minimum spanning tree neglects cost differences. Furthermore, a minimum spanning tree 

does not consider how power flows through lines. This might lead to electrical inconsistencies 

such as line overloads. We, therefore, propose the combination of an economic criterion 

(installation cost) with electrical considerations.  

The inclusion of different transmission line capacities (with different cost), rapidly increases 

the complexity (number of variables and constraints) of the minimum spanning tree problem. 

Accordingly, it cannot be tackled with classical optimization techniques. We apply the divide-

and-conquer scheme to build a connected graph. The algorithm divides the network into small 

subnetworks that are connected afterward. The solution to this might not be the optimal 

solution to the problem. Nevertheless, as previously mentioned, we are not trying to build an 

optimal network but a reasonable one, one that has properties that are similar to the real 

network. The construction of the connected graph is divided into three stages: node clustering, 

intra-cluster connection, and inter-cluster connection (as shown in Figure 5-1).  

A) Initial nodes B) Clustering nodes C) Intra-cluster wiring 

 
D) Inter-cluster wiring E) Reaching topological 

consistency 

 
Figure 5-1. Steps followed by the model to build a synthetic power network. 

A.  Clustering nodes 

To reduce problem size, the model groups demand nodes with the closest generator that is 

able to supply its demand. Each generation node is defined as the center of a cluster. 
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Consequently, the number of clusters in the network is equal to the number of generation 

nodes. The number of generation nodes may differ from the number of generators, since more 

than one generator may be connected to the same node. 

To define the nodes that belong to each cluster, the algorithm minimizes the sum of 

distances 𝐷𝑖,𝑗 between each demand node (𝑁𝐷) and generators (𝑁𝐺) (5-1). The variable 𝛼𝑖,𝑗  

determines whether a demand node 𝑖 is connected to a cluster (generator) 𝑗 or not.  

min ∑ ∑ 𝐷𝑖,𝑗𝛼𝑖,𝑗

𝑗∈𝑁𝐺𝑖∈𝑁𝐷

 (5-1) 

Each cluster should be able to supply the demand of its nodes. Consequently, the sum of 

node demand (𝑃𝐷𝑖) must be lower than the generation capacity of that cluster (𝐺𝑗) (5-2).  

 ∑ 𝛼𝑖,𝑗𝑃𝐷𝑖 ≤ 𝐺𝑗          ∀ 𝑗

𝑖∈𝑁𝐷

 (5-2) 

Finally, a demand node may be connected to several generators. Accordingly, 𝛼𝑖,𝑗 is an 

integer variable that represents the proportion of demand that is satisfied by each generator 

(5-3). 

∑ 𝛼𝑖,𝑗 = 1          ∀ 𝑖

𝑗∈𝑁𝐺

 (5-3) 

This local approach tries to mimic the origin of power networks, in which power networks 

were built relatively close to demand nodes. 

B. Intra-cluster wiring 

The algorithm connects the nodes of each cluster with the minimum-cost network that is 

able to supply demand (5-4). Accordingly, the decision (𝛽𝑖,𝑗,𝑘) of connecting nodes 𝑖 and 𝑗 

(belonging to cluster 𝑁𝐶) with a line of transmission capacity 𝑘 is conditioned by the distance 

among nodes 𝐷𝑖,𝑗, and the cost of the different transmission line considered 𝐶𝑘. To build the 

network, the model chooses the type of lines to be installed based on a line catalog introduced 

as an input. Different transmission capacities are considered. 

min ∑ ∑ ∑ 𝛽𝑖,𝑗,𝑘𝐷𝑖,𝑗𝐶𝑘

𝑘∈𝐾𝑗∈𝑁𝐶𝑖∈𝑁𝐶

 (5-4) 

This step clusters demand nodes around generators. Each cluster has enough 

generation capacity to supply the demand of its nodes. Demand nodes might be 

assigned to more than one cluster.  
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Because of network model assumptions explained in Chapter 2, there is only one line that 

can connect nodes 𝑖 and 𝑗 (5-5).  

∑ 𝛽𝑖,𝑗,𝑘 ≤ 1          ∀ 𝑖, 𝑗

𝑘∈𝐾

 (5-5) 

To ensure that demand is met, we estimate power flows 𝑓𝑖,𝑗,𝑘. Because of the non-meshed 

structure expected as a result of this step, the power flow through a line is calculated 

considering only the first Kirchhoff’s law (5-6). Accordingly, the effect of the second Kirchhoff’s 

law is neglected. This simplifies the problem solution. To estimate the flow through lines, 𝑃𝐷𝑖 

is the demand of each node and 𝑃𝐺𝑖 is the power injected by each generator (𝑃𝐺𝑖 =

∑ 𝑃𝐷𝑗𝑗∈𝑁𝐶
). 𝑂𝐿 and 𝐼𝐿 are the set of outgoing lines and incident lines connected to node 𝑖. 

∑ ∑ 𝑓𝑗,𝑖,𝑘

𝑘∈𝐾𝑗∈𝑂𝐿

+ 𝑃𝐺𝑖 = ∑ ∑ 𝑓𝑖,𝑗,𝑘

𝑘∈𝐾𝑗∈𝐼𝐿

+ 𝑃𝐷𝑖     ∀ 𝑖 (5-6) 

Furthermore, the flow through a line has an upper and lower bound fixed by the 

transmission line capacity 𝐿𝑘 (5-7).  

𝐿𝑘  𝛽𝑖,𝑗,𝑘 ≤ 𝑓𝑖,𝑗,𝑘 ≤ 𝐿𝑘
̅̅ ̅ 𝛽𝑖,𝑗,𝑘            ∀ 𝑖, 𝑗, 𝑘 (5-7) 

To ensure that all clusters are connected subgraphs, interconnection nodes are assigned 

with a small demand. Since there is only one generator per cluster and equation (5-6) ensures 

that demand is supplied, all nodes are therefore connected. 

This process is repeated for all the clusters defined in the prior stage. Finally, the network is 

formed by a set of connected subnetworks that are disconnected among them. Since demand 

nodes may be connected to more than one generator, the number of connected subnetworks 

may differ from the number of initial clusters. 

Although several clusters might be connected after this step, there is no guarantee that the 

resulting network is a connected graph.  

C. Inter-cluster wiring 

To build a connected graph, the connection of disconnected clusters (those clusters that do 

not share any demand node) is the last step. Reliability considerations, as well as economic 

criteria, will lead to the installation of new lines.  

Each cluster is connected with the minimum-cost network that is able to satisfy 

demand. The design of that network includes power-flow considerations.  

Although some clusters may be linked, the resulting network is in general a 

disconnected graph.  
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After linking demand and generation nodes with a basic network (demand is met under 

normal operating conditions), the algorithm tries to increase network robustness. The 

algorithm tries to find alternative sources to supply demand in case of generator failures. First, 

each cluster tries to find a backup cluster (or generator). Second, if there are no close 

generators with enough capacity to supply demand in case of failure, the algorithm installs the 

lines that connect clusters at the minimum cost. 

The first stage is inspired by the generation N-1 criterion. This reliability principle ensures 

that demand will be met in case of generator failure. Consequently, if one of the generators 

fails, there should be another available generator to supply demand. This new generator should 

be able to inject the same amount of power as it was being injected by the failed generator. 

The process to find a backup generator starts with the estimation of cluster reserve margin 

𝐶𝑅𝑀 (5-8). This is the difference between the generation capacity of each cluster and the total 

demand in that cluster. Accordingly, the cluster reserve margin is the ability of each cluster to 

supply other clusters in case of failure. 

𝐶𝑅𝑀𝑖 = ∑ 𝑃𝐷𝑖 𝛼𝑖,𝑗

𝑖∈𝑁𝐶

− 𝐺𝑖 (5-8) 

In the case of connected clusters in the prior stage (intra-clustering wiring), that reserve is 

first assigned to the cluster to which they are connected. Consequently, clusters that share a 

demand node have backup generators that meet the total or partial needs of power in case of 

failure. Subsequently, each cluster tries to find the backup cluster iteratively. It starts from the 

largest clusters in terms of power demand (sum of node demand of a cluster). It assumes that 

the larger the cluster size the larger the bargaining power of that cluster. If no cluster can supply 

the total demand, it finds the cluster that can supply the maximum amount of power. The 

flowchart for this process is shown in Figure 5-2.  

The connection between clusters is limited by cluster distance (maximum length of 

transmission lines). The distance among clusters is the distance among their closest nodes.  

Once the connection of clusters is fixed, the model installs the line with the lowest 

installation cost that links both clusters. In this stage, the connection among clusters disregards 

power-flow constraints. The capacity of the new transmission line is fixed based on the 

expected power flow from the backup cluster in case of failure.  

If there is not a close cluster that can supply demand in case of failure, or the resulting 

network is not a connected graph, clusters that remain disconnected 𝐶 are linked with the 

lowest investment option. Consequently, the model minimizes the investment cost of new lines 

to have a connected graph (5-9). Since power flows are not considered, cost correlates with 

the distance between nodes 𝐶𝐷𝑖,𝑗.  

min ∑ ∑ 𝛾𝑖,𝑗 𝐶𝐷𝑖,𝑗

𝑗∈𝐶𝑖∈𝐶

 (5-9) 
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Inter-clustering wiring

Intra-cluster wiring

Finding clusters to connect:
Cluster distance < Limit

CRM > Cluster demand (i) 

Cluster Reserve Margin (CRM) 
calculation.

i = 1

Is there a cluster to 
connect?

Clusters connections
CPR update

i = i +1 

i < Number of clusters

Disconnected grahp?

Clusters connection
(economic criterion) 

Adding lines to reach 
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No

Yes

No

Yes

No

 

Figure 5-2. Flowchart of the inter-cluster-wiring stage. 
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To ensure a connected graph, the problem has a similar constraint as that used in the prior 

stage with the first Kirchhoff’s law. In a connected graph, the demand of all nodes could be 

satisfied with a single node (disregarding capacity constraints). Accordingly, the algorithm 

solves the theoretical flow 𝑢𝑖,𝑗 through the connections among clusters (5-10). It defines a 

power withdrawal vector 𝑊 in which all clusters (except the generation cluster) have a small 

demand (for instance one unit of power), and the injection vector 𝐼, in which only one node 

satisfies all the theoretical demand (this is equal to the number of nodes minus one). Then, the 

decision to install a line is conditioned by the maximum length of transmission lines (5-11).  

∑  𝑢𝑗,𝑖 + 𝐼𝑖

𝑗∈𝐶

= ∑  𝑢𝑖,𝑗

𝑗∈𝐶

+ 𝑊𝑖           ∀ 𝑖 (5-10) 

𝛾𝑖,𝑗 𝐶𝐷𝑖,𝑗 < 𝐿          ∀ 𝑖, 𝑗 (5-11) 

Finally, the model allows for the iterative inclusion of generators based on technology. This 

attempts to mimic the historical development of power systems. The historical evolution of 

generators was articulated around periods characterized by the installation of single dominant 

generation technology. First, thermal plants of different technologies (coal, nuclear or natural 

gas) were installed followed by renewable plants. Accordingly, this step allows the user to 

introduce nodes iteratively. In each iteration, new generation nodes are connected.  

 

5.3.4.  Adding lines to reach topological consistency 

Once the algorithm has provided a basic network where demand is satisfied at low 

investment cost, the model focuses on increasing network robustness by adding new lines. The 

model adds new connections trying to reach a target in terms of topology. Previously, we have 

shown that the multiple factors that guide the real evolution of power networks are not 

effectively replicated by existing models. They are based on power-system considerations and 

soft topological criteria. We propose the introduction of sophisticated topological criteria as 

well as power-flow considerations to guide synthetic-network generation. Accordingly, during 

this step, new lines are added with a double objective. On the one hand, they try to improve 

network robustness as well as network operation. On the other hand, the installation of a line 

is conditioned by the expected topology of the synthetic network defined by the GHuST 

framework.  

The inputs of the model used to guide the topological evolution of synthetic power 

Disconnected clusters are linked based on reliability considerations. Clusters find a 

backup cluster to supply demand in case of generator failure.  

If the resulting network is not a connected graph, the model installs lines that make a 

connected graph at the minimum cost.  



 

 

5.3. Algorithm description 

 

 

103 

 

 

networks are the expected degree distribution and the expected values of GHuST dimensions 

for the synthetic network. Chapter 2 pointed out the importance of degree distribution due to 

its implications in terms of network vulnerability. We also showed that the use of a global 

statistic such as degree distribution might result in misleading. However, the twelve dimensions 

of the GHuST framework provide a complete description of network topology. Accordingly, by 

including the GHuST framework and the degree distribution together, we will be able to reach 

a topological consistency of resulting synthetic power networks. 

Furthermore, to overcome the drawbacks of pure topological methodologies explained in 

section 5-2, power-flow considerations guide the installation of those lines. Accordingly, 

resulting networks are expected to be both topologically and electrically consistent with real 

networks. 

This step is divided into three stages: 

1. Preventing islands: the algorithm tries to install lines that reduced network 

vulnerability. 

2. Guiding node degree: lines are added individually to improve network operation. 

3. Reaching GHuST consistency: lines are added to mimic those aspects of network 

evolution that cannot be introduced in the algorithm.  

A. Preventing islands 

Networks resulting from the first step, building a connected graph, are expected to have a 

poorly meshed structure. Accordingly, those networks are highly vulnerable in case of line 

failure. Indeed, line removal might split the network into two components. Beyond the 

consequences in terms of network dynamics, this division is critical if there is a deficit of 

generation in one of those components. Therefore, generation and demand will not meet.  

As in the inter-cluster wiring, this stage relies on the N-1 criterion. Unlike the inter-cluster 

wiring that considers generator failure, this stage only focuses on line failures. The algorithm 

tries to build alternative paths to supply demand in case of connections failure. Accordingly, 

the installation of new lines will prevent the formation of islands (disconnected components). 

Figure 5-3 shows the flowchart of this stage.  

The complete fulfillment of the N-1 criterion would lead to a network in which all nodes 

have at least two connections. However, as shown in Chapter 4, the number of leaf nodes in 

power networks cannot be neglected. Accordingly, the model will try to reach the N-1 approach 

while preserving topological consistency. The installation of line reinforcements is therefore 

based on power-system considerations, but it is conditioned by the contribution of that line to 

network topology. In this stage, the topological contribution is measured through the degree 

distribution. A line contributes to the degree distribution if the installation of that line helps to 

reduce the difference between the degree distribution of the synthetic network and the target 

one. For instance, if the number of leaf nodes in the synthetic network is equal to the number 
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of leaf nodes in the target distribution, no more lines will be connected to nodes with only one 

connection. If new lines would be linked to nodes connected to only one transmission line, the 

number of leaf nodes in the synthetic network will be lower than in the reference network. This 

error cannot be corrected with the installation of new lines in a further step, and the topology 

of the synthetic network will not be consistent with real power networks. Consequently, the 

desired degree distribution conditions the installation of new lines in this stage.  

Building a connected graph

Line criticallity estimation

Generation deficit? 

Guiding node degree 

Yes

No

Ranking Lines 

Candidate discovery 

Fitting degree 
distribution?

Line installation 

Yes

No

Island omission

 
Figure 5-3. Flowchart of the preventing-island stage 

Since not all nodes can be connected with two lines, and disconnected components may 

appear in case of line failure, it is necessary to define a ranking to prioritize line reinforcements. 

This ranking is based on the impact the failure of an existing line has on the network. We 

calculate the impact of each line removal in the system with the line criticality index. This index 

is based on the Loss of load index (later explained in Chapter 6) [107]. The line criticality index 

of a line 𝐿𝐶𝑖 is the maximum value of Power Not Served in the disconnected components 𝑃𝑁𝑆𝑗 

that appear after the failure of that line (5-12). Generation deficit is the difference between the 

generation capacity 𝐺 of nodes that belong to component 𝐶 and the total demand of those 
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nodes 𝑃𝐷 (5-13). 

𝐿𝐶𝑖 = {
 max(𝑃𝑁𝑆𝑗), max(𝑃𝑁𝑆𝑗) ≥ 0

0, max(𝑃𝑁𝑆𝑗) < 0
 (5-12) 

𝐺𝐷𝑖 = ∑ 𝑃𝐷𝑘 − ∑ 𝐺𝑘

𝑘∈𝐶𝑘∈𝐶

 (5-13) 

The algorithm only simulates the failure of one line. Accordingly, the maximum number of 

disconnected components is two. Furthermore, as generation capacity in the network should 

be higher than total demand, generation deficit may appear in only one of those components. 

After ranking existing lines based on their impact on demand-supply, the algorithm looks 

for the new lines that can mitigate that deficit of generation in case of line failure. Any line that 

connects both components will avoid the formation of islands. However, the algorithm tries to 

minimize the impact of new lines in the network. Consequently, a new line should minimize the 

number of cases in which line failures lead to a disconnected graph. 

To decide what is the line that should be installed, the algorithm finds a set of potential 

candidate lines that would contribute to increasing network reliability. Subsequently, it 

evaluates those candidates, and it chooses the line that better fits with network requirements. 

For each line that leads to a disconnected component with a deficit of generation, the 

algorithm first figures out the nodes that belong to that component (the origin of candidate 

lines should be one of those nodes). To maximize the number of cases in which the candidate 

line mitigates the effect of a disconnected graph, the algorithm chooses as the origin of the 

candidate lines all leaf nodes of the subgraph. The leaf node that was connected to the line that 

has caused the disconnected graph is excluded. Figure 5-4 illustrates the process followed. In 

the case of line failure, a string of four nodes would be disconnected. However, if we connect 

the leaf node (red node) with the network, we avoid the formation of a disconnected graph in 

case of removing the three lines of the string (blue lines). Accordingly, the best option to be the 

origin of candidate lines is the leaf node. However, to meet the constraint related to the 

number of leaf nodes in the network, we also consider as the origin of the candidate line the 

connection of the leaf node (yellow node). 

Once the origin of the candidate lines is fixed, the algorithm looks for the end of those 

candidate lines. It is clear that the end would be located in the component where there is not 

a generation deficit. All those nodes whose distance to the initial node is lower than the 

maximum line length are considered the end nodes of potential candidate lines. Subsequently, 

the algorithm analyzes if those lines contribute to the degree distribution or not. This is 

repeated every time a line is installed. Furthermore, to avoid the connection with close nodes, 

and to encourage the connection with other network areas, the algorithm imposes a constraint 

in terms of network distance. This contributes to increase network reliability since the lower 

the distances in the network the higher network robustness [108]. The pair of nodes that would 

be directly connected in case of installing a candidate line should be separated by a minimum 
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distance. That distance is a minimum number of edges regarding the shortest path matrix. 

Finally, the model chooses the line that connects the furthest nodes. In the case of two lines 

with a similar contribution, the cheapest line is installed.  

A) Initial state B) Line removal C) Possible candidates 

Network

Network Network

Network Network

 
 

D) Potential candidate I E) Potential candidates II 

Network

Network Network

Network Network

                              

Network

Network Network

Network Network

 
 

Figure 5-4. An example of the candidate line proposal in the preventing-island stage 

 

B. Guiding node degree 

Although the previous step introduced topological considerations, it only analyses the 

contribution of new lines to the degree distribution of the synthetic network. As explained in 

Chapter 3, two networks with similar degree distribution may still display significant topological 

differences. To ensure topological consistency, we propose the introduction of the GHuST 

framework to guide network generation. However, we do not have a sound understanding of 

the marginal contribution of an individual line to reach a GHuST target (considering the twelve 

dimensions). Although the contribution to each dimension looks intuitive, the correlation 

among GHuST dimensions needs for further research. Furthermore, unlike degree distribution, 

in the GHuST framework, we do not know how the installation of a line conditions error 

mitigation in the future. We have no certainty if the error in the GHuST dimensions, which is 

New lines are added to increase network reliability. The algorithm builds alternative 

paths to supply demand in case of line failure.  

This stage focuses on avoiding the formation of disconnected components in which 

there would be a deficit of generation and demand cannot be therefore met.  

The installation of new lines is conditioned by the contribution of that line to fit with 

the desired degree distribution.  
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introduced by the installation of a new line, can be corrected with further lines. Therefore, the 

algorithm can only compare the topological consistency of the synthetic network with the 

GHuST framework if all lines are installed. The algorithm, therefore, evaluates sets of candidate 

lines to be installed together (instead of a single line). 

Chapter 2 showed the average number of lines per node in the European transmission 

networks, 𝐿 ≈ 1.33𝑁. To have a connected graph, the minimum spanning tree installs 𝑁 − 1 

lines. Although this algorithm does not use the minimum spanning tree, we might expect that 

the number of lines installed at the building-a-connected-graph step will be similar (or slightly 

higher). Consequently, the algorithm should add approximately 0.33𝑁 lines. Despite the 

number of lines installed in the prior stage (preventing islands), the number of new lines and 

the number of candidate lines (nodes that can be connected and that line contributes to the 

degree distribution) may result in an extremely large, and an unmanageable number of 

potential networks in which evaluate the GHuST framework. 

To reduce the number of candidate lines as well as the total number of lines to be installed, 

this stage focuses on installing lines in low-degree nodes. Those lines are installed analyzing its 

contribution to the degree distribution and base on power-flow considerations. Consequently, 

this stage disregards the GHuST framework, but it reduces the number of candidate lines in 

further stages. If the number of leaf nodes in the synthetic network and the target network is 

the same, all candidate lines that include a leaf node should be omitted. Accordingly, this step 

starts by installing lines considering leaf nodes and nodes with two connections. The higher the 

number of lines installed, the lower the number of candidates. However, it also reduces the 

possibilities to reach the reference in terms of GHuST.  

The process followed is described in Figure 5-5. If the number of nodes with a specific node 

degree 𝑋 is lower in the synthetic network than in the target, new lines should be installed. 

Accordingly, all nodes whose node degree is 𝑋 − 1 are potential nodes to be the origin/end of 

candidate lines. Once that candidate lines are found (following the criteria explained in the prior 

section, contribution to degree distribution and line length), those candidates are evaluated in 

terms of power flow to decide the line to be installed. This is done iteratively until there is no 

difference between the synthetic network and the target network.  

The algorithm installs the line that makes a reduction in terms of power flow per distance 

𝐸, which can be considered as a proxy of the optimal transmission expansion decision. It 

estimates the sum of the product between power flow through a line 𝑓𝑖 and the length of that 

line 𝐿𝐿𝑖 (5-14). This measure analyzes the contribution of the line to network operation. In case 

two lines have the same impact, the cheapest line is installed.  

𝐸 = ∑ 𝑓𝑖 𝐿𝐿𝑖

𝑖∈𝐿

 (5-14) 

Transmission line capacities are fixed based on the expected power flow in the optimal 

economic dispatch.  
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Figure 5-5. Flowchart of the guiding-degree stage 

 

C. Achieving GHuST consistency 

As explained in Chapter 4, existing synthetic networks cannot replicate the complexity of 

the real power-network structure. Indeed, in most cases, those synthetic networks do not 

capture the complexity of local structures. Although this model has conditioned the installation 

of new lines to their contribution to the degree distribution, this is not enough to create 

networks that are topologically consistent. Accordingly, we have introduced the use of the 

GHuST framework to guide network generation.  

As previously mentioned, new lines should be evaluated together. Accordingly, we propose 

the generation of a large set of candidate networks that are evaluated afterward.  

Those sets of networks are generated with a random process. Since the number of 

To reduce the number of candidate lines as well as the number of lines to be installed, 

this stage focuses on the connection of low-degree nodes. Accordingly, it tries to reduce 

the difference between the degree distribution of the synthetic network and the target. 
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combinations is not manageable, the algorithm generates a large number of candidate sets to 

be evaluated. Then, it filters the networks whose topology is consistent with the target. This 

random process is guided based on electrical and topological criteria. The process is illustrated 

in Figure 5-6. First, the model determines the number of lines to be installed in the synthetic 

network (this is obtained from the target degree distribution). It also finds the candidate lines 

that can be installed based on degree distribution and line length. Subsequently, the model 

decides randomly the lines that are installed. This is done iteratively until meeting the target 

degree distribution. The decision to install a line depends on a probability function. Every time 

a line is installed, the list of candidate lines and probabilities are updated. 

The probability of installing a line is conditioned by 3 aspects:  

• Estimated power flow, since running a power flow in each iteration would need large 

computational requirements; we estimate the power through a candidate line based on the 

state of the synthetic network. Based on the DC power flow definition, power flows through 

network lines are defined by equation (5-15), where 𝑋 is the diagonal matrix of line 

reactance, 𝐴 the incidence matrix (reduced to the slack bus), 𝑃 the vector of power 

injections at each node, and 𝜃 are the system voltage angles.  

𝐹 = 𝑋−1 𝐴𝑇 𝜃 (5-15) 

 𝜃 = [𝐴 𝑋−1 𝐴𝑇]−1𝑃 (5-16) 

If we consider that changes in 𝜃 after the installation of a new line are small, we can estimate 

the power through a new line as (5-17).  

𝑃𝑖,𝑗
𝑒𝑠𝑡 = 𝑋𝑖,𝑗

−1 (𝜃𝑗 − 𝜃𝑖) (5-17) 

The probability of installing a line based on the estimated power flow 𝑃𝑖,𝑗
𝑒𝑠𝑡, is proportional 

to the maximum power flow estimation for a candidate line (5-18). 

𝑝𝑓𝑖,𝑗 =  
𝑃𝑖,𝑗

𝑒𝑠𝑡

max(𝑃𝑒𝑠𝑡)
 (5-18) 

• Line length, the probability of installing a line is also conditioned by the length of the line. 

The model assumes that the line length is the distance between two nodes. The probability 

of installing large lines may differ from the probability of finding a short line in the network. 

Those probabilities might vary depending on the country as introduced by Espejo et al. [65].  

𝑝𝑙𝑖,𝑗 = {

𝛼, 𝐷𝑖,𝑗 ≤ 𝑙1

𝛽, 𝑙1 < 𝐷𝑖,𝑗 ≤ 𝑙2

𝛾, 𝑙2 < 𝐷𝑖,𝑗 ≤ 𝑙3

…

 (5-19)  



 

 

Chapter 5. A Novel Algorithm to Generate Synthetic Power Grids 

 

 

110 

 

 

Guiding node degree

Candidate discovery
pl(i,j) estimation

Line Installation

t = 0

Random number < 
pl(i,j)

t = t +1
pl(i,j) update

Degree distribution 
simiilarity?

t < limit ?

Candidate network

iteration = 0

iteration < iteration 
limit?

t = t +1

Final network selection

Yes

No

Yes

No

Yes

No

Yes

No

 
Figure 5-6. Flowchart of the achieving-GHuST-consistency stage 

• Graph distances, we pointed out the importance of graph distances (minimum number of 

edges to go from one node to another) concerning network vulnerability. Furthermore, we 

observe a lack of triangles in existing synthetic networks. Accordingly, the probability of 

installing a line based on graph distances differentiates two cases. First, if the distance is two 

edges, the addition of that line would create a triangle. The probability of installing a triangle 

is fixed by the user with the parameter 𝛿. Finally, if the distance is higher than 2, the higher 

the distance, the higher the probability of installing that line.  

𝑝𝑑𝑖,𝑗 = {

𝛿, 𝑑𝑖,𝑗 = 2

1 −
1

𝑑𝑖,𝑗
, 𝑑𝑖,𝑗 > 2

 (5-20)  
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Accordingly, the probability of installing a new line depends on power-flow estimations, the 

geographical distance and the graph distance between nodes (5-21).  

𝑝𝑖,𝑗 = 𝑝𝑓𝑖,𝑗 𝑝𝑙𝑖,𝑗 𝑝𝑑𝑖,𝑗 (5-21)  

This process is repeated until the degree distribution of the synthetic network meets with 

the target. If the degree distribution meets the target, that network is a candidate network to 

be evaluated. The algorithm also fixes a time limit since there is no guarantee that the synthetic 

network will meet the target. Following this process iteratively, the algorithm is able to 

generate a large set of networks with the same degree distribution. However, their topological 

properties may differ from the target networks.  

The model applies the GHuST framework and filters all those networks in which the relative 

error (concerning the reference network) is below a limit in the twelve dimensions. 

Subsequently, it chooses the network that minimizes the mean relative error. Accordingly, this 

process ensures that final networks are topologically consistent with real transmission power 

networks. 

Finally, the algorithm presents enough flexibility to generate synthetic power grids with 

different topologies. By introducing an electricity generation mix or a line catalog, different 

topologies may appear during the first step of the model. The result of the second step is 

conditioned by degree distribution, and the values of GHuST introduced as input. This flexibility 

is crucial to replicate the historical evolution of power grids as shown previously.  

 

5.4. A synthetic network for Spain, Portugal, and France 

The objective of this section is to test the ability of the proposed algorithm to generate 

synthetic power grids that are consistent with the topology of real power networks. We use 

three cases: the Spanish 400-kV network, the Portuguese 400-kV network, and the French 400-

kV network. The Spanish network is composed of 235 nodes and 334 lines, the Portuguese 

network has 69 nodes and 93 lines, and the French network is formed by 217 nodes and 283 

lines. The Spanish and Portuguese networks are obtained from the 2014 TYNDP (2030 scenario) 

of ENTSOE-e [12]. The French case is obtained from RTE [13]. 

The achieving-GHuST-consistency stage follows an iterative process to generate a set of 

synthetic networks that have the same degree distribution than the target network.  

The GHuST framework is applied to choose the candidate network that better fits with 

the target topology.  
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Figure 5-7. Node location in the Spain-Portugal-France synthetic network. 

Node location and node attributes are introduced as inputs of the case study. As previously 

mentioned, we only focus on testing the ability of the proposed algorithm to link those nodes. 

The node location used as input is the real location of nodes for the three countries. Figure 5-7 

shows the geographical distribution of nodes for the three countries. The target degree 

distribution, as well as the values of GHuST for each country, are fixed considering the real 

degree distribution and the GHuST values of real networks.  

The model starts clustering demand nodes around generators. The clusters obtained for 

each country are shown in Figure 5-8. The number of clusters is 73 clusters in Spain, 21 clusters 

in Portugal and 60 clusters in France. Accordingly, the average cluster size is 3.2, 3.3 and 3.6 

nodes, respectively. The number of clusters with no demand nodes (generators that are not 

connected to other nodes) is 9 clusters in Spain, 6 clusters in Portugal and 15 clusters in France. 
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France 

 
Figure 5-8. Clusters formed in the Spain-Portugal-France synthetic network. 

Red points are demand nodes and green points are generators. The green area represents the clusters 

formed and the nodes that belong to those clusters.  

Since the number of renewable power plants that are directly connected to transmission 

networks is small, and we have no detailed information about the year of construction of power 

plants, we only consider one iteration. Accordingly, all generators are introduced at the same 

time.  

To connect clusters, the intra-cluster-wiring stage considers three types of lines. The values 

of the transmission capacities are 700 MVA, 1,500 MVA, and 2,000 MVA. Those values are the 

most representative frequencies of the thermal-rating distribution for those countries [109]. 

The number of lines installed in this stage is 411 (191 lines in Spain, 52 lines in Portugal and 168 

lines in France). Lines added are shown in Figure 5-9.  
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Figure 5-9. Intra-cluster-wiring stage in the Spain-Portugal-France synthetic network. 

Regarding those demand nodes that belong to more than one cluster, the system is divided 

into 45 disconnected clusters in Spain, 17 disconnected clusters in Portugal, and 48 

disconnected clusters in France. To obtain a connected graph, those disconnected clusters are 

linked to find a backup cluster. In case no backup cluster is found the algorithm minimizes 

network cost to have a connected graph.  

Figure 5-10 shows the clusters made in each country and how they are connected. Each 

point represents a disconnected cluster. The location of the point is the mean value of the 

latitude and longitude of all nodes that belong to each cluster. Grey edges stand for the 

connection candidates that have been considered. Candidate connections are proposed based 

on the shortest geodesic distance among clusters (geographical distance between the closest 

nodes of different clusters). Finally, red lines represent the connections installed to have a 

connected graph.  
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Figure 5-10. Connection of disconnected clusters in the Spain-Portugal-France synthetic network. 

Connections among clusters should be translated into node connections. The algorithm 

defines the connection between a pair of nodes of different clusters based on geographical 

distance. Furthermore, international connections (Spain – Portugal, and Spain – France) are 

introduced manually at this stage. Lines installed (red lines) are shown in Figure 5-11.  

The number of lines installed in each country is 236 lines in Spain, 68 lines in Portugal and 

216 lines in France. The percentage of the remaining lines to be installed in further stages is 

29.4% in Spain, 26.9% in Portugal and 23.67% in France.  

To increase network reliability, the model tries to reduce the potential formation of islands. 

As we can see in Figure 5-11, the removal of a large number of lines will divide the system into 

two components. The algorithm verifies if there is a generation deficit in each of those potential 

disconnected components. In the case of deficit, the model analyses if the installation of a new 

line would avoid the formation of islands.  
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Figure 5-11. Inter-cluster-wiring stage in the Spain-Portugal-France synthetic network. 

The preventing-island stage is repeated in two iterations. In both iterations, candidate lines 

are chosen based on the transmission-line length and its contribution to degree distribution. 

Furthermore, in the first iteration, candidate lines should connect nodes that are separated by 

nine or more edges. In the second iteration, that limit is lower, the minimum distance is four 

edges. This constraint tries to avoid the formation of really meshed local structures, in which 

island formation is avoided with close nodes. Accordingly, the number of lines required to 

increase network reliability would be extremely high.  

The number of lines installed in the first iteration (node distance for candidate lines higher 

than 9 edges) is 11 lines in Spain, 2 lines in Portugal, 9 lines in France. The percentage of new 

lines to be installed is 26.1% in Spain, 24.7% in Portugal and 20.5% in France.  
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 Iteration 1 

 
Iteration 2  

 
Figure 5-12. Preventing-islands stage in the Spain-Portugal-France synthetic network. 

In the second iteration (node distance for candidate lines higher than 4 edges), the number 

of lines installed is 16 lines in Spain, 4 lines in Portugal, 5 lines in France. Finally, the percentage 

of remaining lines is 21.3% in Spain, 20.4% in Portugal and 18.7% in France. Lines installed in 

both iterations are shown in Figure 5-12.  
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Iteration 1: Spain, Portugal, France  

 
Iteration 2: Spain, France 

 
Figure 5-13. Guiding-node-degree stage in the Spain-Portugal-France synthetic network. 

The average percentage of lines to be installed by the algorithm at the end of the 

preventing-island stage is 20.13%. This would lead to a high number of combinations to achieve 

consistency in terms of GHuST. To reduce the number of line candidates and possible 

combinations, the guiding-node-degree stage installs new lines following power-flow 

considerations. Those lines are added in order to reduce the error between the degree 

distribution of the synthetic network and the target degree distribution. It focuses on nodes 

with one and two connections. Because of the small size of Portugal (number of nodes) in 

comparison with Spain and France, the algorithm only installs new lines attached to leaf nodes 

in that country. 
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This stage is therefore divided into two iterations, as shown in Figure 5-13. In the first 

iteration, only nodes with one connection are considered. The number of lines installed is 15 

lines in Spain, 6 lines in Portugal and 4 lines in France. The percentage of lines to be installed is 

16.8% in Spain, 13.9% in Portugal and 17.3% in France. In the second iteration (nodes with two 

connections), the number of lines installed and the percentage of lines to be installed are 7 

lines and 14.7% in Spain and 7 lines and 14.8% in France.  

Finally, the average percentage of new lines to be installed is 14.5% of the total lines in each 

country. Those lines are added based on a random process in the achieving-GHuST-consistency 

stage.  

In the achieving-GHuST-consistency stage, the model performs 5,000 iterations for the 

Spanish and French networks and 3,500 iterations for the Portuguese network. The time limit 

is also lower in the Portuguese network.  

In the case of Spain, the number of candidate lines is 935, and the number of lines to be 

installed is 56. The algorithm generates 1,295 networks that meet with the target degree 

distribution. In 3,705 iterations, the algorithm could not generate a valid network in terms of 

degree distribution. For the 1,295 networks that meet the degree distribution, the algorithm 

figures out the values of GHuST. Figure 5-14 shows the range of GHuST for each dimension as 

well as the relative error concerning the target. Since the number of installed lines is a 

consequence of meeting the degree distribution, the error of 𝜌1 is 0% in all cases. In 𝜌2, the 

maximum relative error is 15% and the median relative error is 8.7%. The value of the maximum 

relative error of 𝜌4, 𝜌5, and 𝜌6 are always below 10% and the median relative errors are 1.4%, 

4.2%, and 3.1% respectively. In the case of 𝜌3, the median of the relative error is higher (26%), 

but the minimum error is 7%. Accordingly, most networks meet the distribution of GHuST 

regarding hubs and strings. Although there is a significative difference regarding, the degree of 

leaf-node connections (𝜌3), we can find networks in which the dimensions of GHuST regarding 

global connectivity are also consistent with the target.  

The higher deviation of GHuST is found in the dimensions related to triangles. We observe 

that the maximum value of the relative error is 1.33 in 𝜌9. However, we also observe that there 

are instances in which the minimum relative error is 0%, 0%, 4%, 0% and 0% for 𝜌8, 𝜌9, 𝜌10, 

𝜌11, and 𝜌12 respectively. Accordingly, although all networks have the same degree 

distribution, they display completely different topological properties. Indeed, the complexity of 

local structures varies. This reinforces the idea that the validation of synthetic power grids 

should go beyond global statistics and should use the GHuST framework proposed in the thesis.  

Despite the variance in the values of GHuST related to triangles, there are networks in which 

those values are close to zero. The model will filter the networks with lower errors, as explained 

below. If no valid network is found, it is possible to rerun the algorithm increasing the number 

of iterations or reducing the number of lines installed in the previous stage. 
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Values of the GHuST framework (right) and relative error (left) for the Spanish synthetic power 

network 

  

Values of the GHuST framework (right) and relative error (left) for the Portuguese synthetic power 
network 

  

Values of the GHuST framework (right) and relative error (left) for the French synthetic power 
network 

  

Figure 5-14. Values of the GHuST framework and relative error for the networks generated in the 

reaching-GHuST-consistency stage in the Spain-Portugal-France synthetic network.  
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In the Portuguese network, the number of lines to be installed is 13 lines. In this last stage, 

the model considers 167 candidates, and it generates 1,603 out of 3,500 networks that fit the 

degree distribution. In most dimensions of GHuST, (2, 3, 4, 5, 6, 8, 9, 10, and 12) the median of 

the relative error is below 15%. We only find a significative variance in 𝜌7 (characteristic string 

length) and in 𝜌9 (triangle concentration). There is a higher tendency to share vertices of 

triangles and strings tend to be longer in the synthetic networks. However, as in the case of 

Spain, we find some instances in which the relative error is close to 0% for those dimensions. 

In the French network, although the number of lines to be installed is lower than in the 

Spanish case (43 lines), it considers 1,200 candidate lines, and it generates 2,145 networks that 

meet with the degree distribution. In those networks, global connectivity (𝜌1, 𝜌2, and 𝜌3) and 

hubs (𝜌4 and 𝜌5) are consistent with the target (the median value of the relative error is below 

15%). Although there is a higher relative error regarding string length, 25% of instances have a 

relative error below 20% considering strings (𝜌6 and 𝜌7).  

 

 

Figure 5-15. Reaching-GHuST-consistency stage in the Spain-Portugal-France synthetic network. 
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Synthetic transmission power network 

 
Real power network 

 
Figure 5-16. Spain-Portugal-France synthetic and real transmission power networks. 

As in prior cases, higher variations appear in the dimensions related to triangles. In 𝜌9 there 

are some outliers in which the difference regarding the target is higher than 200%. We can 

conclude that there is a higher tendency to share vertices. This might be a consequence of the 

degree-distribution constraint. However, in the case of triangles, we find instances in which 

GHuST dimensions have a relative error of 0%. This is the case of 𝜌8, in which the relative error 

ranges from 0% to 57%. Besides, the minimum error is 13%, 7% and 6% for 𝜌10, 𝜌11, and 𝜌12. 

Finally, the instances that minimize the relative error for each country are chosen for the 

final synthetic network. The new lines installed (red lines) are shown in Figure 5-15. 
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Furthermore, Figure 5-16 illustrates a graphical comparison between the synthetic and the real 

networks. Further developments may condition the choice of the final network based on an 

electrical criterion, for instance, by comparing the distribution of power flows.  

Table 5-1 summarizes the steps followed in the generation process of the synthetic power 

network. Table 5-2 shows the values of the GHuST framework for the three networks after the 

building-a-connected-graph step, the preventing-islands stage, and the guiding-node-degree 

stage. 

Table 5-1. Steps followed and the percentage of lines installed in the generation process of the Spain-

Portugal-France synthetic power network. 

Step Criterion Percentage of lines installed Result 

Clustering nodes Minimum distance 
0% in Spain, 0% in Portugal, 
0% in France 

Nodes are grouped in clusters in 
which demand can be satisfied. 

Intra-cluster wiring 
Meeting demand at minimum 
cost 

57.2% in Spain, 55.9% in 
Portugal, 59.4% in France 

Demand is connected to generation. 

Inter-cluster wiring 
Cluster connection based on 
generation N-1 reliability 
criterion 

70.6% in Spain, 73.1% in 
Portugal, 76.37% in France 

Clusters are connected (connected 
graph). 

Preventing islands 
New lines installed based on 
line N-1 reliability criterion. 

78.7% in Spain, 79.6% in 
Portugal, 82.3% in France 

Network reliability is improved. 

Guiding node degree 
Degree-distribution 
consistency 

85.3% in Spain, 85.2% in 
Portugal, 82.7% in France 

The frequency of nodes with one or 
two connections is the same in the 
synthetic and in the real network. 

Achieving consistency GHuST consistency 100% in Spain, 100% in 
Portugal, 100% in France 

The synthetic network is topologically 
consistent with the target. 

Table 5-2. GHuST values for real and synthetic power networks.  

  𝜌1 𝜌2  𝜌3 𝜌4 𝜌5 𝜌6 𝜌7 𝜌8 𝜌9 𝜌10 𝜌11 𝜌12 

Generating 
a 

connected 
graph 

Spain 0.00 0.28 0.37 0.18 0.65 0.65 0.50 0.00 0.00 0.00 0.00 0.40 

Portugal 0.00 0.49 0.44 0.13 0.48 0.46 0.31 0.00 0.00 0.00 0.00 0.25 

France 0.00 0.35 0.47 0.23 0.56 0.61 0.44 0.00 0.00 0.00 0.00 0.40 

Preventing 
islands 

Spain 0.11 0.15 0.41 0.20 0.68 0.59 0.44 0.00 0.00 0.00 0.00 0.40 

Portugal 0.07 0.38 0.52 0.12 0.54 0.53 0.35 0.00 0.00 0.00 0.00 0.25 

France 0.06 0.29 0.50 0.23 0.54 0.58 0.37 0.00 0.00 0.00 0.00 0.40 

Guiding 
node 

degree 

Spain 0.18 0.15 0.35 0.13 0.79 0.52 0.41 0.02 0.19 0.09 0.32 0.49 

Portugal 0.14 0.46 0.53 0.12 0.59 0.41 0.25 0.03 0.13 0.19 0.31 0.37 

France 0.10 0.31 0.44 0.17 0.60 0.48 0.31 0.01 0.07 0.06 0.00 0.52 

The values of GHuST for the final synthetic and real transmission power networks are shown 

in Table 5-3. We observe that values for the synthetic and real networks are close in all the 

dimensions. In the Spanish synthetic network, the mean relative error is 6.0%. The highest 

difference is found in 𝜌3 (17%) and in 𝜌8 (11.3%). The relative error of the rest of the 

dimensions is below 10%. The mean relative error in the case of Portugal is 6.9% and the 

maximum relative errors are 10.9% in 𝜌3 and 10% in 𝜌6 and 𝜌9. On the contrary, the error in 

𝜌2 is only 2%. In the third synthetic network, France, the mean relative error is 12%. This mean 
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error is higher because of the maximum error that is 23% in 𝜌10. In France, triangulation has 

ha igher relative error than in other countries. However, the relative error of 𝜌3 is only 5%.  

Table 5-3. GHuST values for real and synthetic power networks.  

 𝜌1 𝜌2  𝜌3 𝜌4 𝜌5 𝜌6 𝜌7 𝜌8 𝜌9 𝜌10 𝜌11 𝜌12 

Real Spain 0.30 0.19 0.40 0.13 0.81 0.49 0.29 0.03 0.19 0.29 0.24 0.47 

Synthetic Spain 0.30 0.18 0.47 0.13 0.79 0.50 0.31 0.03 0.20 0.25 0.21 0.47 

Real Portugal 0.26 0.54 0.51 0.19 0.82 0.26 0.30 0.06 0.56 0.29 0.20 0.49 

Synthetic Portugal 0.26 0.54 0.56 0.18 0.76 0.28 0.27 0.06 0.50 0.30 0.19 0.47 

Real France 0.23 0.41 0.41 0.16 0.72 0.39 0.19 0.04 0.20 0.30 0.35 0.43 

Synthetic France 0.23 0.37 0.43 0.15 0.74 0.44 0.20 0.03 0.23 0.23 0.30 0.44 

Based on prior results, the algorithm generates networks with really similar topology to the 

real networks used as a reference. Furthermore, we cannot conclude that there is a dimension 

that the algorithm fails to replicate systematically. Although in Spain and Portugal 𝜌3 has a 

higher deviation, the relative error is low in the case of France. All stages look to be significant. 

There is not a stage in which a low number of lines is installed.  

As we pointed out in previous chapters, other authors have used some global statistics to 

prove the topological consistency of synthetic networks. Although we have shown the 

topological consistency of the synthetic network with the GHuST framework, we also compare 

the characteristic path length and network diameter. There is no error considering degree 

distribution and detailed validation of triangulation is provided with 𝜌8 to 𝜌12. Accordingly, the 

network average clustering coefficient is not compared. 

The values of characteristic path length and network diameter for the synthetic and real 

networks are shown in Table 5-4. The relative error in the case of network diameter is 5% 

(Spain), 9% (Portugal), and 0% (France). The error is only one edge in both the Spanish and 

Portugal synthetic network. The relative error of the characteristic path length is 7% (Spain), 

3.2% (Portugal), 5.9% (France). 

Table 5-4. Characteristic path length and network diameter for the real and synthetic power networks 
 Real 

Spain 
Synthetic 
Spain 

Real 
Portugal 

Synthetic 
Portugal 

Real 
France 

Synthetic 
France 

Network 
Diameter 

19 20 11 12 21 21 

Characteristic 
path length 

8.06 8.63 4.98 5.14 8.27 8.76 

Finally, we compare the synthetic networks that would have been generated for this set of 

nodes by the model proposed by Birchfield et al. [22]. Before running the referenced model, 

we modified the number of lines to be installed in the synthetic networks to be equal to the 

number of lines in the corresponding real networks, as opposed to considering the installation 

of 1.22 lines per node as done originally in their paper. This way, the mean node degree is equal 

in both the real and synthetic networks. However, the respective degree distributions obtained 



 

 

5.5. Takeaways 

 

 

125 

 

 

from the synthetic and real networks were not in agreement. For instance, the maximum 

degree is 6 in the Spanish synthetic network, while in the real case, it is 9 connections per node. 

Regarding distance, the synthetic-network diameter is 35 edges, 15 edges, 33 edges in the case 

of Spain, Portugal and France respectively. The associated errors are 84.2%, 36.4% and 57.1% 

concerning the real networks. Similarly, the characteristic path lengths are 13.8 edges, 5.9 

edges and 13.9 edges (relative error are 70.6%, 18.5% and 59.0%). Those values are also far 

from the real ones. Besides, we compare the GHuST framework. The mean relative errors are 

44.6%, 27.7% and 28.0% for Spain, Portugal, and France respectively. Furthermore, in the 

Spanish synthetic network, the maximum relative errors are 161% for 𝜌8, 68% for 𝜌9 and 55% 

for 𝜌10. In the case of Portugal highest relative errors are for 𝜌9, 𝜌10, and 𝜌11 (52.8%, 55.0% 

and 51.6%). The proposed model cannot replicate the local complexity (triangles) of the real 

networks. In the Portuguese synthetic network, there is also a significant error associated with 

strings, the relative error of 𝜌6 is 46.8% and in the case of 𝜌7 the relative error is 44.4%. In the 

French network, the number of leaf nodes (𝜌2) highly diverges with respect to the reference, 

the relative error is 49%. Highest relative errors are 86% (𝜌7) and 72% (𝜌11). This model has 

significant problems to replicate the topological aspects covered by the GHuST framework. 

Moreover, those results are in line with the conclusions obtained in Chapter 4 for the ACTIVSg 

networks generated with the same model.  

Those errors are considerably larger than the obtained with the proposed algorithm. 

Therefore, while the referenced algorithm provides synthetic power networks in which AC 

power flow converges, these results show divergence between the synthetic networks and 

their corresponding real networks from a topological point of view. This divergence is 

insignificant when comparing the synthetic networks generated with the model proposed in 

this chapter.  

These results show that the proposed algorithm is not only able to generate networks with 

the same degree distribution. Furthermore, results are also highly consistent with other 

topological metrics such as characteristic path length or network diameter. Furthermore, they 

are consistent with the GHuST framework.  

5.5. Takeaways 

This chapter presents a new algorithm to generate synthetic power grids. Several models 

for this are proposed in the literature; however, they do not fit well with the properties of real 

power networks and they lack the flexibility necessary to generate different topologies 

according to the different factors that condition the evolution of power networks in different 

regions.  

The proposed algorithm is able to generate synthetic transmission power networks that 

are topologically consistent with real networks. It has been tested with the Spanish, 

Portuguese, and French 400-kV transmission power networks.  
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The proposed model considers economic and technical factors in order to mimic the 

topology of real power networks. The generation process is divided into two steps: building a 

connected graph and adding lines to reach topological consistency.  

The objective of the first step is to design the simplest network that is able to supply demand 

at the lowest cost. The first power networks were non-meshed networks that supplied local 

areas. Once the demand is met, the planning process focuses on improving the quality of supply 

and network reliability, something that is achieved by adding new lines. Since this is a 

parametrical model, it can generate different network topologies for the same set of nodes. 

This is crucial in order to replicate the historical evolution of power systems, which depends on 

regional factors such as geography or the electricity generation mix, which has been widely 

discussed in prior chapters.  

The wiring process was tested on the Spanish, Portuguese, and French 400-kV transmission 

network. In the three cases, we use the same set of nodes in the real grids (with the same 

electrical and geographical properties) in order to make network comparisons transparent. The 

resulting synthetic networks are consistent with the topology of their corresponding real 

networks. In the validation process, we have considered the GHuST framework and some 

global statistics. The algorithm is, therefore, able to generate networks that are topologically 

consistent with the real network. This is something that was missing in the literature as 

explained in Chapter 4.  

The algorithm can, therefore, be used to generate case studies for power-network studies 

(such as the expansion of transmission power networks), where publicly available cases are 

scarce. 
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6  ASSESSING POWER-NETWORK 

VULNERABILITY 

6.1. New challenges in network design 

Power networks are interdependent infrastructures highly connected to other systems such 

as communication networks. Not only may a failure in power-networks lead to electric 

blackouts but a failure in other networks may also lead to power-network collapse. Power 

networks are therefore critical infrastructures that should be robust against failures. These 

failures may be the consequence of component breakdown or deliberate attacks. Deliberate 

attacks are targeted attacks that aim to collapse power networks, as the cyber-attack that 

caused the Ukraine blackout in 2015, affecting to 225,000 customers [27].  

As introduced in Chapter 1, the power-network design usually includes N-1 or N-2 analyses. 

Accordingly, transmission networks are robust in the case of component failures. When a line 

fails, there are alternative routes to supply demand. Similarly, there are backup generators to 

avoid Power Not Supplied (PNS) in case of a committed-generator failure. However, those 

analyses are insufficient in the case of deliberate attacks. 

Network design, therefore, rises to new challenges to build more robust networks. 

Consequently, it should include new criteria to protect networks against deliberate attacks. 

Prior work focuses on the detection of most vulnerable network components through an 

optimization problem [30], [31], [111]. Under the perspective of terrorists, the problem is to 

maximize the damage in the network with the lowest possible number of attacks. The detection 

of the most vulnerable element allows for the introduction of new measures to protect them. 

Although these formulations give an optimal solution, they involve computationally intensive 

models. This limits their use in the network design process since the large size of the network 

makes it impossible to run those algorithms. Alternative methods, such as the use of complex-

network techniques, are needed to analyze the vulnerability of power networks including their 

interconnection with other types of networks. Thus, new methodologies should find a balance 

between computational requirements and result accuracy.  
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This chapter introduces a new metric, the Electrical Line Centrality, for the analysis of power-

network vulnerability against deliberate attacks. Based on complex-network metrics, the 

electrical line centrality endows the betweenness centrality (presented in Chapter 2) with 

electrical parameters with a view to better resembling the physical principles that govern 

power networks. By applying this metric to power networks, we try to find the most critical 

lines in the network (line failure would have the highest impact on the network). This will 

support the development of new models to protect power networks in case of deliberate 

attacks. 

The rest of this chapter is organized as follows. In Section 2, we introduce several 

vulnerability indices proposed in the literature. Section 3 presents the Electrical Line Centrality. 

Section 4 provides numerical analyses to prove the accuracy of the proposed metric. Finally, 

Section 5 extracts chapter conclusions.  

6.2. Using complex networks to assess vulnerability 

Recent work proposed to model power grids as complex networks to reduce the 

computational complexity in vulnerability analyses. As previously explained, complex-network 

methods focus on topology, which has been proved to play a crucial role in the propagation of 

cascade failures [112], [113].  

Most of those works propose the analysis of power-network vulnerability through 

vulnerability indices. Those indices try to quantify the level of power-network vulnerability 

based on network topology. Existing indices have evolved from pure topological metrics to 

extended or hybrid metrics, i.e., topological metrics endowed with electrical information. 

Cuadra et al. did a comprehensive review of how complex-network concepts adapt to power-

network-vulnerability analyses [40]. The main advantage of vulnerability indexes is the 

requirement of low computational resources. Accordingly, they may be effectively introduced 

in the network design problem.  

6.2.1. Topological metrics  

Topological indices, metrics that only consider the connection among nodes have been 

widely used to analyze power-network vulnerability. The characteristic path length and the 

network average clustering coefficient (explained in Chapter 2), were proposed to analyze the 

U.S. Western Systems Coordinating Council (WSCC) [108]. This work found that the power 

network is a small-world network. It concludes that power-network vulnerability increases 

when line removal leads to an increase of characteristic path length and a decrease in the small-

world index (2-4). Accordingly, we can rank network components based on the impact they 

This chapter introduces a hybrid metric to assess power network vulnerability: Electrical 

Line Centrality. Hybrid metrics combine topological metrics used in complex networks 

with the electrical features that characterize power networks. 
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would have on distance distribution.  

Holmgren applied the average node degree, characteristic path length, and network 

average clustering coefficient in order to try to relate changes in network topology with 

network vulnerability by analyzing the Nordic power network and the power network of the 

western states of the U.S. [114]. The objective was to find if a change in a topological index 

(after component failure) may reveal an increase of network vulnerability. However, the author 

states that graph metrics are imprecise to study structural vulnerability. 

Latora et al. introduce the global efficiency metric to measure the performance of networks 

[110]. This metric relates network efficiency with the distribution of distances among nodes (C-

1). We can analyze the criticality of a network component, damage, by comparing the 

properties of the graph before and after the failure or attack (C-2) [115]. The application of this 

method to power networks allows for the identification of the most critical lines as well as the 

detection of the lines that should be installed to reduce network vulnerability. The application 

of this topological analysis to the Spanish, French, and Italian transmission networks shows that 

the removal (or failure) of only three edges would have severe consequences in those 

networks. Furthermore, the installation of just one line would lead to a remarkable increase in 

network efficiency [116]. Consequently, this should be taken into account when designing 

network expansion. The definition of global efficiency is adapted to power networks by 

considering only the paths that connect generators and demand nodes, which is modified 

global efficiency (C-3). This was applied to the analysis of North American in the Italian power 

grid [117], [118]. 

Rosas-Casals et al. find a correlation between the cumulative degree distribution parameter 

𝛾 (a parameter that characterizes the degree probability distribution) and reliability indices 

(energy not supplied, total loss of power, restoration time and equivalent time of interruption) 

[119]. Accordingly, this parameter allows for the assessment of network vulnerability as a 

whole. This parameter cannot analyze the impact of each component in network vulnerability. 

In order to analyze the goodness of characteristic path length and connectivity loss, those 

metrics were compared with the blackout size model [120]. The blackout size model uses 

electrical information to analyze adequacy by modeling cascading failures in power systems 

due to overloaded lines. The authors conclude that those metrics might mislead the evaluation 

of network vulnerability. Therefore, pure topological metrics are not an accurate tool to assess 

network vulnerability. Furthermore, they may lead to ambiguous results. Indeed, while Albert 

et al. state that the power network is highly vulnerable to the attack of high-load nodes or hubs; 

Wang and Rong conclude that attacks to low-load nodes may result is worse failures [121], 

[122]. Both prior analyses are based on pure topological methods.  

Finally, Ouyang et al. also pointed out the lack of accuracy of purely topological metrics 

[123]. That conclusion results from the analysis of the correlations between topological metrics 

(characteristic path length, network efficiency, source-demand considered efficiency, network 

average clustering coefficient, connectivity level and size of the largest component) with energy 

not supplied in the network. 
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6.2.2. Hybrid metrics 

To overcome the limitations of topological metrics, hybrid indices endow topological 

metrics with electrical parameters. Electrical features might be added into node description. 

For example, node information might include node demand or the power that can be injected 

in each substation by generators. This is the case of loss of load and connectivity loss.  

Loss of load tries to estimate the ability of the network to meet demand after a node or 

edge failure [107]. If the removal of a line (or a node) splits up the system in two or more 

components, loss of load estimates the deficit of generation concerning demand in each 

component. Accordingly, the criticality of an element correlates with the total deficit of 

generation in the network after a failure (C-4).  

Connectivity loss quantifies the decrease in the ability of a substation to receive power from 

generators. It is the average decrease in the number of generators that are connected to a 

node (directly or through a path) (C-6) [122]. The application of this metric to the North 

American power network reveals that power networks are very vulnerable to a failure in highly 

connected nodes (hubs). Furthermore, the authors state that power-network vulnerability is 

inherent to the structure of the grid.  

Hybrid metrics endow edges with electrical properties. Node degree and betweenness 

centrality are modified by the inclusion of the value of power flow through lines [124]–[129], 

the resulting metrics are the electrical degree centrality (C-7) and the electrical betweenness 

centrality (C-8). The electrical degree centrality measures the importance of a node in the 

network regarding the power flows through the lines that are connected to it. Similarly, the 

electrical betweenness centrality assesses the centrality of a node based on the power that is 

injected or withdrawn in a node when lines operate at full capacity.  

Further improvements try to introduce the physical principles that govern power networks. 

In power networks, power units flow based on Kirchhoff’s’ circuit laws. Consequently, they do 

not follow the shortest path. Accordingly, distances among nodes are measured by line 

impedance.  

The structural vulnerability index (C-9) measures the ability of the network to supply 

demand [130]. It assumes that the contribution of a generator to a demand node decreases 

exponentially with electric distance.  

Directed global efficiency modifies the global efficiency index to limit the exchange of power 

between generators and demand nodes and to include the electric distance instead of the 

shortest-path distance (C-10) [131]. Similarly, net ability (C-11) introduces line impedance as 

well as the maximum interchange of power between nodes to complete the definition of global 

efficiency [132], [133]. To assess the vulnerability of power networks, Wang et al. propose the 

analysis of changes in the effective graph resistance (A-12) [134], [135]. The electrical resistance 

between two nodes is the potential difference that appears when a unit of current flows from 

one node to another.  
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The electrical centrality (A-13) measures the importance of a node based on the electrical 

distance among nodes [136], [137]. The larger the electrical distance of a node with the rest of 

the nodes in the network, the lower the impact it has on network vulnerability. The centrality 

index considers that the criticality of a line is proportional to the sum of the maximum power 

flows that might be exchanged between all pairs of nodes in the network (C-15) [138], [139]. 

This is therefore conditioned by the power-transfer-distribution-factor PTDF matrix since the 

maximum power flow is limited by Kirchhoff’s laws. The inclusion of line impedance is also 

included in other adaptations of the betweenness centrality such as the hybrid flow 

betweenness, or the electrical betweenness [107], [131]. 

Finally, the extended betweenness (C-16) proposes an adaptation of the betweenness 

centrality by including the PTDF matrix and transmission-line capacity [140]–[143]. This index is 

compared to the topological betweenness centrality and the assessment of network 

vulnerability with pure power-system techniques. While it improves results given by the 

topological index, results are worse than the ones provided by a pure electrical framework. 

6.2.3. Other approaches 

References [144]–[146] discuss the accuracy of vulnerability indices. They propose a novel 

method, which is based on the fault chain theory, to combine topological features and power-

network operational characteristics. This method is based on the construction of a correlation 

graph that includes the structural features of the network as well as the operation status. The 

nodes of the correlation graph stand for the transmission lines of a network and edges 

represent the relationship between two transmission lines during fault propagation. The 

ranking of critical lines is done based on the topology of the correlation graph. Fault-Chain 

Theory is also used in a steady-state model to identify critical events that contribute to 

cascading-failure propagation [147].  

Since the correlation graph considers network operation, it needs to run several DCOPF to 

build it. The number of power flows required might be unmanageable to introduce this method 

in the design of large interconnected power networks (because of computational 

requirements). Despite not considering network operation implicitly, we consider that 

vulnerability indices may be effectively incorporated in network design. As mentioned in 

Chapter 1, transmission expansion planning may benefit from these indices in two ways: by 

introducing them as a partial objective in the optimization function (it penalizes high values of 

vulnerability indices) or by including them as constraints (it establishes maximum values for the 

indices). Consequently, this is a strength of vulnerability indices concerning those methods 

based on Fault-Chain Theory. 

Although hybrid metrics improve results given by topological metrics, new improvements 

should be introduced to reduce the gap between pure electrical considerations and complex 

network-based metrics. Furthermore, in order to introduce these metrics in the network design 

problem and to enhance the resolution of an optimization problem, vulnerability indices should 

be linear functions 
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6.3. Electrical Line Centrality  

This section proposes a hybrid metric to analyze power-network vulnerability. As previously 

explained, a hybrid or extended metric refers to the endowment of topological-based metrics 

with electrical considerations to replicate the physical behavior of power networks. The 

proposed metric, the Electrical Line Centrality 𝐸𝐿𝐶 endows betweenness centrality with 

electrical properties. Betweenness centrality 𝐵𝐶(𝑢) is defined as the number of times a node 

or a line is in the shortest path among all pair of nodes in a network (6-1), where 𝜎𝑠,𝑡(𝑢) is the 

number of the shortest path from 𝑠 to 𝑡 through node or line 𝑢 and 𝜎𝑠,𝑡 is the number of 

shortest paths from 𝑠 to 𝑡. In the case of modeling power networks as undirected graphs, 

shortest paths from 𝑠 to 𝑡 and 𝑡 to 𝑠 counts as one path. Therefore, in undirected networks, 

the earlier equation omits the coefficient 1/2. 

𝐵𝐶(𝑢) =
1

2
∑

𝜎𝑖,𝑗(𝑢)

𝜎𝑖,𝑗
𝑖,𝑗≠𝑢

 
(6-1) 

Unlike other networks in which network flow or information may move from node 𝑠 to node 

t through the shortest path, Kirchhoff’s laws govern power networks. Therefore, betweenness 

centrality cannot infer the dynamic behavior of power networks. 

We propose the adaptation of betweenness centrality with the inclusion of electrical 

information about lines and nodes. 𝐸𝐿𝐶 considers line reactance, the power demanded in each 

node and node generation capacity. ELC is the sum of power through a line for power 

interchanges among all pairs of generators and demand nodes in a network (6-2). 𝐸𝐿𝐶 

considers that power flows always go from generators to demand nodes, and the amount of 

power is proportional to the generation capacity and power demanded in each node. 

𝐸𝐿𝐶(𝑙) = ∑ ∆𝐹𝑖𝑗(∆𝑃𝑟,∆𝑃𝑠,)  (6-2) 

∆𝐹𝑖𝑗(∆𝑃𝑟,∆𝑃𝑠,) is the incremental power that flows through a line that connects nodes 𝑖 

and 𝑗 when there is a change in demand or generation capacity in nodes 𝑟 and 𝑠. 

In power networks, the DC Power Flow (DCPF) equations model power flow through lines 

(6-3). This model sets node voltages to 1 per unit and assumes that voltage angles differences 

among nodes are small. That means that cos 𝜃𝑖𝑗 ≈ 1 and sin 𝜃𝑖𝑗 ≈ 𝜃𝑖 − 𝜃𝑗.  

Purely topological metrics, such as global statistics, are not suitable tools to assess 

network vulnerability.  

Hybrid metrics improve results given by topological metrics. However, results are not 

good enough to replace electrical methods.  
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𝐹𝑖,𝑗 =  
1

𝑋𝑖𝑗
(𝜃𝑖 − 𝜃𝑗) (6-3) 

Considering that (𝜃𝑖 − 𝜃𝑗) = 𝜃 and 𝑃 = 𝐵𝜃 (where 𝑃 is the vector of injected or 

withdrawal power and 𝐵 the system susceptance matrix), power flows in a network can be 

written as (6-4), where 𝐴 is the incidence matrix, 𝑋 is the reactance matrix (diagonal matrix), 

and 𝑟 is the subset of nodes without the slack bus. 

𝐹 = (𝑋𝑟
−1𝐴𝑟

𝑇𝐵𝑟
−1) 𝑃𝑟 (6-4) 

The expression (𝑋𝑟
−1𝐴𝑟

𝑇𝐵𝑟
−1) stands for the power-transfer-distribution-factor matrix 𝑆. 

It shows how power through lines changes when there is a new injection or withdrawal of 

power in one or more nodes of the system (6-5). 

∆𝐹 = 𝑆 ∆𝑃𝑟 (6-5) 

In power networks, we can classify nodes as demand nodes, generator nodes, and 

interconnection nodes (nodes in which there is no demand or generator connected). By 

applying matrix block multiplication, we can rewrite (6-5) as (6-6): 

∆𝐹 = [𝑆𝐺 𝑆𝐷 𝑆𝐼] [

∆𝑃𝐺

∆𝑃𝐷

∆𝑃𝐼

] (6-6) 

where 𝑆𝐺 , 𝑆𝐷 and 𝑆𝐼 are the blocks of the sensitivity matrix that shows how power through 

lines change when there is a change in generation, demand or interconnection nodes 

respectively. ∆𝑃 is the change of power in the generation (𝐺), demand (𝐷) or interconnection 

nodes (𝐼).  

By assuming that ∆𝑃𝐺 is always positive (generation nodes always inject power in the 

system), ∆𝑃𝐷 is always negative (demand nodes always withdraw power) and ∆𝑃𝐼 is equals to 

zero (there is no demand or generation connected to those nodes) (6-6) becomes: 

∆𝐹 = 𝑆𝐺  ∆𝑃𝐺 − 𝑆𝐷 ∆𝑃𝐷 (6-7) 

As previously mentioned, 𝐸𝐿𝐶 considers that power flows always go from generator nodes 

to demand nodes. By considering all combinations among generators and demand nodes, we 

can express (6-2) as follows:  

𝐸𝐿𝐶(𝑙) = ∑ 𝑆𝐺𝑖,𝑗
 𝑤𝑔

𝑗=𝑁𝐺

𝑗=1

− C ∑ 𝑆𝐷𝑖,𝑗 𝑤𝑑

𝑗=𝑁𝐷

𝑗=1

 (6-8) 

where 𝑤𝑔 is the vector of generation capacity of each generation node, 𝑤𝑑 the vector of the 
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power demand of each demand node and 𝐶 is the generation capacity of the entire system, 

𝐶 = ∑ 𝑤𝑔.  

When calculating electrical line centrality of all lines of the system, (6-8) can be expressed 

as a product of matrices: 

𝐸𝐿𝐶 = 𝑆𝐺  𝑤𝑔 − 𝐶 𝑆𝐷 𝑤𝑑 (6-9) 

As is the case of betweenness centrality, we can extend the concept of electrical node 

centrality to nodes. Electrical node centrality 𝐸𝑁𝐶 is the sum of the 𝐸𝐿𝐶 that are incident in 

that node (6-10). 

𝐸𝑁𝐶(𝑛) = ∑ 𝐸𝐿𝐶𝑖𝑗

𝑗

 
(6-10) 

𝐸𝑁𝐶 = |𝐴| 𝐸𝐿𝐶(𝑙) (6-11) 

In (6-11), |𝐴| is the incidence matrix in which all elements are positive. On the contrary to 

𝐸𝐿𝐶, flow direction does not directly condition 𝐸𝑁𝐶 since it does not matter whether the flow 

is incident or outgoing.  

This formulation bridges the gap between purely topological measures (fast and easy to 

calculate, but with limited use in power systems) and power-flow estimations. It complements 

betweenness centrality, with node and line information. It has the considerable advantage of 

having a compact matrix expression that can be efficiently calculated. 

Finally, this new metric can be easily adapted to different operation scenarios by simply 

changing the vector of power demand 𝑤𝑑 or the vector of nodal generation capacity 𝑤𝑔. 

Moreover, different scenarios might be considered by figuring out a weighted average 𝐸𝐿𝐶 

where weights represent the probability of each scenario.  

 

 

 

 

Electrical Line Centrality endows topological betweenness centrality with electrical 

features.  

ELC is the sum of power through a line for power interchanges among all pair of 

generators and demand nodes in a network. 

It can be applied to assess the centrality of transmission lines and substations in the 

network.  

The Electrical Line Centrality is a linear function.  
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6.4. Numerical Studies 

In order to confirm the usefulness of 𝐸𝐿𝐶, we apply it to the IEEE 9-bust test system and to 

the IEEE 118-bus test system [148]. We will try to determine the sequence of line attacks that 

will maximize network damage. Accordingly, the higher the values of PNS in the network 

obtained with the vulnerability metric, the better the performance of the metric. As explained 

in Section 1, an optimization problem may give the exact solution to the analysis of power-

network vulnerability against deliberate attacks. However, problem size leads to a 

computationally intensive analysis, which hinders problem resolution. We try to approach the 

optimal solution with an iterative method. We propose to select the most vulnerable lines in 

each iteration or attack. Accordingly, the method will choose the line whose removal leads to 

the largest PNS. Subsequently, it updates network topology and repeats the process to get a 

sequence of attacks. This is not the optimal solution since it ranks line impact regardless of the 

attack sequence. Unlike this procedure, the optimization problem would try to maximize the 

damage in the network by coordinating the order of attacks. However, given computational 

complexity, we use the iterative method as an approach to the maximum damage problem. 

We use it to provide a reference in terms of PNS that will be used as the target the proposed 

metric should reach. The estimation of PNS after a line attack is calculated with the DCOPF 

(implicitly, it assumes that the system is able to correctly respond to abrupt changes in demand 

and it will, therefore, be a lower bound to the real result). 

6.4.1. IEEE 9-bus test system 

The IEEE 9-bus test system includes 9 nodes, 6 lines, 3 transformers, 3 generators and 3 

demand nodes (see Figure 6-1). Despite the small size of the case, there are 720 different 

sequences of line attacks or rankings. Eight of those rankings lead to the worst scenario under 

the PNS perspective (best attacks), and thirty rankings lead to the lowest values of PNS (worst 

attacks). Table 6-1 shows an example of both sequences of failure and the PNS obtained. This 

analysis allows us to confirm the accuracy of vulnerability indices. As shown in Table 6-1, values 

of PNS obtained with the iterative approach (target) are close to the optimal sequences. 

 
Figure 6-1. IEEE 9-buses test case 
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In the case of the proposed vulnerability index, 𝐸𝐿𝐶 proposes the following ranking of lines: 

8-9, 4-9, 5-6, 7-8, 6-7, 4-5. Corresponding values of PNS are: 0, 125, 125, 125, 225, 315. Those 

values are similar to the obtained for the best case. 𝐸𝐿𝐶 improves results given by the target 

in the second and third attack.  

We also analyze the ranking provided by the topological betweenness centrality. In this test 

case, all lines have the same value of betweenness centrality. This means that from a 

topological point of view, all lines would have the same impact on the network in case of failure. 

This clearly shows the limitations of purely topological indices. Regarding the extended 

betweenness centrality, values of PNS are: 0, 0, 125, 125, 225, 315. Therefore, the 𝐸𝐿𝐶 

provides a better solution than the obtained with prior metrics. It needs a lower number of 

attacks to have PNS in the network.  

Table 6-1. Order of line failure and PNS in the IEEE 9-bus 

test system in the best case, the worst case, and the target. 

Order 
Best Attack Worst Attack Target 

Line PNS (MW) Line PNS (MW) Line PNS (MW) 

1 8-9 0 4-5 0 6-7 0 

2 4-9 125 6-7 0 7-8 100 

3 7-8 125 8-9 0 4-9 100 

4 6-7 225 5-6 90 8-9 225 

5 5-6 225 7-8 190 4-5 225 

6 4-5 315 4-9 315 5-6 315 

6.4.2. IEEE 118-bus test system 

This system consists of 118 nodes, 177 lines, 9 transformers, and 56 generators. This 

chapter considers the model assumptions presented in Chapter 2. If there are two more 

electrical connections between two nodes, the model assumes them to be one single edge. 

The resulting graph has 118 nodes and 170 lines. Therefore, it considers that the largest 

number of attacks is 170.  

We apply a similar procedure to assess metric performance in the IEEE 118-bus test system 

than in the IEEE 9-bus test system. The values of PNS reached by 𝐸𝐿𝐶 are quite close to the 

target in first iterations, from attack number 0 to 21 (as shown in Figure 6-2). Both betweenness 

centrality and extended betweenness centrality are far from those values. Indeed, the number 

of attacks needed to cause PNS in the system with the ranking given by betweenness centrality 

In the IEEE 9-bus test system, the Electrical Line Centrality improves the results given by 

the Betweenness Centrality and by the Extended Betweenness Centrality. 

Furthermore, results are very close to the optimal solution.  
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and by the electrical betweenness centrality is much larger than with 𝐸𝐿𝐶 or the electrical 

procedure.  

In the case of 𝐸𝐿𝐶, values of PNS highly diverge from the target values in the gap between 

25 and 100, where extended betweenness gives better results (as shown in Figure 6-2). The 

sequence given is far from the approach used as a target. However, while that approach 

calculates the most vulnerable line in each iteration, the model only computes the three indices 

once. Accordingly, it does not consider changes in topology. After removing a line, network 

topology and system dynamic change and therefore line vulnerability changes too. 

Consequently, the model may improve results by updating metrics to changes in network 

topology because of prior failures. 

 

Figure 6-2. Percentage of PNS in the IEEE 118-bus test system after removing lines according to 

electrical considerations (target), electrical line centrality (ELC), extended betweenness centrality (EBC) 

and betweenness centrality (BC). 

By updating rankings in each iteration, 𝐸𝐿𝐶 continues to be a better approach to the target 

as shown in Figure 6-3. The difference between 𝐸𝐿𝐶 and the target is smaller in the gap 

between 25 and 100 than in the first case. Furthermore, 𝐸𝐿𝐶 also gives larger values of PNS 

than the target for a high number of attacks. This is possible since the procedure described 

above does not give the optimal solution.  

To compare results, we use the mean absolute error 𝑀𝐴𝐸, both in MW and in percentage. 

In (6-12) 𝑥𝑖 and 𝑦𝑖  are the values of PNS obtained with different metrics and 𝑛 the number of 

iterations or attacks.  
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Figure 6-3. Percentage of PNS in the IEEE 118-bus test system after removing lines according to 

electrical considerations (target), iterative electrical line centrality (iELC), iterative extended 

betweenness centrality (iEBC) and iterative betweenness centrality (iBC). 

𝑀𝐴𝐸 =  
∑|𝑥𝑖 − 𝑦𝑖|

𝑛
 (6-12) 

First, we compare the error of the topological and hybrid metrics concerning the target. 

Second, we define the error as the difference between values of PNS for each ranking and the 

largest value of PNS each attack (𝐸𝐿𝐶 provides higher values of PNS than the target in some 

iterations). Results show the accuracy of 𝐸𝐿𝐶 over betweenness and extended betweenness 

centrality, as shown in Table 6-2. The error of betweenness centrality is more than twice the 

error given by the 𝐸𝐿𝐶. The proposed metric also reduces drastically the error of the extended 

betweenness centrality. Furthermore, when updating rankings iteratively, rankings are 

improved leading to a more vulnerable sequence of attacks. The reduction of error is above 

50% in the case of 𝐸𝐿𝐶. The final error with respect to the electrical procedure is 10.89%.  

While the improvement is also essential in the case of betweenness centrality, the error 

reduction is only around 4% in the case of the extended betweenness centrality. When 

considering the largest values of PNS, the error of 𝐸𝐿𝐶 is 8.23%, this is much lower than the 

error obtained with the extended betweenness centrality and the topological betweenness 

centrality.  
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Table 6-2. Mean absolute errors of vulnerability indices with respect 

to electrical considerations and the larger values of PNS 

Metric 
MAE with respect to ELE MAE with respect to the largest value of PNS 

(MW) (%) (MW) (%) 

Target - - 23.69 2.59 

ELC 129.14 23.33 149.24 25.24 

iELC 47.19 10.89 25.23 8.23 

EBC 118.49 30.66 138.66 32.30 

iEBC 165.32 26.32 189.01 28.32 

BC 292.16 54.07 315.47 55.44 

iBC 100.32 36.98 122.34 38.95 

 

Furthermore, the 𝐸𝐿𝐶 is computationally simpler than the extended betweenness 

centrality. 𝐸𝐿𝐶 and 𝐸𝐵𝐶 are compared in terms of execution time. While 𝐸𝐿𝐶 takes 0.018 

seconds and 𝑖𝐸𝐿𝐶 0.108 seconds in the IEEE 118-bus test case, the 𝐸𝐵𝐶 and 𝑖𝐸𝐵𝐶 take 0.170 

seconds and 0.991 seconds respectively. Consequently, the new metric is almost ten times 

faster than the 𝐸𝐵𝐶. This time reduction is crucial in applications that require to assess network 

vulnerability a large number of times.  

 

6.5. Chapter takeaways 

A new extended metric, the Electrical Line Centrality, is proposed in this chapter to assess 

power-network vulnerability against deliberate attack. This metric endows betweenness 

centrality with electrical information related to generation, demand, and transmission-line 

parameters. This allows us to overcome the limitations of purely topological metrics that do 

not consider the electrical nature of power networks. It also has the considerable advantage of 

having a compact matrix expression that can be efficiently calculated and it can be integrated 

into other models. The accuracy of the metric is tested with the IEEE 9-bus and IEEE 118-bus 

test systems. The Electrical Line Centrality supplies better results than existing hybrid metrics 

such as extended betweenness centrality with lower computational requirements.  

The accuracy of the Electrical Line Centrality is also proved in the IEEE 118-bus test 

case, where the ranking given by 𝐸𝐿𝐶 is more vulnerable (critical) than the 𝐸𝐵𝐶.  

To get results that are closer to electrical procedures, it is necessary to calculate 𝐸𝐿𝐶 

iteratively.  

Moreover, it drastically reduces computational complexity with respect to the 

extended betweenness centrality. 
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7  CONCLUSIONS AND FURTHER RESEARCH 

7.1. Conclusions 

The increase of power-network complexity, as well as the interconnection with other 

networks, lead to the need for new models to effectively operate and control power networks. 

However, the lack of publicly available network models hinders research into power systems. 

Information about real power networks is scarce, and most of the existing test cases are old 

and do not reflect the current structure of the network. 

We find two groups of initiatives that try to overcome the lack of public power-network 

models. On the one hand, OpenStreetMap-based initiatives proposed the construction of 

network models based on the real location of infrastructure components. However, those 

models do not include electrical information. Moreover, those initiatives mean the disclosure 

of the real location of power-network components. This might run into security issues. On the 

other hand, recent initiatives in the US propose the generation of synthetic power grids: non-

real, albeit realistic power networks that are topologically and electrically consistent with real 

networks. This would allow for the publication of accurate network models in which network 

operation and control are similar to real power networks while preserving network security. 

Although the target is clear, the generation of synthetic power grids, it is necessary to develop 

new algorithms to generate these synthetic networks. The models traditionally used in power 

systems are not a suitable solution because of computational complexity.  

The publication of network location is a risk that may increase network vulnerability. 

Besides, the interdependency connection with other networks also makes power networks 

more vulnerable. Traditionally, N-1 analyses have been used to design networks that are robust 

in the case of component failures. However, the large size of power networks, the higher 

degree of interconnection with other networks, and the risk of deliberate attacks require new 

methodologies to design more robust networks with manageable computational 

requirements. 

The use of complex-network techniques may find a balance between the complexity of 

power systems and computational requirements. This thesis proposes a novel algorithm to 

generate synthetic power grids and a new metric to assess power-network vulnerability. In 
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both cases, complex-network analyses (that are based on network topology) are 

complemented with electrical information to capture the principles that govern power 

networks. As a previous step to the generation of synthetic power grids, and to the assessment 

of power-network vulnerability, the thesis focuses on the analysis of power-network topology. 

Global statistics traditionally used in complex-network are applied to a set of real high-voltage 

transmission power networks. Furthermore, a new framework is proposed to analyze the 

structure of complex networks. 

7.1.1. Power-network topology 

An in-depth description of power-network topology is crucial to generate synthetic power 

grids or to assess network vulnerability. Although several studies have tried to analyze and 

describe the topology of power networks, results were not consistent. They reached divergent 

conclusions. We pointed out that the use of heterogeneous data (inclusion of different voltage 

levels) and the use of different model assumptions (e.g., inclusion or not of transformers) are 

some of the causes of those inconsistencies. This work focuses on the analysis of high-voltage 

transmission power networks (400 kV and 220 kV). 

A. Using global statistics 

We study the transmission-power-network structure with a set of global statistics 

traditionally used in complex networks: network size, degree distribution, characteristic path 

length, network diameter, betweenness centrality, and network average clustering coefficient. 

We apply these metrics to fifteen European transmission power networks. The analysis focuses 

on the 400 kV and the 220 kV networks together as well as independent networks. We observe 

that there are topological differences among networks. In general, the 220-kV network has a 

less meshed structure than the 400-kV network. Furthermore, in the 400-kV network distances 

are lower, and the centrality of nodes is higher. Finally, the proportion of nodes that belong to 

the 400-kV or the 200-kV networks depends on the country.  

We also analyze how the global statistics scale with network size. We observe that the 

number of lines correlates linearly with the number of nodes. Consequently, the average node 

degree of power networks can be approximated as a constant. However, the degree 

distribution varies among countries. Despite differences in the node degree distribution, all 

networks are disassortative -hubs tend to connect to poorly connected nodes- and they are 

not scale-free networks. The degree distribution fits better with an exponential function than 

with power law.  

Characteristic path length and network diameter tend to grow logarithmically with the 

number of nodes in the European transmission power networks. Moreover, the skewness 

index shows that while some nodes are relatively well-connected, there is a set of nodes that 

are far from the core of the network. This might describe the presence of hubs, which are the 

center of peripherical nodes. Besides, the mean and maximum values of betweenness 

centrality follow a power-law concerning the number of nodes.  
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The network average clustering coefficient, also called the global clustering coefficient in 

the literature, highly varies with country and voltage level, and it does not scale with network 

size. The values of the network average clustering coefficient in power networks are higher 

than in random networks. Nevertheless, not all networks analyzed display a small-world 

network structure.  

Although global statistics provide the first insight of power-network topology, they do not 

give a comprehensive characterization of the power-network structure. There are questions 

about network topology that are unsolved after this analysis (using global statistics). 

Furthermore, some of those metrics are based on average values, and they might be 

misleading. Moreover, the inclusion of new voltage levels or new network locations may vary 

metric scalability. Accordingly, this hinders the comparison among networks. Network 

comparison is a crucial step in order to validate the topological consistency of synthetic power 

grids. 

B. A novel framework 

To avoid the main drawbacks of global statistics, we propose an innovative tool, the GHuST 

framework, to analyze network topology systematically. This framework is based on graphlet 

decomposition (2- and 3- node graphlets). The main strengths are full topology description, size 

independence, and computational simplicity. Accordingly, this framework fully describes the 

structure of networks by covering the most relevant aspects of local and global properties. 

Furthermore, the framework explains network topology regardless of network size, and its 

characterized by its computational simplicity (it is calculated directly from the adjacency 

matrix). 

The GHuST framework is defined by twelve dimensions that are grouped into four 

categories based on the topological aspects they cover: global connectivity, hubs, strings, and 

triangles. Finally, to enhance network comparison, the twelve metrics range between 0 and 1.  

The application of the GHuST framework to five real networks (road, power-grid, email, 

social and metabolic) demonstrates that the information provided by the twelve dimensions is 

consistent with the global statistics traditionally used in complex networks. Furthermore, this 

method improves the results provided by graphlet decomposition that have been revealed 

insufficient. Finally, it allows for the comparison of the five networks disregarding network size. 

Once the accuracy of the method is proved, we analyze a large set (1,404) of real networks 

of different nature (7 categories). The use of PCA to reduce the twelve dimensions allows for a 

graphical representation of the networks in a three-dimensional topological space defined by 

GHuST. There, we differentiate clusters of networks based on their topological properties. 

Those clusters can be identified with the seven types of networks used. Accordingly, the seven 

groups of networks analyzed (autonomous systems, enzymes, Facebook, power networks, 

retweets, roads, and webs) have different topologies. Consequently, this method enhances 

network classification and comparison. The twelve dimensions describe specific and intuitive 

aspects of network topology. That eases the interpretation of network topology and the 
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introduction of structural consideration in real-world applications.  

Finally, the GHuST framework is applied to European transmission power networks. It 

completes the topological description of power networks given by global statistics. 

Furthermore, it allows for a straight comparison among network topologies regarding location 

and voltage level. As mentioned, differences are easy to understand and can be translated into 

the generation of synthetic power grids.  

C. Contributions 

The analysis of power network topology with global statistics has been published as:  

• R. Espejo, S. Lumbreras, and A. Ramos, “Analysis of transmission-power-grid topology and 

scalability, the European case study,” Physica A: Statistical Mechanics and its Applications, 

vol. 509, pp. 383–395, Nov. 2018. 

The 𝜌 framework has been presented in a working paper: 

• R. Espejo, G. Mestre, F. Postigo, S. Lumbreras, A. Ramos, T. Huang, and E. Bompard 

“Exploiting graphlet-decomposition to explain the structure of complex networks.” 

7.1.2. Synthetic power grids 

A. Topological analysis of existing synthetic power grids 

Although several models were proposed in the literature to generate synthetic power grids, 

existing synthetic cases were not validated correctly from a topological point of view. In most 

cases, only a few global statistics, such as average node degree, were used. However, the use 

of global statistics may be insufficient to state that a synthetic power grid is topologically 

consistent with real power networks.  

We propose the use of the GHuST framework to validate synthetic networks. We consider 

that synthetic networks are topologically consistent with real networks if they have similar 

values of GHuST for the twelve dimensions. In case there are no reference networks to 

compare with, we might use the range of GHuST dimensions given by the analysis of the 

European transmission power networks. 

We applied the GHuST framework to a set of published network models: ACTIVSg, 

Columbia-University Synthetic Power Grid, PEGASE, and SDET networks. All those cases display 

topological inconsistencies concerning the European transmission power grids. The degree of 

those synthetic networks looks to be inconsistent with the reference network. Furthermore, 

those algorithms cannot replicate the local complexity of the real networks used as a reference. 

Since ACTIVSg, Columbia University synthetic network, and SDET stand for portions of the 

North American power grids, we only can conclude that there are topological inconsistencies 

regarding the reference. It is necessary to apply the GHuST framework to the North American 

power grid to discern if those differences are a consequence of the generation algorithms used 
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or if the North American power grid has different topology.  

Beyond the inconsistencies found in the existing synthetic networks, the algorithms 

proposed in the literature are not flexible enough to adapt the topology of resulting synthetic 

networks to the structural differences found in the European transmission power networks.  

B. A new model to generate synthetic power grids 

This thesis proposes a novel algorithm to generate synthetic spatial power grids. 

Accordingly, nodes are endowed with geographical location. The algorithm uses technical and 

economic considerations as the most relevant factors that guide network design.  

The algorithm tries to mimic the historical evolution of power networks in two steps: 

building a connected graph and adding lines to reach topological consistency.  

The first step builds a connected graph to meet demand and generation at a minimum cost. 

This step is also divided into three stages to reduce the complexity of the problem: clustering 

nodes, intra-cluster connection, and inter-cluster connection. First, the algorithm clusters 

demand nodes around generators to connect them with the cheapest network that is able to 

supply demand (electrical considerations are included). Subsequently, clusters are connected 

based on reliability considerations.  

The second step increases network robustness while achieving topological consistency. 

Consequently, the model adds new lines to ensure demand supply in case of line failure. This 

step is also divided into three stages: preventing islands, guiding node degree and achieving 

GHuST consistency. In the three stages, the installation of new lines is conditioned by electrical 

considerations and topological criteria. New lines are added only if they contribute to achieving 

a target degree distribution. Since networks with the same degree distribution may display 

different topological properties, the GHuST framework is used in the last stage to guide the 

generation process. Accordingly, the algorithm ensures that the resulting synthetic networks 

are topologically consistent with real ones.  

The algorithm is tested on the Spanish, Portuguese, and French 400-kV transmission 

networks. The topology of the three networks (both global statistics and GHuST dimensions) is 

pretty similar to the topology of the real networks. Accordingly, this case proves the accuracy 

of the proposed algorithm to generate synthetic networks. Furthermore, the algorithm 

improves results given by existing algorithms. 

Finally, the algorithm is flexible enough to generate networks with different topologies. This 

is crucial to adapt the structure of synthetic power networks to the heterogeneous topology 

found in the analysis of the European transmission power networks.  

C. Contributions 

Regarding the generation of synthetic power grids, two versions of the proposed algorithm 
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have been published as:  

• R. Espejo, S. Lumbreras, and A. Ramos, “A Complex-Network Approach to the Generation 

of Synthetic Power Transmission Networks,” IEEE Systems Journal, pp. 1–9, 2018. 

• R. Espejo, S. Lumbreras, and A. Ramos, “Generating statistically consistent synthetic power 

networks for testing renewable integration models”, Windfarms 2017, Madrid, Spain, Jun 

2017.  

7.1.3. Vulnerability assessment 

A. A new hybrid metric 

The use of complex networks in power systems can also support the assessment of power-

network vulnerability. Several complex-network-based indices were proposed to rank the 

impact a line failure would have on a power network.  

Although purely topological metrics were proved to provide non-accurate results because 

of their lack of electrical considerations, hybrid metrics find a balance between result accuracy 

and computational requirements.  

We find several indices in the literature that combine global statistics traditionally used in 

complex networks with electrical considerations. However, in most cases, results were not 

tested, and some of them also need for computationally intensive models. We propose a new 

metric to assess power-network vulnerability: Electrical Line Centrality.  

This hybrid metrics endows betweenness centrality with electrical information related to 

nodes (generation capacity and power demand) and transmission lines (line impedance). 

The application of the new metric to the IEEE 9-bus test case and the IEEE118-bus test case 

shows that the Electrical Line Centrality supplies better results than pure topological metrics 

and prior hybrid metrics such as the extended betweenness centrality.  

Furthermore, it drastically reduces computational requirements. In contrast with most of 

the prior metrics, the Electrical-Line-Centrality index is a linear function. The linearity of 

vulnerability indices is crucial to include them in the network design problem.  

Finally, the 𝐸𝐿𝐶 may also contribute to the increase of power-network resilience. It might 

support the design of power networks that are robust against deliberate attacks or cascade 

failures. Although the probability of those events might be low, they might cause network 

failures with severe consequences. 

B. Contributions 

The proposal of the line electrical centrality has been published as:  

• R. Espejo, S. Lumbreras, A. Ramos, T. Huang, and E. Bompard, “An extended metric for the 
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analysis of power-network vulnerability: the line electrical centrality”, PowerTech 2019, 

Milan, Italy, Jun. 2019.  

 

7.2. Further research  

This thesis proves the advantages of applying complex-network techniques to power 

systems and the insights that can be gained by using these techniques. Although the thesis 

contributes to the generation of synthetic power grids as well as in the assessment of power-

network vulnerability; there are questions that require further research, which we summarize 

in the following lines. 

7.2.1. Network topology 

The GHuST framework might be the seed for the development of a novel method to classify 

complex networks based on topology. Furthermore, it would be the base of a new algorithm 

to generate graphs with predefined topological properties.  

A. Network description and classification  

The twelve dimensions of the GHuST framework allow for an in-depth description and 

classification of complex-network topology. The inclusion of new network instances may lead 

to the definition of topological standards or benchmarks (typical values of the twelve 

dimensions of GHuST for different types of networks). This would support network clustering 

and classification. The main drawback of this task is the lack of large network datasets that may 

condition the statistical significance of results. Further analyzes may also imply the definition of 

new GHuST dimensions or the modification of current dimensions to better capture other real 

networks properties. 

The use of the GHuST framework to compare networks (as it is done in the synthetic 

network validation procedure) might be used to detect anomalies in the topology of complex 

networks. For instance, in social networks, the definition of typical values for each GHuST 

dimension might help to support the detection of “bots” used to increase the impact of news 

or marketing campaigns. The topology of bots’ connections may differ from other accounts 

with a “normal” pattern of connections. Accordingly, bots might be located in a different place 

in the topological space defined by the GHuST framework. It would be necessary to define the 

ranges of expected values for different types of networks. As previously mentioned, this 

requires a broad set of networks to extract significant conclusions.  

Furthermore, the GHuST framework provides a full description of network topology. This 

description needs to be effectively connected to network operational behavior and network 

design. Further research should determine how topology conditions network operation. For 

example, this might help to answer questions such as Do triangles increase network 
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robustness? It would help to discover the role of some structures in network operation. 

However, the main challenge is the bridge between global and local properties. Are nodal prices 

(local property) conditioned by the number of triangles is the network (global property)? 

However, there are other features that might be addressed with the GHuST framework, such 

as the risk of cascading failure in case of line failure. 

In the case of power systems, topology would help to operate, design, and control power 

grids. New challenges such as the protection against deliberate attacks (N-X contingencies) or 

distributed generation (the same node might inject or withdraw power) may be faced with 

topology-based methods. As explained in this thesis, methodologies traditionally used in power 

systems may result in unmanageable tools for these problems. It, therefore, requires a sound 

analysis of the relation between network topology and electrical behavior.  

B. Graph generation  

As explained in Chapter 5, synthetic-network generation algorithms may disregard the 

specific nature of the networks under study. They may generate graphs defined by an 

adjacency matrix (only ones and zeros) with predefined topological properties. Accordingly, 

those models only consider the distribution of connections among nodes (e.g. the Preferential 

Attachment model). In the Preferential Attachment model, nodes are connected following a 

power law. Users can, therefore, predefine the degree distribution of the synthetic network. 

Similarly, a new model might allow for the generation of synthetic networks in which the users 

would define the topology of the resulting network (with the GHuST dimensions) in advance. 

This might be useful to generate a broad set of networks that will support an empirical 

analysis of the relation among GHuST dimensions. In Chapter 5, we pointed out that the lack of 

understanding about the correlation of GHuST dimensions hinders the generation of synthetic 

power grids (the model could not analyze the contribution of an individual line to reach a target 

GHuST). Furthermore, it would help to determine if GHuST dimensions have lower or upper 

bounds. In Chapter 3, we explained that the number of triangles in a network might have an 

upper limit since an increase in 𝐺3 (number of triangles) would also lead to an increase in 𝐺2. 

Accordingly, a model to generate networks with specific topological properties would help to 

answer those questions. 

7.2.2. Road to more realistic synthetic power grids 

This thesis proposed an algorithm to generate synthetic power grids that are topologically 

consistent with real networks. However, to meet the complexity of real power networks, new 

research and improvements should be introduced.  

A. Increasing the complexity of synthetic power grids 

The proposed algorithm was tested with a single voltage layer, 400-kV networks. The 
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addition of new voltage levels (e.g., 200-kV) should be considered in further improvements. 

Although the algorithm is flexible to adapt the resulting topology to the properties of other 

voltage levels, it is necessary to determine other aspects such as the location of transformers. 

Furthermore, new improvements should consider the inclusion in the wiring process of a wide 

range of connections, for instance, double circuits.  

More in-depth analyses are also needed to endow nodes with more realistic properties. 

Although this model focuses on the wiring process, and it assumes the hypothesis done by prior 

work regarding nodes, new improvements would lead to an accurate characterization of nodes 

(location and demand/generation properties). Furthermore, it would allow for the generation 

of multiple scenarios of generation and demand.  

Finally, the integration of geographical information would also increase the realism of 

resulting networks. Geographical information might condition line installation by varying 

investment cost (e.g., it would increase line cost if the line goes through a natural park). 

Furthermore, it would give a better estimation of line length or geographical path.  

B. Multilayer networks 

We propose the inclusion of new transmission voltage levels to improve the accuracy of 

network models. However, as explained before, the higher degree of interconnection with 

other networks need to be captured in network models.  

The inclusion of distribution networks (low-voltage and medium-voltage power networks) 

is crucial since they were proved to play a crucial role in the propagation of cascading failure. 

In this case, the main challenge is the connection of both networks since the large size of the 

resulting network may hamper the inclusion of electrical considerations such as power flows. 

The connection with other network models, such as gas or communication networks, would 

also be worthy. Those models would help to understand failure propagation among 

interdependent networks. Furthermore, it might support the increase of power network 

robustness by investments in other cheaper infrastructures, such as telecommunication 

networks. To reach that goal, the antecedent, and crucial step is the research into other 

network models.  

7.2.3. Network vulnerability  

Although the Electrical Line Centrality improves results given by prior works, new 

improvements are necessary to effectively introduced vulnerability indices in network design. 

The objective of assessing power-network vulnerability is the designing of more robust 

networks. Consequently, vulnerability metrics should be included in the network design 

process. In Chapter 6 we pointed out that it might be considered by introducing vulnerability 

indices as a partial objective in the optimization function (it penalizes high values of vulnerability 

indices) or by including them as constraints (it establishes maximum values for the indices). 
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Consequently, it would be necessary to define a vulnerability cost or a maximum value of 

topological vulnerability to be included in the optimization problem. Furthermore, topological 

indices allow for the assessment of the impact component failures have on network 

vulnerability. Similarly, we can also assess the impact that new lines would have on the 

network. Accordingly, vulnerability indices might be used to propose candidates to be installed 

in the transmission expansion problem. 

 

Complex-network techniques are a key tool in the generation of synthetic power 

grids and in the assessment of power network vulnerability. The inclusion of 

electrical considerations in complex-network theory find a balance between 

result accuracy and computational requirements. 

This thesis proposes a novel algorithm to generate synthetic spatial power grids 

that generates networks that are topologically consistent with real power 

networks. Furthermore, it introduces a novel metric to assess power-network 

vulnerability. It improves results given by prior metrics and reduces 

computational complexity. Finally, in the analysis of network topology, this thesis 

contributes with a novel framework that allows for the description of network 

topology as well as the comparison among networks 

Despite those advances, further research is needed to build more complex 

synthetic power grids or to introduce vulnerability indices in the network design 

problem.  
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Exibit A 

Table A-1. GHuST values for autonomous-system graphs.  

 𝜌1
′ 𝜌2 𝜌3

′ 𝜌4
′ 𝜌5

′ 𝜌6 𝜌7
′  𝜌8 𝜌9 𝜌10 𝜌11 𝜌12

′ 

Minimum 0.409 0.397 0.172 0.001 0.686 0.384 0.044 0.003 0.842 0.272 0.228 0.005 

Quantile 1 0.459 0.577 0.191 0.001 0.699 0.456 0.144 0.004 0.917 0.318 0.496 0.007 

Quantile 2 0.477 0.597 0.217 0.001 0.703 0.463 0.076 0.004 0.881 0.340 0.527 0.009 

Quantile 3 0.510 0.619 0.257 0.002 0.762 0.431 0.087 0.010 0.884 0.369 0.430 0.016 

Maximum 0.569 0.668 0.573 0.041 0.867 0.486 0.333 0.077 0.953 0.476 0.558 0.162 

 

Table A-2. GHuST values for Enzymes.  

 𝜌1
′ 𝜌2 𝜌3

′ 𝜌4
′ 𝜌5

′ 𝜌6 𝜌7
′  𝜌8 𝜌9 𝜌10 𝜌11 𝜌12

′ 

Minimum 0.113 0.000 0.111 0.101 0.342 0.000 0.000 0.000 0.000 0.000 0.000 0.400 

Quantile 1 0.447 0.000 0.143 0.301 0.777 0.000 0.000 0.109 0.551 0.735 0.027 0.607 

Quantile 2 0.487 0.000 0.167 0.361 0.831 0.000 0.000 0.175 0.647 0.969 0.085 0.660 

Quantile 3 0.524 0.000 0.200 0.428 0.873 0.052 0.000 0.274 0.709 1.000 0.156 0.720 

Maximum 0.604 0.308 0.833 0.693 0.946 0.800 0.848 0.417 0.829 1.000 0.556 0.900 

 

Table A-3. GHuST values for Facebook graphs.  

 𝜌1
′ 𝜌2 𝜌3

′ 𝜌4
′ 𝜌5

′ 𝜌6 𝜌7
′  𝜌8 𝜌9 𝜌10 𝜌11 𝜌12

′ 

Minimum 0.949 0.548 0.016 0.000 0.934 0.000 0.000 0.035 0.997 0.927 0.004 0.009 

Quantile 1 0.970 0.623 0.051 0.002 0.982 0.006 0.000 0.050 0.998 0.955 0.010 0.039 

Quantile 2 0.974 0.648 0.076 0.007 0.986 0.008 0.013 0.058 0.999 0.964 0.013 0.066 

Quantile 3 0.977 0.681 0.122 0.017 0.987 0.010 0.027 0.071 0.999 0.972 0.016 0.110 

Maximum 0.983 0.838 0.269 0.069 0.992 0.018 0.080 0.120 1.000 0.988 0.044 0.224 

 

Table A-4. GHuST values for power-network graphs.  

 𝜌1
′ 𝜌2 𝜌3

′ 𝜌4
′ 𝜌5

′ 𝜌6 𝜌7
′  𝜌8 𝜌9 𝜌10 𝜌11 𝜌12

′ 

Minimum 0.127 0.060 0.185 0.030 0.512 0.190 0.067 0.017 0.056 0.117 0.097 0.233 

Quantile 1 0.219 0.198 0.271 0.078 0.719 0.345 0.172 0.027 0.143 0.192 0.154 0.320 

Quantile 2 0.260 0.303 0.340 0.104 0.767 0.401 0.263 0.030 0.251 0.225 0.209 0.428 

Quantile 3 0.285 0.382 0.446 0.196 0.799 0.426 0.339 0.037 0.380 0.297 0.252 0.532 

Maximum 0.466 0.600 0.619 0.310 0.853 0.564 0.486 0.083 0.688 0.451 0.353 0.714 
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Table A-5 GHuST values for retweet graphs.  

 𝜌1
′ 𝜌2 𝜌3

′ 𝜌4
′ 𝜌5

′ 𝜌6 𝜌7
′  𝜌8 𝜌9 𝜌10 𝜌11 𝜌12

′ 

Minimum 0.014 0.609 0.132 0.001 0.244 0.293 0.000 0.000 0.000 0.001 0.057 0.004 

Quantile 1 0.065 0.730 0.209 0.002 0.408 0.439 0.050 0.000 0.463 0.015 0.161 0.019 

Quantile 2 0.127 0.810 0.327 0.003 0.506 0.483 0.084 0.000 0.538 0.027 0.237 0.041 

Quantile 3 0.182 0.902 0.575 0.004 0.621 0.618 0.118 0.001 0.678 0.048 0.476 0.069 

Maximum 0.616 0.968 0.926 0.086 0.838 0.795 0.194 0.026 0.959 0.202 0.722 0.347 

 

Table A-6. GHuST values for road graphs.  

 𝜌1
′ 𝜌2 𝜌3

′ 𝜌4
′ 𝜌5

′ 𝜌6 𝜌7
′  𝜌8 𝜌9 𝜌10 𝜌11 𝜌12

′ 

Minimum 0.042 0.019 0.119 0.018 0.723 0.098 0.186 0.000 0.000 0.002 0.006 0.242 

Quantile 1 0.065 0.035 0.182 0.048 0.766 0.121 0.224 0.001 0.026 0.003 0.018 0.311 

Quantile 2 0.185 0.058 0.207 0.066 0.801 0.570 0.405 0.009 0.041 0.055 0.021 0.378 

Quantile 3 0.284 0.196 0.246 0.102 0.842 0.816 0.770 0.021 0.102 0.162 0.044 0.464 

Maximum 0.294 0.217 0.371 0.218 0.846 0.889 0.882 0.021 0.121 0.165 0.096 0.683 

 

Table A-7. GHuST values for web graphs.  

 𝜌1
′ 𝜌2 𝜌3

′ 𝜌4
′ 𝜌5

′ 𝜌6 𝜌7
′  𝜌8 𝜌9 𝜌10 𝜌11 𝜌12

′ 

Minimum 0.369 0.497 0.012 0.000 0.555 0.029 0.000 0.000 0.689 0.218 0.069 0.001 

Quantile 1 0.532 0.608 0.022 0.000 0.672 0.075 0.032 0.017 0.916 0.380 0.172 0.003 

Quantile 2 0.701 0.687 0.146 0.001 0.735 0.185 0.059 0.060 0.984 0.591 0.229 0.045 

Quantile 3 0.872 0.802 0.247 0.007 0.800 0.243 0.116 0.275 0.995 0.739 0.554 0.066 

Maximum 0.989 0.910 0.481 0.023 0.938 0.352 0.413 0.999 1.000 0.989 0.984 0.216 
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Exhibit B 

 

Figure B-1. Contribution of each dimension of the GHuST framework to the first 3 principal 

components obtained for the autonomous-system set of networks analyzed. 
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Figure B-2. Contribution of each dimension of the GHuST framework to the first 3 principal 

components obtained for the enzyme set of networks analyzed. 
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Figure B-3. Contribution of each dimension of the GHuST framework to the first 3 principal 

components obtained for the Facebook set of networks analyzed. 
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Figure B-4 Contribution of each dimension of the GHuST framework to the first 3 principal 

components obtained for the power-network set of networks analyzed. 
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Figure B-5. Contribution of each dimension of the GHuST framework to the first 3 principal 

components obtained for the retweet set of networks analyzed. 
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Figure B-6. Contribution of each dimension of the GHuST framework to the first 3 principal 

components obtained for the road set of networks analyzed. 
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Figure B-7. Contribution of each dimension of the GHuST framework to the first 3 principal 

components obtained for the web set of networks analyzed. 
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Exhibit C 

A. Global efficiency: 

𝐸 =  
1

𝑁(𝑁 − 1)
∑

1

𝑑𝑖𝑗
𝑖≠𝑗

 
(C-1) 

𝑁 is the total number of nodes in the network and 𝑑𝑖𝑗  is the shortest path between nodes 

𝑖 and 𝑗 

B. Damage 

𝐷 =  
𝐸(𝐺0) − 𝐸(𝐺𝑓)

𝐸(𝐺0)
 (C-2) 

𝐸(𝐺0) is the value of a vulnerability index before a failure and 𝐸(𝐺𝑓) is the value of the 

vulnerability index after a failure. 

C. Modified Global Efficiency 

𝐸 =  
1

𝑁𝐷𝑁𝐺
∑ ∑

1

𝑑𝑖𝑗
𝑗∈𝐷𝑖∈𝐺

 
(C-3) 

𝑁𝐷 is the number of demand nodes in the network, 𝑁𝐺  is the number of generators in the 

network, 𝑑𝑖𝑗  is the shortest path between nodes 𝑖 and 𝑗 

D. Loss of load 

𝐿𝑂𝐿 =  
1

𝐷
∑ ∆𝐿𝑖

𝑠

 
(C-4) 

∆𝐿𝑖 =  {
𝐷𝑖 − 𝐶𝑖, 𝐷𝑖 > 𝐶𝑖

0, 𝐷𝑖 < 𝐶𝑖
 (C-5) 

𝐷 is the total demand of the network before component failure, 𝑠 is the number of islands 
in the system after a component failure, 𝐷𝑖 total power demanded in an island, and 𝐶𝑖 total 
generation capacity on an island. 
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E. Connectivity loss 

𝐶𝐿 = 1 − 〈
𝑁𝑔

𝑖

𝑁𝑔

〉𝑖 (C-6) 

𝑁𝑔
𝑖  is the number of generators connected to node 𝑖 and 𝑁𝑔the number of generators in 

the network.  

F. Electrical degree centrality 

𝐷𝑖 =  
∑ 𝐹𝑖,𝑗

𝑁 − 1
 (C-7) 

𝑁 is the number of nodes in the network and 𝐹𝑖,𝑗 is the power flow through the lines that 

are connected to node 𝑖.  

G. Electrical betweenness centrality 

 

𝐵𝑖 = ∑
𝑃𝑠𝑡,𝑖

𝑃𝑠𝑡
 (C-8) 

𝑃𝑠𝑡 is the maximum amount of power that can flow through line 𝑠𝑡, and 𝑃𝑠𝑡,𝑖  is the power 
that is injected in node 𝑖 when the power through line 𝑠𝑡 is equal to the transmission line 
capacity.  

H. Structural vulnerability index 

𝑆𝑉𝐼 =  
1

𝑁𝐷𝑁𝐺
∑ ∑

𝑃𝐺𝑖

𝑃𝐷𝑗 𝑒𝑧𝑖𝑗

𝑗∈𝐷𝑖∈𝐺

 
(C-9) 

𝑁𝐷 is the number of demand nodes, 𝑁𝐺  the number of generators nodes, 𝑃𝐺𝑖 maximum 
generation capacity of generator 𝑖, and 𝑃𝐷𝑗 is the maximum power demanded by node 
𝑗 

I. Directed global efficiency 

𝐷𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝐺𝑙𝑜𝑏𝑎𝑙 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
1

𝑁𝐷𝑁𝐺
∑ ∑

1

𝑧𝑖𝑗
𝑗∈𝐷𝑖∈𝐺

 
(C-10) 

𝑁𝐷 is the number of demand nodes, 𝑁𝐺  the number of generators nodes, and 𝑧𝑖𝑗  is the 
electrical distance between nodes 𝑖 and 𝑗. 
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J. Net ability 

𝑁𝑒𝑡 𝐴𝑏𝑖𝑙𝑖𝑡𝑦 =  
1

𝑁𝐷𝑁𝐺
∑ ∑

𝑐𝑖𝑗

𝑧𝑖𝑗
𝑗∈𝐷𝑖∈𝐺

 
(C-11) 

𝑁𝐷 is the number of demand nodes, 𝑁𝐺  is the number of generation nodes, 𝑐𝑖𝑗  is the 
maximum power that can be injected in node 𝑖 to be withdrawn in node 𝑗. 

K. Effective graph resistance 

𝐺𝑟𝑎𝑝ℎ 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  ∑ ∑ 𝑅𝑖,𝑗

𝑗≠𝑖𝑖

 
(C-12) 

𝑅𝑖,𝑗  is the effective resistance between nodes 𝑖 and. 

L. Electrical centrality 

𝑐𝑖 =  
1

�̅�𝑎
 (C-13) 

�̅�𝑎 =  ∑
𝑒𝑎𝑏

𝑛 − 1
𝑏=1
𝑏≠𝑎

 
(C-14) 

𝑒𝑎𝑏 is the electrical distance between nodes 𝑎 and 𝑏 and 𝑛 is the number of nodes in the 

network. 

M. Centrality index 

𝐶𝐼𝑢𝑣 =  ∑ ∑ 𝑓𝑖𝑗
𝑢𝑣

𝑗𝑖

 
(C-15) 

𝑓𝑖𝑗
𝑢𝑣 is the maximum power that can be injected in node 𝑖 to be withdrawn in node 𝑗. 

N. Extended betweenness 

𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑 𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑛𝑒𝑠𝑠 (𝑙) = max (𝑇𝑃(𝑙), 𝑇𝑃(𝑙)) (C-16) 

𝑇𝑃(𝑙) =  ∑ ∑ 𝑐𝑖𝑗  𝑓𝑙
𝑖𝑗

𝑗∈𝐷𝑖∈𝐺  if 𝑓𝑙
𝑖𝑗

> 0 (C-17) 

𝑇𝑃(𝑙) =  ∑ ∑ 𝑐𝑖𝑗  𝑓𝑙
𝑖𝑗

𝑗∈𝐷𝑖∈𝐺  if 𝑓𝑙
𝑖𝑗

< 0 (C-18) 

𝑐𝑖𝑗  is the maximum power that can be injected in node 𝑖 to be withdrawn in node 𝑗, and 

𝑓𝑙
𝑖𝑗

 is the change of power through line 𝑙 when there is an injection of power in node 𝑖 and 
it is withdrawn in node 𝑗.  


