

Planificación y control de proyectos

José María Ferrer Caja Universidad Pontificia Comillas

Introducción

- □ Un proyecto es un conjunto de actividades o tareas interrelacionadas
- □ Se conocen con antelación las relaciones de precedencia entre las distintas actividades
- La duración de las actividades puede ser determinista o aleatoria
- ☐ Cada actividad requiere unos recursos
- □ La planificación de proyectos pretende coordinar las actividades y asignar los recursos de forma que se alcancen una o varias metas:
 - Menor tiempo de realización del proyecto
 - ✓ Menor coste
 - ✓ Cumplimiento de plazos de entrega
 - ✓ Detección de cuellos de botella

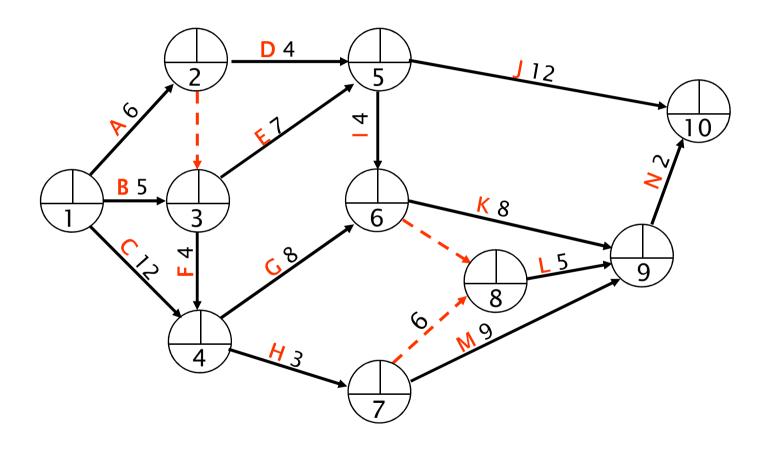
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA

Representación del proyecto

- Un proyecto se representa mediante una red de actividades
- Pasos previos
 - ✓ Identificar las actividades individuales que forman el proyecto
 - ✓ Especificar sus relaciones de precedencia.
 - ✓ Estimar sus duraciones
- ☐ Reglas para la red de actividades
 - Cada arco representa una actividad, y se especifica su duración
 - ✓ Cada nodo representa un evento, puede ser el final de algunas actividades y el principio de otras
 - ✓ Cada par de nodos puede estar unido a lo sumo por un arco
 - ✓ Si es necesario, se pueden utilizar actividades ficticias con duración nula. Se representan mediante arcos con línea discontinua

Representación del proyecto. Ejemplo (1)

☐ En la tabla siguiente se muestra un conjunto de actividades, su duración y sus precedencias


Actividad	Duración	Sucesores
Α	6	D, E, F
В	5	E, F
С	12	G, H
D	4	I, J
E	7	I, J
F	4	G, H
G	8	K, L
Н	3	M
	4	K, L
J	12	
K	8	N
L	5	N
M	9	N
N	2	

□ Además, entre el final de H y el comienzo de L deben transcurrir al menos 6 unidades de tiempo

Representación del proyecto. Ejemplo (2)

☐ Red de actividades:

Determinación del camino crítico (CPM)

- ☐ El objetivo es obtener la duración mínima del proyecto y determinar las actividades críticas
 - Actividad crítica: Actividad cuyo retraso supone un retraso en el proyecto
 - Camino crítico: Camino del nodo inicial al nodo final formado por actividades críticas
- Notación
 - $d_{ii} \rightarrow$ duración de la actividad que va del nodo *i* al nodo *j*
 - $t_i \rightarrow$ instante más temprano en el que pueden empezar las actividades cuyo nodo inicial es i
 - ✓ T_i → instante más tardío en el que pueden acabar las actividades cuyo nodo final es i sin retrasar el proyecto
- ☐ Se realiza en dos fases:
 - ✓ Fase hacia adelante: Cálculo de los instantes más tempranos
 - ✓ Fase hacia atrás: Cálculo de los instantes más tardíos

CPM. Algoritmo

☐ Fase hacia adelante

- 1. Etiquetar el nodo inicial con tiempo 0: $t_1 = 0$
- 2. Elegir un nodo j tal que todos los nodos anteriores adyacentes a él ya hayan sido etiquetados. Etiquetar el nodo j con el máximo de las etiquetas de estos nodos más la longitud del arco que los une: $t_i = \max \left\{ t_i + d_{ij} : (i,j) \in A \right\}$

3. Repetir el paso 2 hasta que todos los nodos estén etiquetados

□ Fase hacia atrás

- 1. Etiquetar el nodo final n con su instante más temprano: $T_n = t_n$
- 2. Elegir un nodo j tal que todos los nodos posteriores adyacentes a él ya hayan sido etiquetados. Etiquetar el nodo j con el mínimo de las etiquetas de estos nodos menos la longitud del arco que los une: $T_i = \min \left\{ T_i d_{ii} : (j,i) \in A \right\}$

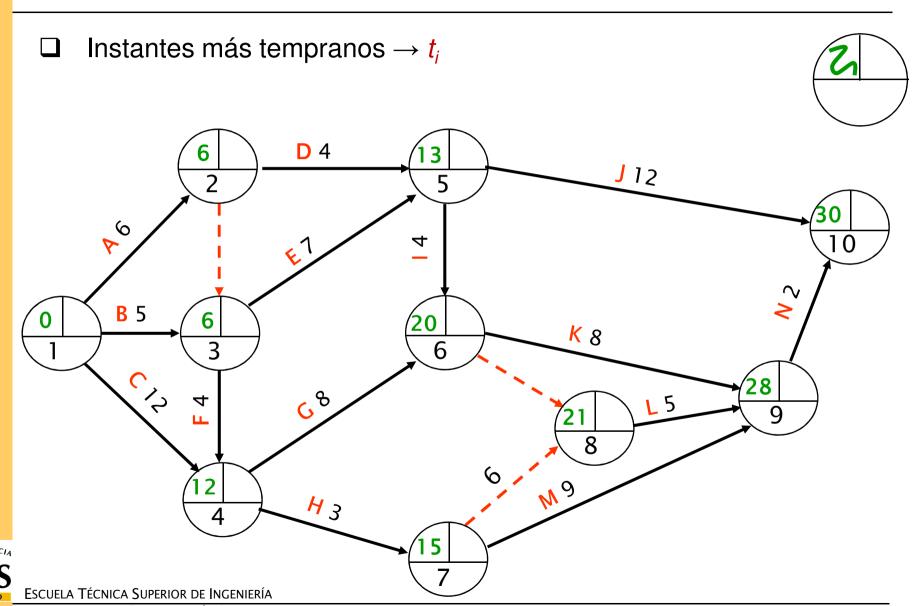
3. Repetir el paso 2 hasta que todos los nodos estén etiquetados

CPM. Holguras

- lacksquare Holgura del evento $f: T_j t_j$
 - ✓ El primer evento y el último siempre tienen holgura 0
- lacksquare Holgura total de la actividad (*i*, *j*): $TF_{ij} = T_j t_i d_{ij}$
 - ✓ Cantidad en que se puede retrasar unilateralmente el inicio de la actividad (i, j) más allá de su instante más temprano sin retrasar el proyecto
 - ✓ Máxima cantidad de tiempo en que puede incrementarse su duración sin retrasar el proyecto
 - ✓ No se considera la holgura de las actividades ficticias
- lacksquare Holgura libre de la actividad (*i*, *j*): $FF_{ij} = t_j t_i d_{ij}$
 - ✓ Cantidad en que se puede retrasar unilateralmente el inicio de la actividad (*i*, *j*) más allá de su instante más temprano sin retrasar el comienzo de ninguna actividad posterior
 - \checkmark Para cada actividad se cumple: $FF_{ij} \leq TF_{ij}$

CPM. Actividades críticas y camino crítico

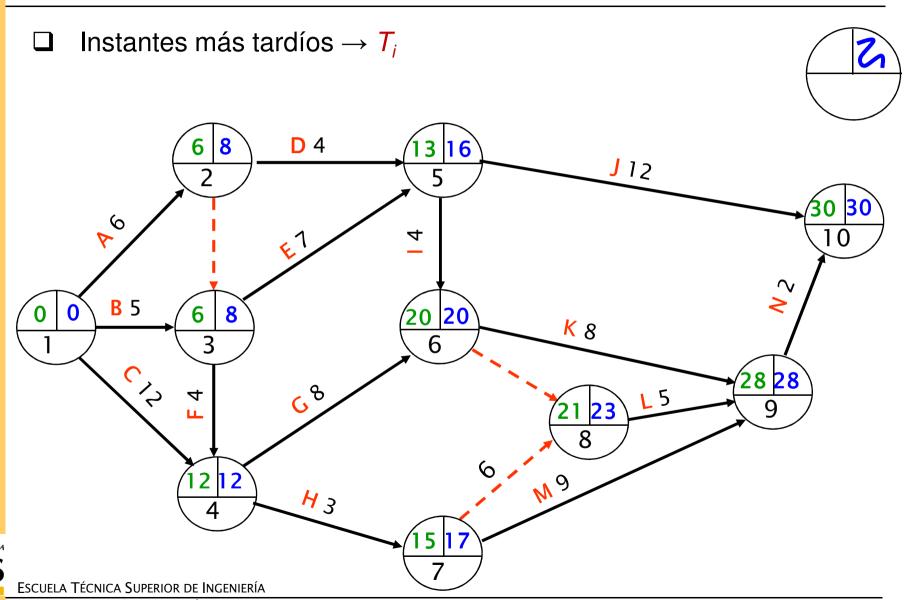
La actividad (i, j) es crítica si su holgura total es 0
Existe al menos un camino crítico
Los eventos y actividades de cualquier camino crítico tienen holgura 0
Toda actividad crítica pertenece a algún camino crítico
Todo evento con holgura 0 pertenece a algún camino crítico
La duración del proyecto es t _n


CPM. Ejemplo (1)

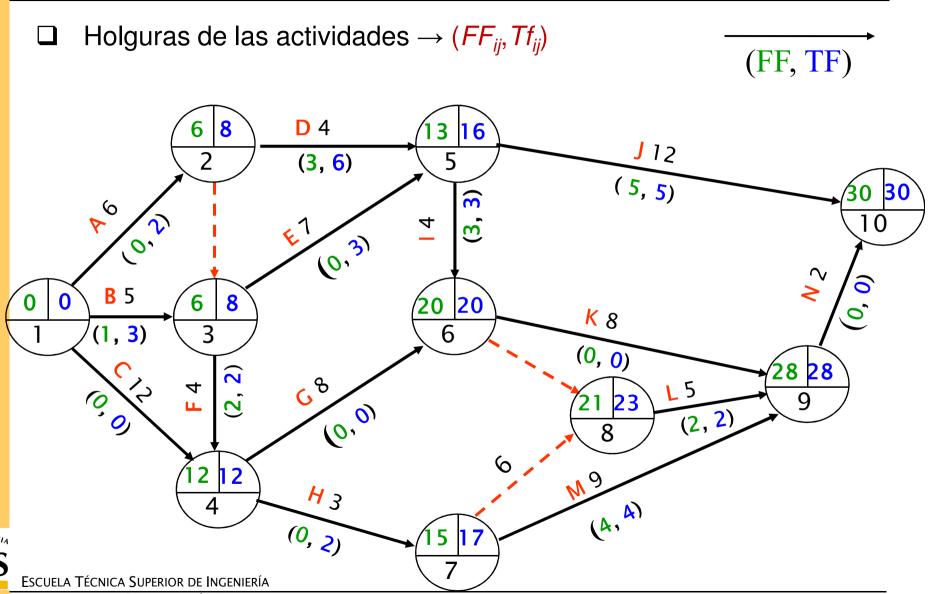
- Aplicamos el método del camino crítico al ejemplo anterior
- ☐ Fase hacia delante:

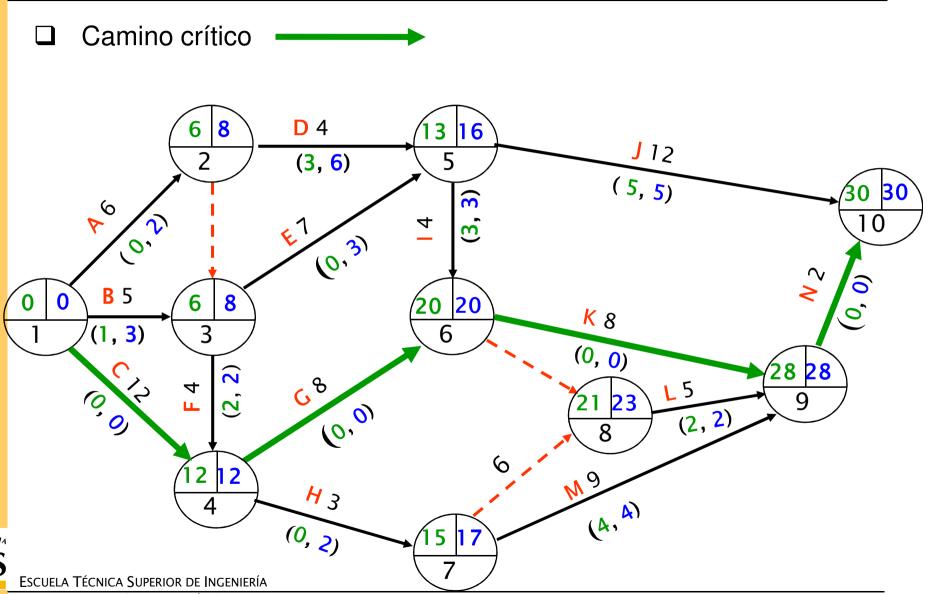
$$\begin{split} t_1 &= 0 \\ t_2 &= t_1 + d_{12} = 0 + 6 = 6 \\ t_3 &= \max \left\{ t_1 + d_{13}, t_2 + d_{23} \right\} = \max \left\{ 0 + 5, 6 + 0 \right\} = 6 \\ t_4 &= \max \left\{ t_1 + d_{14}, t_3 + d_{34} \right\} = \max \left\{ 0 + 12, 6 + 4 \right\} = 12 \\ t_5 &= \max \left\{ t_2 + d_{25}, t_3 + d_{35} \right\} = \max \left\{ 6 + 4, 6 + 7 \right\} = 13 \\ t_6 &= \max \left\{ t_4 + d_{46}, t_5 + d_{56} \right\} = \max \left\{ 12 + 8, 13 + 4 \right\} = 20 \\ t_7 &= t_4 + d_{47} = 12 + 3 = 15 \\ t_8 &= \max \left\{ t_6 + d_{68}, t_7 + d_{78} \right\} = \max \left\{ 20 + 0, 15 + 6 \right\} = 21 \\ t_9 &= \max \left\{ t_6 + d_{69}, t_7 + d_{79}, t_8 + d_{89} \right\} = \max \left\{ 20 + 8, 15 + 9, 21 + 5 \right\} = 28 \\ t_{10} &= \max \left\{ t_5 + d_{5,10}, t_9 + d_{9,10} \right\} = \max \left\{ 13 + 12, 28 + 2 \right\} = 30 \end{split}$$

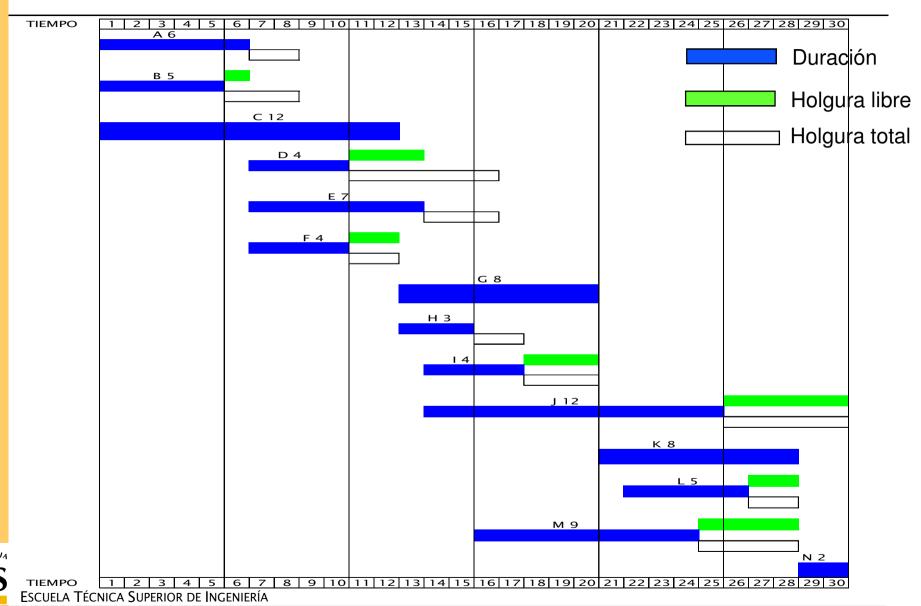
CPM. Ejemplo (2)


CPM. Ejemplo (3)

☐ Fase hacia atrás:


$$\begin{split} T_{10} &= t_{10} = 30 \\ T_{9} &= T_{10} - d_{9,10} = 30 - 2 = 28 \\ T_{8} &= T_{9} - d_{89} = 28 - 5 = 23 \\ T_{7} &= \min \left\{ T_{8} - d_{78}, T_{9} - d_{79} \right\} = \min \left\{ 23 - 6,28 - 9 \right\} = 17 \\ T_{6} &= \min \left\{ T_{8} - d_{68}, T_{9} - d_{69} \right\} = \min \left\{ 23 - 0,28 - 8 \right\} = 20 \\ T_{5} &= \min \left\{ T_{6} - d_{56}, T_{10} - d_{5,10} \right\} = \min \left\{ 20 - 4,30 - 12 \right\} = 16 \\ T_{4} &= \min \left\{ T_{6} - d_{46}, T_{7} - d_{47} \right\} = \min \left\{ 20 - 8,17 - 3 \right\} = 12 \\ T_{3} &= \min \left\{ T_{4} - d_{34}, T_{5} - d_{35} \right\} = \min \left\{ 12 - 4,16 - 7 \right\} = 8 \\ T_{2} &= \min \left\{ T_{3} - d_{23}, T_{5} - d_{25} \right\} = \min \left\{ 8 - 0,16 - 4 \right\} = 8 \\ T_{1} &= \min \left\{ T_{2} - d_{12}, T_{3} - d_{13}, T_{4} - d_{14} \right\} = \min \left\{ 8 - 6,16 - 5,12 - 12 \right\} = 0 \end{split}$$


CPM. Ejemplo (4)


CPM. Ejemplo (5)

CPM. Ejemplo (6)

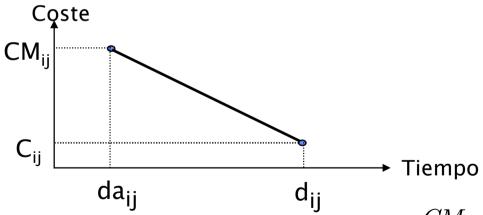


Diagrama de Gantt

Aceleración de proyectos. Planteamiento

- □ La duración de las actividades puede ser acortada asignando recursos adicionales
- ☐ La duración de cada actividad puede variar entre da; y d;
 - \checkmark $d_{ij} \rightarrow$ duración estándar. El coste es C_{ij}
 - √ da_{ij} → duración acelerada. El coste es máximo → CM_{ij}
 - ✓ El coste es función lineal de la duración (se obtiene por interpolación lineal)

 \checkmark Coste de aceleración de la actividad \to $\dfrac{CM_{ij}-C_{i}}{d_{ii}-da_{ii}}$

Aceleración de proyectos. Algoritmo

- 1. Determinar el (los) camino crítico(s) para las duraciones normales
- 2. Obtener todos los cortes en la red formada por las actividades críticas que se pueden acelerar
 - ✓ En un corte con más de un arco, cada actividad debe pertenecer a un camino crítico distinto
 - ✓ Si no existe ningún corte con estas características → PARAR Evaluar cada corte mediante la suma de los costes de aceleración de sus arcos y elegir el corte de mínimo coste global de aceleración
- 3. Acelerar todos los arcos del corte hasta que
 - ✓ Alguna actividad deje de ser crítica
 - ✓ Aparezcan nuevas actividades críticas
 - ✓ Alguna actividad no pueda acelerarse más
 - ✓ Se consuma el presupuesto

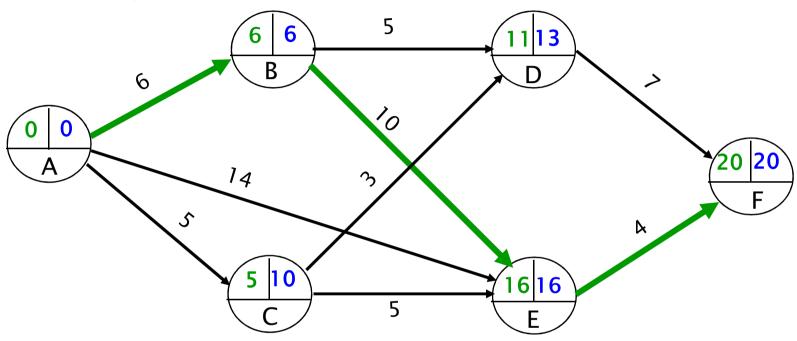
Determinar los nuevos caminos críticos y volver al paso 2

Aceleración de proyectos. Ejemplo (1)

En la tabla siguiente se muestra un conjunto de actividades, su duración normal y acelerada y sus respectivos costes

Actividad	Duración Estándar semanas	Coste Previsto M€	Duración Acelerada <i>semanas</i>	Coste Acelerado M€	
AB	6	10	4	14	
AC	5	8	3	14	
AE	14	34	10	54	
BD	5	6	3	14	
BE	10	20	7	29	
CD	3	10	2	14	
CE	5	12	3	18	
DF	7	16	6	23	
EF	4	10	2	30	

Aceleración de proyectos. Ejemplo (2)


☐ Calculamos las costes de aceleración

Actividad	Duración Estándar <i>semanas</i>	Coste Previsto M €	Duración Acelerada <i>semanas</i>	Coste Acelerado M €	Coste aceleración M€/Semana
AB	6	10	4	14	(14-10)/(6-4)= 2
AC	5	8	3	14	(14-8)/(5-3)= 3
AE	14	34	10	54	(54-34)/(14-10)= 5
BD	5	6	3	14	(14-6)/(5-3)= 4
BE	10	20	7	29	(29-20)/(10-7)= 3
CD	3	10	2	14	(14-10)/(3-2)= 4
CE	5	12	3	18	(18-12)/(5-3)= 3
DF	7	16	6	23	(23-16)/(7-6)= 7
EF	4	10	2	30	(30-10)/(4-2)= 10

Aceleración de proyectos. Ejemplo (3)

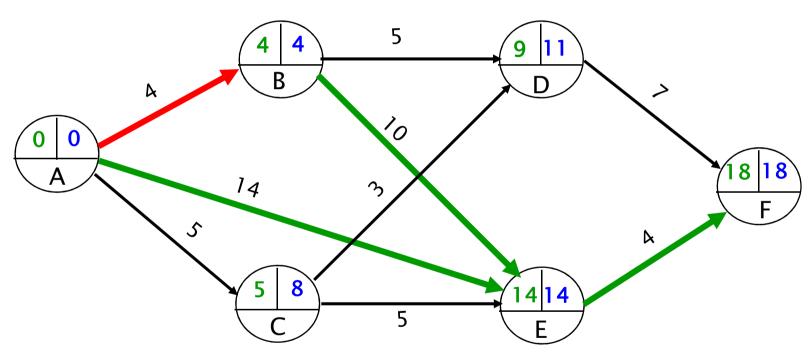
Paso 1. Representamos la red de actividades y aplicamos el método CPM

Paso 2. Existen tres cortes, cada uno con una actividad:

{AB} con coste de aceleración 2

{BE} con coste de aceleración 3

{EF} con coste de aceleración 10

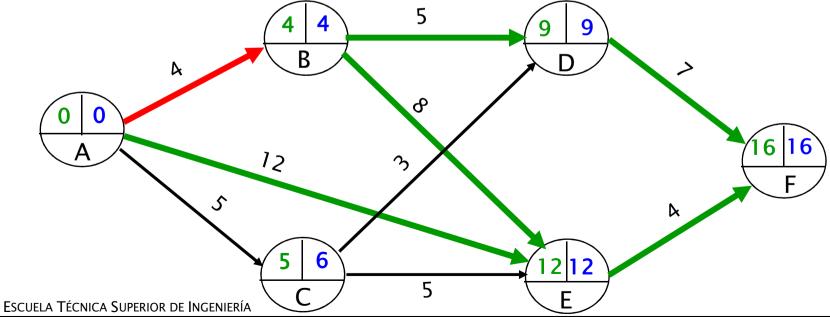

Se elige el corte {AB}

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA

Aceleración de proyectos. Ejemplo (4)

Paso 3. Se acelera 2 semanas la actividad AB, alcanzando su duración mínima 4. Además la actividad AE se hace crítica La nueva red es

Ahora se tienen dos caminos críticos

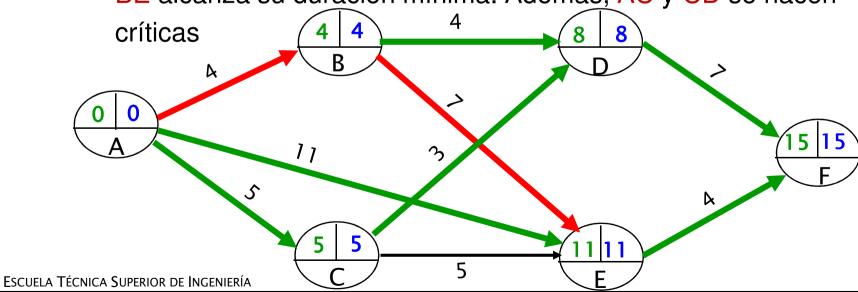

Aceleración de proyectos. Ejemplo (5)

Paso 2. Existen dos cortes:

{AE, BE} con coste global de aceleración 5 + 3 = 8 {EF} con coste de aceleración 10 Se elige el corte {AE, BE}

Paso 3. Se aceleran 2 semanas las actividades AE y BE, puesto que se hacen críticas las actividades BD y DF

En la nueva red hay tres caminos críticos



Aceleración de proyectos. Ejemplo (6)

Paso 2. Existen cuatro cortes:

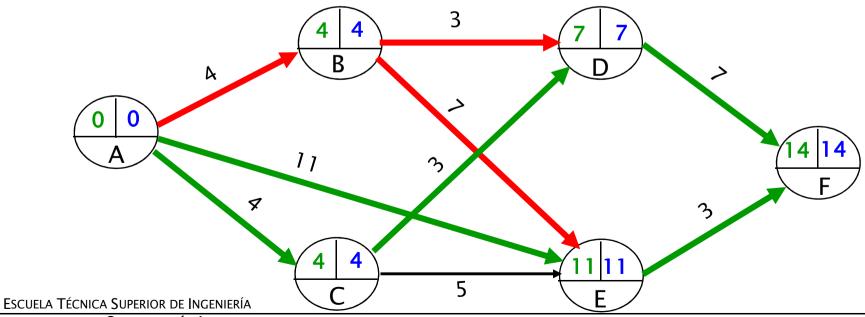
{AE, BE, BD} con coste global de aceleración 5 + 3 + 4 = 12 {AE, BE, DF} con coste global de aceleración 5 + 3 + 7 = 15 {BD, EF} con coste global de aceleración 4 + 10 = 14 {DF, EF} con coste global de aceleración 7 + 10 = 17 Se elige el corte {AE, BE, BD}

Paso 3. Se aceleran 1 semana las actividades AE, BD y BE, puesto que BE alcanza su duración mínima. Además, AC y CD se hacen

COMILLAS

DEPARTAMENTO DE ORGANIZACIÓN INDUSTRIAL

Aceleración de proyectos. Ejemplo (7)

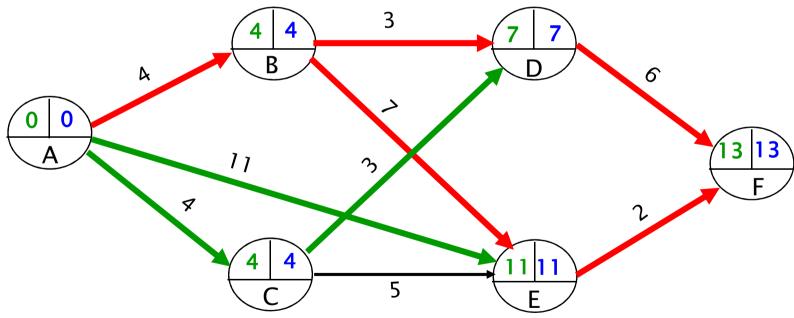

Paso 2. Existen tres cortes:

{AC, BD, EF} con coste global de aceleración 3 + 4 + 10 = 17 {BD, CD, EF} con coste global de aceleración 4 + 4 + 10 = 18

{DF, EF} con coste global de aceleración 7 + 10 = 17

Se elige (por ejemplo) el corte {AC, BD, EF}

Paso 3. Se aceleran 1 semana las actividades AC, BD y EF, puesto que BD alcanza su duración mínima



Aceleración de proyectos. Ejemplo (8)

Paso 2. Existe un corte:

{DF, EF} con coste global de aceleración 7 + 10 = 17Se elige el corte {DF, EF}

Paso 3. Se aceleran 1 semana las actividades DF y EF, puesto que alcanzan su duración mínima

La duración final del proyecto es 13 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA

Aceleración de proyectos. Ejemplo (9)

☐ Evolución de las duraciones, las actividades críticas y los costes globales del proyecto

Duración total	Duración de las operaciones [semanas]							Coste [M€]		
	AB	AC	AE	BD	BE	CD	CE	DF	EF	
20	6	5	14	5	10	3	5	7	4	126
19	5	5	14	5	10	3	5	7	4	128
18	4	5	14	5	10	3	5	7	4	130
17	4	5	13	5	9	3	5	7	4	138
16	4	5	12	5	8	3	5	7	4	146
15	4	5	11	4	7	3	5	7	4	158
14	4	4	11	3	7	3	5	7	3	175
13	4	4	11	3	7	3	5	6	2	192

Método PERT

- □ Se aplica cuando la duración de las actividades se considera aleatoria
- Notación
 - ✓ D_{ij} → duración (aleatoria) de la actividad que va del nodo i al nodo j
 - ✓ $E[D_{ii}]$ → duración esperada de la actividad
 - \checkmark $V[D_{ii}]$ → varianza de la duración de la actividad
 - ✓ CP → duración (aleatoria) del proyecto
 - ✓ E[CP] → duración esperada del proyecto
 - ✓ V[CP] → varianza de la duración del proyecto
- Objetivos
 - ✓ Obtener la distribución de la duración del proyecto
 - ✓ Calcular la probabilidad de acabar el proyecto a tiempo

Método PERT. Hipótesis

1. Las duraciones de las actividades son independientes

- ✓ No siempre es cierta
- ✓ La esperanza (varianza) de la duración de cualquier camino del nodo inicial al final es la suma de las esperanzas (varianzas) de las duraciones de las actividades que forman el camino

2. El camino crítico es el de mayor duración esperada

- ✓ No tiene por qué ser cierta para casos optimistas o pesimistas
- ✓ Si hay empate, el camino crítico es el de mayor varianza.

3. La duración del proyecto sigue una distribución normal

- ✓ Cierta si las duraciones de todas las actividades son normales
- Cierta para proyectos con muchas actividades (Teorema central del límite)

Método PERT. Ejemplo

- Suponemos ahora que en el ejemplo del CPM las duraciones son aleatorias, y las duraciones medias son las especificadas en el enunciado → el camino crítico sigue siendo el mismo
- □ Sean 50, 20, 29 y 1 las varianzas de las actividades C, G, K y N del camino crítico
- ☐ ¿Cuál es la probabilidad de terminar el proyecto en 40 unidades de tiempo?

$$E[CP] = 12 + 8 + 8 + 2 = 30$$

$$V[CP] = 50 + 20 + 29 + 1 = 100$$

$$\Rightarrow CP \sim N(30, 10)$$

$$P(CP \le 40) = P\left(\frac{CP - 30}{10} \le \frac{40 - 30}{10}\right) =$$

$$= P(Z \le 1) = 1 - P(Z > 1) = 1 - 0.1587 = 0.8413$$

Método PERT. Hipótesis adicional

- 4. La duración de cada actividad sigue una distribución beta
 - Se asume para obtener la media y la varianza de forma sencilla cuando no son conocidas
 - ✓ Si la duración mínima es *a*, la duración máxima es *b* y la duración más "probable" es *m*

$$E[D_{ij}] = \frac{a+b+4m}{6}$$

$$V[D_{ij}] = \frac{(b-a)^2}{36}$$

