

Investigación Operativa

**Operations Research** 

### Queueing Theory

Departamento de Organización Industrial

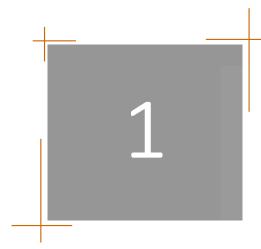
September 1, 2023

### Learning outcomes

- Represent any queueing system by the birth-death process
- Analytical expressions of steady-state performance measures for the most common queueing systems
- Make optimal decisions in queueing systems







- 1. What QT is for?
- 2. Elements of waiting lines
- 3. Poisson process
- 4. Birth-death process
- 5. Standard models
- 6. Infinite population
- 7. Finite population

What QT is for?



# What Queueing Theory (QT) is for?

- When does queueing happen?
  - When there is a temporary surge in demand that cannot be quickly handled with the available service capacity
  - Waiting in lines is usual at different systems (restaurants, bank branches, elevators, etc.)
- QT sets mathematical models to estimate the steady-state performance of waiting lines for different types of queueing systems
- Queue Analyst should balance optimally between costs of:
  - Investments in System Design
  - Wasted time cost of waiting and idle periods



# **Common Queueing Systems**

#### Business

- Bank branches
- Grocery stores, supermarkets, malls, ...
- Fast food and standard restaurants

#### Paransportation

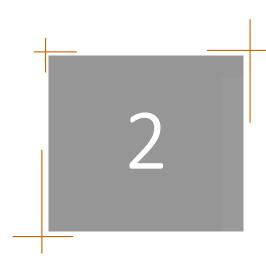
- Load Centre (Airports, ports, ...)
- Traffic (roads, traffic lights, ...)
- Parking
- Elevators

#### Industrial Systems

- Maintenance
- Control Systems
- Storage Centre
- Oscial services
  - Hospitals
  - Courts
  - • •

| Clients                  | Service           | Servers        |  |
|--------------------------|-------------------|----------------|--|
| Clients of a shop        | Selling a product | Shop assistant |  |
| Clients of a bank        | Banking process   | Clerk          |  |
| Clients of a supermarket | Payment           | Cash register  |  |
| Cars                     | Fill the tank     | Pump           |  |
| Cars                     | Fix the breakdown | Workers        |  |
| Planes                   | Landing / takeoff | Runway         |  |
| Phone calls              | Conversation      | Call center    |  |
| Patients                 | Medical care      | Medical doctor |  |
| Cases                    | Transportation    | Storage robot  |  |
| Trials                   | Trial             | Judge          |  |



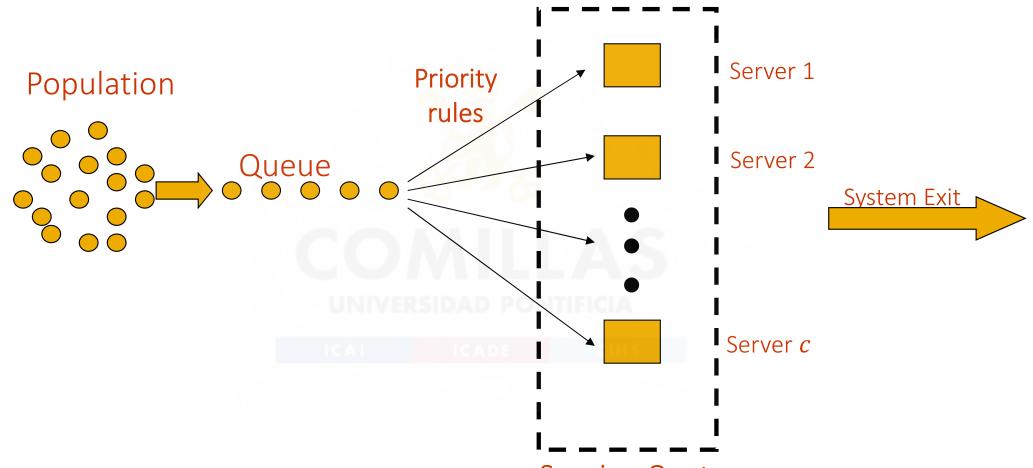


- 1. What QT is for?
- 2. Elements of waiting lines
- 3. Poisson process
- 4. Birth-death process
- 5. Standard models
- 6. Infinite population
- 7. Finite population

# Elements of waiting lines



## Elements of Waiting Lines



#### Service Center



## Elements of Waiting Lines (Cont'd)

Population:

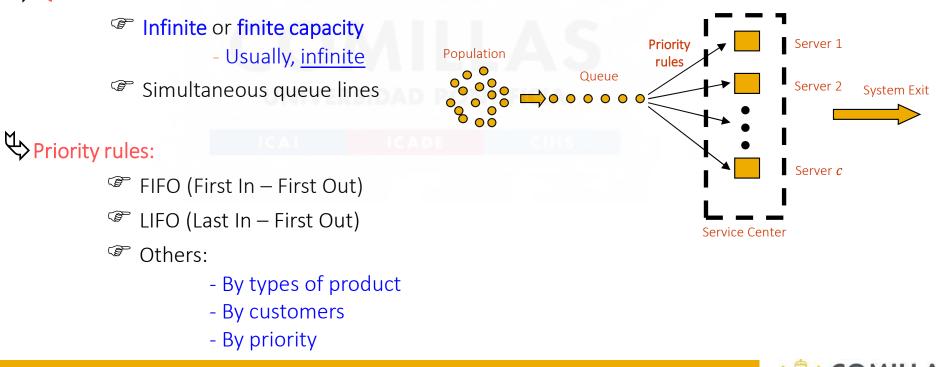
<sup>©</sup> Finite or infinite population

- Usually, infinite

© Interarrival pattern

- Usually, exponential distribution

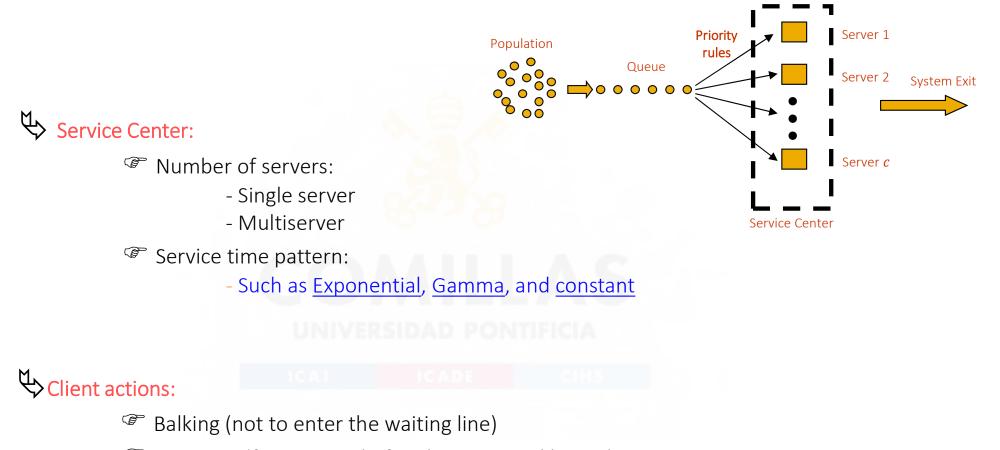




Bachelor's Degree in Industrial Engineering and in Telecommunications Engineering Operations Research



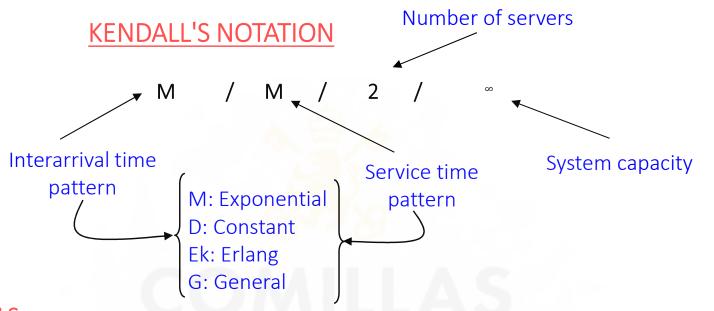
# Elements of Waiting Lines (Cont'd)



- Reneging (first enters, before being served leaves)
- Jockeying (to change from one line to another)



# Elements of Waiting Lines (Cont'd)



#### **SYMBOLS**

 $\lambda$  Mean arrival rate (average number of customers arriving per unit of time)

 $\mu$  Mean service rate (average number of customers that can be served per unit of time)

t Time

*c* Number of servers in the system

**k** System capacity

 $1/\lambda$  Mean time between consecutive arrivals

- $1/\mu$  Mean service time
- ρ Utilization ratio (ρ = λ/cμ)





## Performance of Waiting Lines

| n     | system state, clients in the System (waiting or being served) |                |  |  |  |
|-------|---------------------------------------------------------------|----------------|--|--|--|
| $P_n$ | probability of $n$ customers in the System at any given time  |                |  |  |  |
| L     | average number of customers in the System                     | L = E[n]       |  |  |  |
| $n_q$ | queue length, number of customers waiting in line             |                |  |  |  |
| $L_q$ | average number of clients waiting in line                     | $L_q = E[n_q]$ |  |  |  |
| t     | total time spent in the System, including service time        |                |  |  |  |
| W     | average total time spent in the System                        | W = E[t]       |  |  |  |
| $t_q$ | waiting time in the queue                                     |                |  |  |  |
| $W_q$ | average waiting time in the queue                             | $W_q = E[t_q]$ |  |  |  |



# Performance of Waiting Lines (Cont'd)

#### Little's laws:

**Definition:** The steady state of a Queueing System is reached when the number of customers' probability distribution is the same over time

The average number of customers in the System/Queue = Arrival rate x Average time spent in the System/Queue

$$L = \lambda W \qquad \qquad L_q = \lambda W_q$$

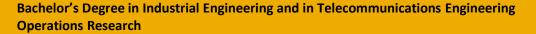
Average total time spent in the System = Average time waiting in line + Average service time

$$W = W_q + 1/\mu$$

The average number of customers in the System = The average number of customers waiting in line + The average number of customers being served

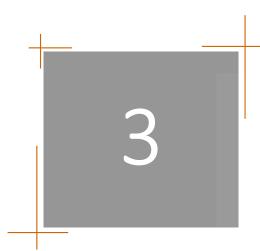
$$L = L_q + \lambda/\mu$$

These formulas can't be used if there are different service rates.







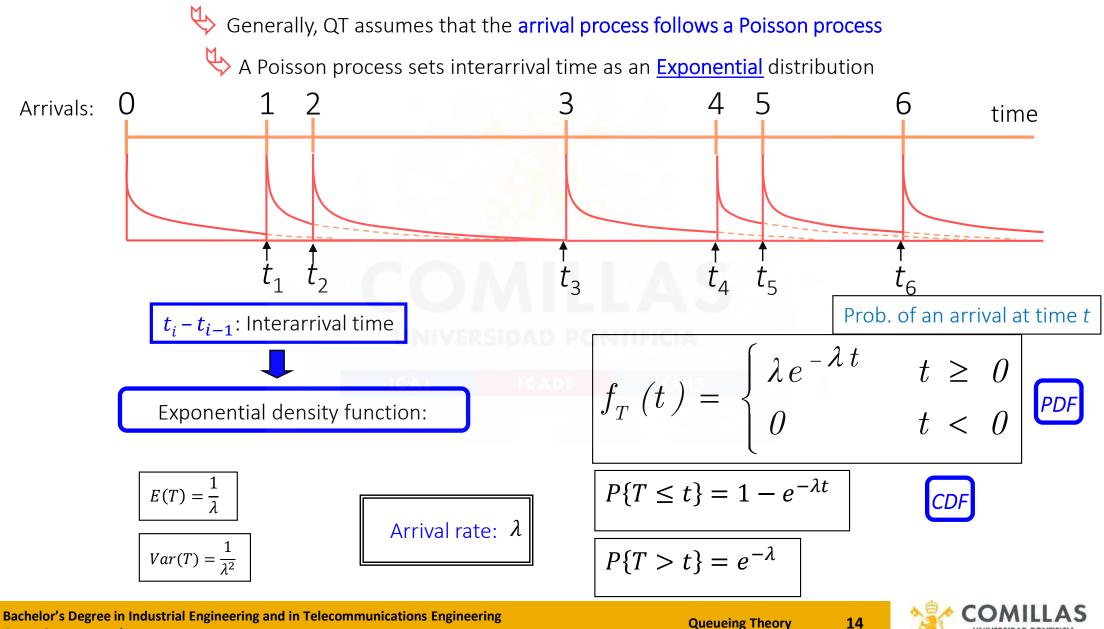


- 1. What QT is for?
- 2. Elements of waiting lines
- 3. Poisson process
- 4. Birth-death process
- 5. Standard models
- 6. Infinite population
- 7. Finite population

# Poisson process



#### Poisson Process



**Operations Research** 



# Poisson Process (Cont'd)

Properties of *Exponential* distribution as interarrival pattern

#### Lack of memory:

The arrival has the same probability to occur in a specific time interval regardless of previous spent time

 $P\{T > t + \Delta t | T > \Delta t\} = P\{T > t\}$ 

#### 2 Minimum of n Exponential variables:

This minimum is distributed as an Exponential distribution whose  $\lambda$  is:

$$\lambda = \sum_{i=1}^{n} \lambda_i$$

3 Number of arrivals during period *t*:

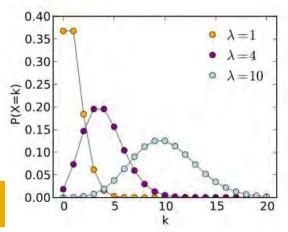
Such variable N is distributed as a <u>Poisson variable</u> with parameter  $\lambda t$ 

$$P\{N(t) = n\} = \frac{(\lambda t)^n e^{-\lambda}}{n!}$$

$$P\{N(t) = 0\} = e^{-\lambda t} = P\{T > t\}$$

$$n = 0, 1, \dots$$

$$E[N(t)] = \lambda t$$



Bachelor's Degree in Industrial Engineering and in Telecommunications Engineering Operations Research

**Queueing Theory** 

# Poisson Process (Cont'd)

Properties of the Poisson process

#### $\bullet$ Arrival probability during a small period $\Delta t$

If  $\Delta t$  is sufficiently small, its arrival probability is approximately  $\lambda \, \Delta t$ 

$$P\{T \le t + \Delta t | T > t\} \approx \lambda \Delta t$$

Two or more simultaneous arrivals have a negligible probability

#### **5** Compound *m* Poisson processes

Compounding arrival Poisson processes obtains another arrival Poisson process whose arrival rate  $\lambda$  is:

$$\lambda = \sum_{i=1}^{m} \lambda_i$$

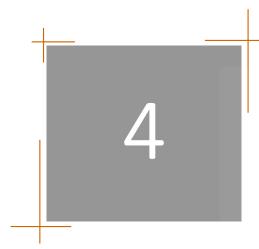
#### Decomposing a Poisson process

A Poisson process of arrival rate  $\lambda$  can be decomposed into *i* Poisson processes with probabilities  $p_i$  and arrival rates  $\lambda_i$ 

$$\sum_{i=1}^{l} p_i = 1$$

$$\lambda_i = \lambda p_i$$





- 1. What QT is for?
- 2. Elements of waiting lines
- 3. Poisson process
- 4. Birth-death process
- 5. Standard models
- 6. Infinite population
- 7. Finite population

# Birth-death process



#### **Birth-Death Process**

Most queueing models emulate customer arrivals like <u>births</u> and customer departures like <u>deaths.</u>

Main <u>characteristics</u> of this kind of modeling are:

**D** System state is given by the number of customers in the System: N(t)

Civen N(t) = n, time between two consecutive births is distributed as an Exponential probability function with rate  $\lambda_n$ 

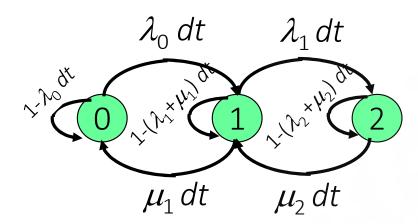
#### **JNIVERSIDAD PONTIFICIA**

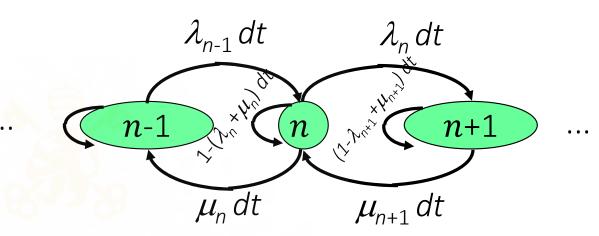
Given N(t) = n, time between two consecutive deaths is distributed as an Exponential probability function with rate  $\mu_n$ 





TRANSITION DIAGRAM





#### TRANSITION MATRIX

State at t + dt

|   |                   |   | 0                      |                             | PONT2FICIA                  | 3                           | 4                           |
|---|-------------------|---|------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
|   |                   | 0 | <b>1-</b> λ0 <i>dt</i> | 1000  dt                    | IDE 0 CIHS                  | 0                           | 0                           |
|   |                   | 1 | μ1 <b>dt</b>           | <b>1-(</b> λ1+μ1) <i>dt</i> | λ1 <b>dt</b>                | 0                           | 0                           |
| L | State at <i>t</i> | 2 | 0                      | μ2 <b>dt</b>                | <b>1-(</b> λ2+μ2) <i>dt</i> | λ2 <b>dt</b>                | 0                           |
|   |                   | 3 | 0                      | 0                           | μ3 <b>dt</b>                | <b>1-(</b> λ3+μ3) <i>dt</i> | λ3 <b>dt</b>                |
|   |                   | 4 | 0                      | 0                           | 0                           | μ4 <i>dt</i>                | <b>1-(</b> λ4+μ4) <i>dt</i> |



Computation of steady-state probabilities

$$\frac{d}{dt}p_{0}(t) = \frac{p_{0}(t+dt) - p_{0}(t)}{dt} = -\lambda_{0}p_{0}(t) + \mu_{1}p_{1}(t) = 0$$

$$\frac{d}{dt}p_{n}(t) = \lambda_{n-1}p_{n-1}(t) - (\lambda_{n} + \mu_{n})p_{n}(t) + \mu_{n+1}p_{n+1}(t) = 0$$
At steady state, all derivatives are identically zero
$$p_{i}(t) = p_{i}(t+dt) = p_{i}$$

$$\lambda_{0}p_{0} = \mu_{1}p_{1}$$

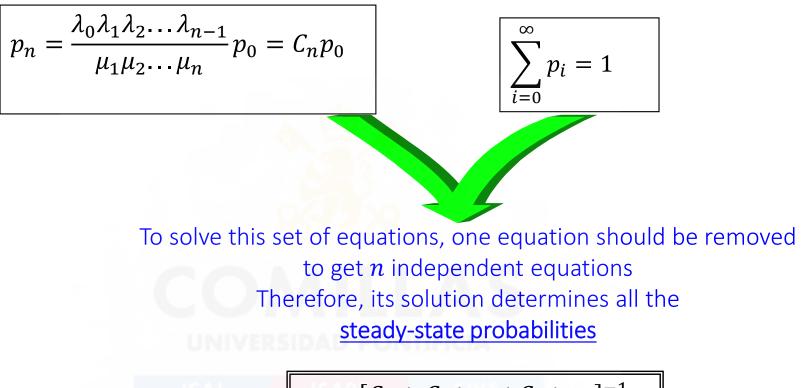
$$(\lambda_{1} + \mu_{1})p_{1} = \lambda_{0}p_{0} + \mu_{2}p_{2} \implies \lambda_{1}p_{1} = \mu_{2}p_{2}$$

$$\vdots$$

$$(\lambda_{n-1} + \mu_{n-1})p_{n-1} = \lambda_{n-2}p_{n-2} + \mu_{n}p_{n} \implies \lambda_{n-1}p_{n-1} = \mu_{n}p_{n}$$

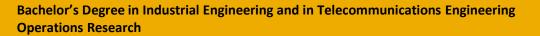
$$p_{n} = \frac{\lambda_{0}\lambda_{1}\lambda_{2}\cdots\lambda_{n-1}}{\mu_{1}\mu_{2}\cdots\mu_{n}}p_{0}$$





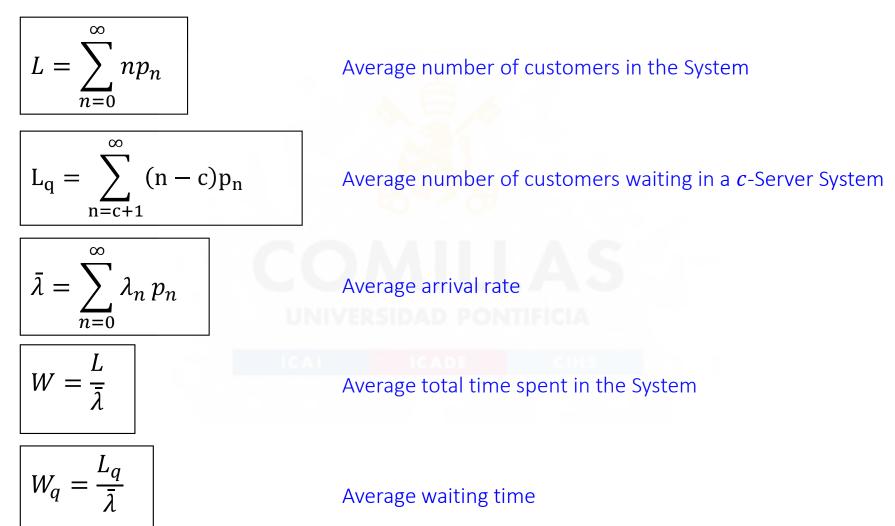
$$p_0 = [C_0 + C_1 + \dots + C_n + \dots]^{-1}$$

$$p_n = C_n p_0$$





#### **GENERAL PERFORMANCE MEASURES**



Queueing Theory





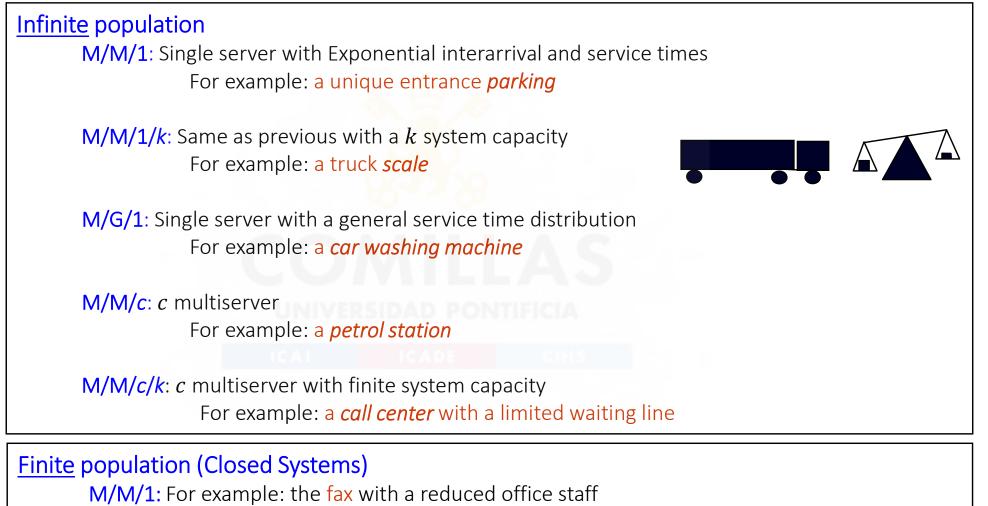
- 1. What QT is for?
- 2. Elements of waiting lines
- 3. Poisson process
- 4. Birth-death process
- 5. Standard models
- 6. Infinite population
- 7. Finite population

# Standard models



## **Standard Models**

• Standard Models emulate frequent queueing systems based on birth-death process

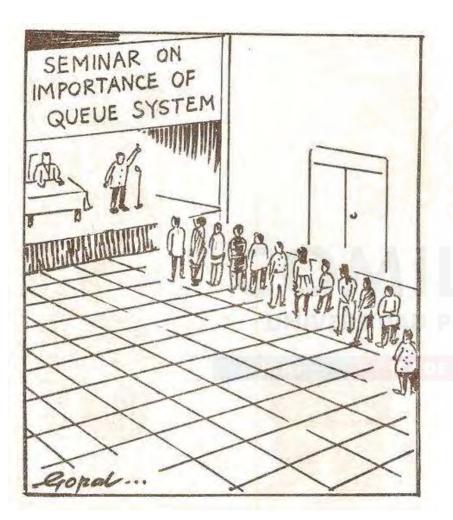


M/M/c: For example: maintenance personnel for a finite number of machines

Queueing Theory



#### Cartoon Question?



#### **QUESTIONS**

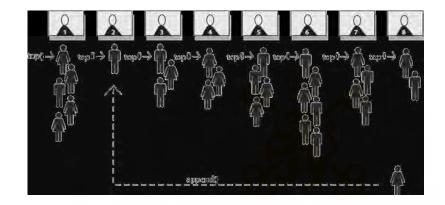
#### What type of model may be running?

Which one should be chosen?

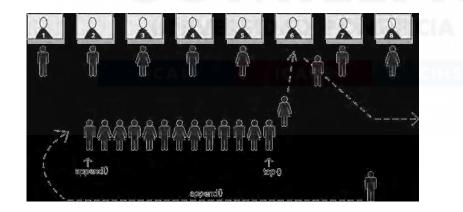


## What queueing system is more effective?

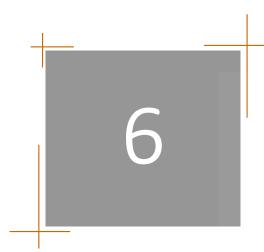
• 8 servers with 8 queues



• 8 servers supplied by 1 queue





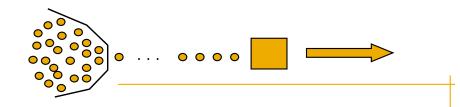


- 1. What QT is for?
- 2. Elements of waiting lines
- 3. Poisson process
- 4. Birth-death process
- 5. Standard models
- 6. Infinite population
- 7. Finite population

# Infinite population







λ

μ

\_

Service time is statistically distributed as an Exponential of rate  $\lambda$ Service time is statistically distributed as an Exponential of rate  $\mu$ 

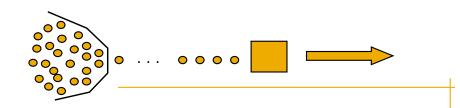
 $\clubsuit$  The average utilization of the server  $\rho$  is:

 $\mathcal{P} < 1$  to reach a stable queueing System

Steady-state probabilities based on general formulas:







#### PERFORMANCE MEASURES

$$L = \sum_{n=0}^{\infty} np_n = \frac{\rho}{1-\rho} = \frac{\lambda}{\mu - \lambda}$$

$$L_{q} = \sum_{n=2}^{\infty} (n-1)p_{n} = \frac{\rho^{2}}{1-\rho} = \rho L$$

$$W = \frac{L}{\lambda} = \frac{1}{\mu(1-\rho)}$$

Average number of customers in the System

Average number of customers waiting in line

Average total time spent in the System

$$W_q = W - \frac{1}{\mu} = \frac{\rho}{\mu(1-\rho)}$$

Average waiting time in line

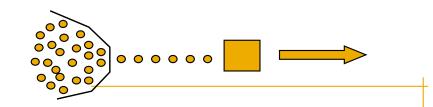
Average server utilization



 $\overline{c} = L - L_q = \rho = 1 - p_0$ 

Queueing Theory

# Model M/M/1/k



As System capacity is limited, customers are lost if the System is full

State dependent arrival and service rates:

$$\lambda_n = \begin{cases} \lambda & n < k \\ 0 & n \ge k \end{cases} \quad \mu_n = \mu \quad \forall n \end{cases} \qquad \boxed{\rho = \frac{\lambda}{\mu}} \qquad p_n = \begin{cases} \rho^n p_0 & n \le k \\ 0 & n > k \end{cases}$$

Steady-state probabilities:

$$(\rho \neq 1) \quad p_0 = \frac{1 - \rho}{1 - \rho^{k+1}}, \quad p_n = \begin{cases} \rho^n p_0 & n \le k \\ 0 & n > k \end{cases}$$

$$(\rho = 1) \quad p_n = \frac{1}{k+1} \quad n = 0, 1, \dots, k$$

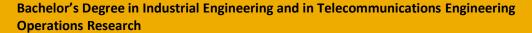
Customer <u>effective</u> entrance rate:

$$\lambda_{EF} = \lambda (1 - p_k)$$

Customer loss rate:

$$\lambda_{LOSS} = \lambda p_k$$

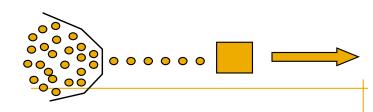
30



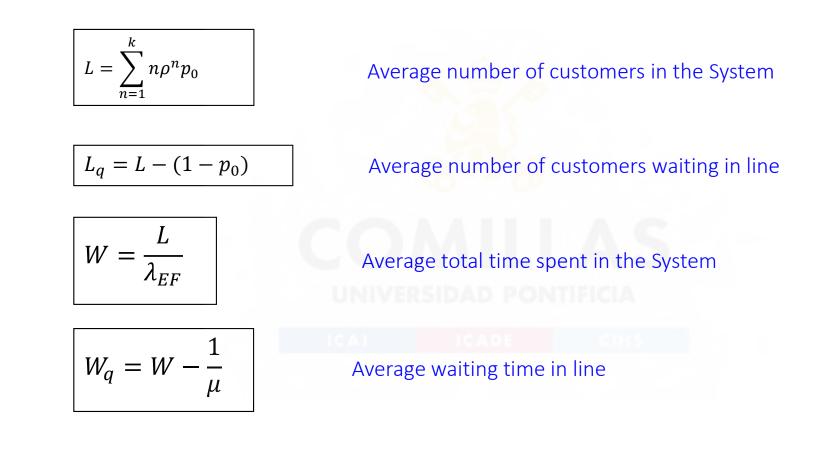
Queueing Theory



# Model M/M/1/k (Cont'd)



#### PERFORMANCE MEASURES





# Model M/G/1

Assumptions: Exponential interarrival time and General service time whose mean

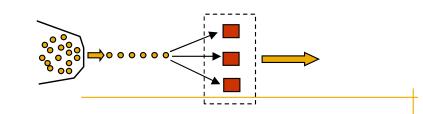
and variance are:

Pollaczek-Khintchine Formula:

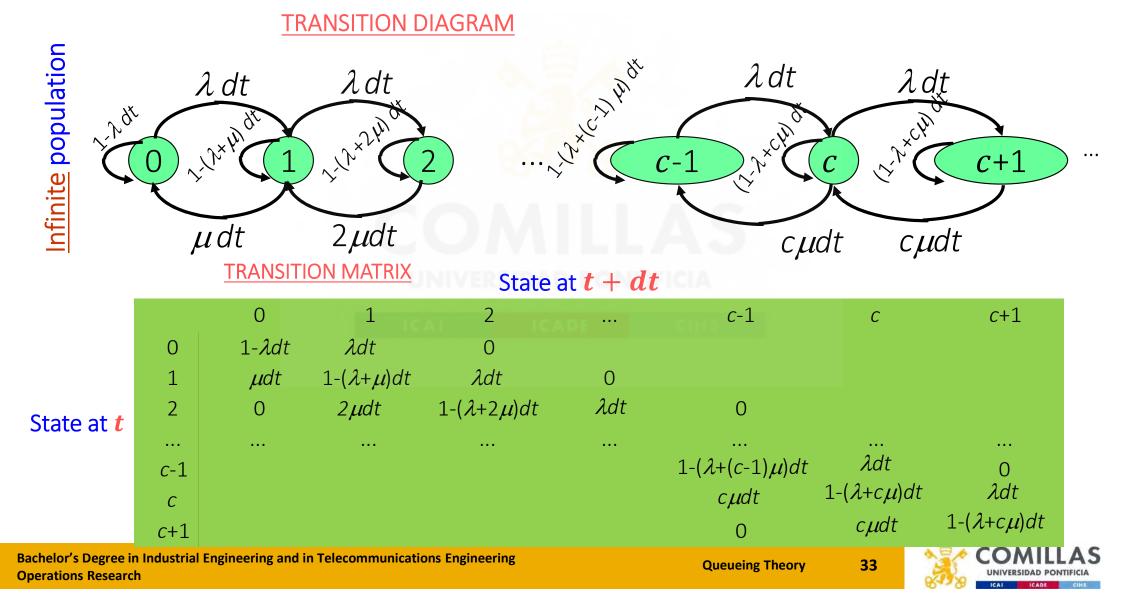
$$L = \rho + \frac{\rho^2 + \lambda^2 \sigma^2}{2(1-\rho)} \qquad \qquad \rho = \frac{\lambda}{\mu}$$



### Model M/M/c



 $\searrow \lambda$  arrival rate for <u>infinite</u> population and  $\mu$  service rate <u>per server</u> (*c* servers)



### Model M/M/c (Cont'd)

**Steady State** 

Steady-state Condition ( $\rho < 1$ )

$$\rho = \frac{\lambda}{c\mu}$$

Steady-state probabilities after setting all derivatives to zero:

$$p_0 = \frac{1}{\frac{(c\rho)^c}{c! (1-\rho)} + \sum_{n=0}^{c-1} \frac{(c\rho)^n}{n!}}$$

$$p_n = \begin{cases} \frac{1}{n!} \left(\frac{\lambda}{\mu}\right)^n p_0 = \frac{c\rho}{n} p_{n-1} & 1 \le n \le c \\ \frac{1}{c! c^{n-c}} \left(\frac{\lambda}{\mu}\right)^n p_0 = \rho p_{n-1} & n \ge c \end{cases}$$



#### Model M/M/c (Cont'd)

#### **PERFORMANCE MEASURES**

$$L = \sum_{n=0}^{\infty} np_n = \frac{(c\rho)^c \rho}{c! (1-\rho)^2} p_0 + c\rho$$

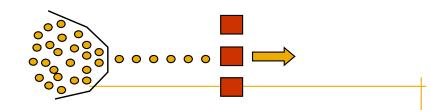
Average number of customers in the System

$$L_{q} = L - c\rho = \frac{(c\rho)^{c}\rho}{c! (1-\rho)^{2}} p_{0}$$

Average number of customers waiting in line







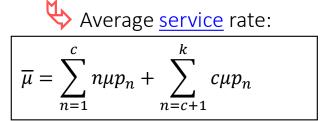
When System capacity is full, customers are lost

#### State dependent arrival and service rates:

$$\lambda_n = \begin{cases} \lambda & n < k \\ 0 & n \ge k \end{cases} \quad \mu_n = \begin{cases} n\mu & n < c \\ c\mu & n \ge c \end{cases} \qquad \boxed{\rho = \frac{\lambda}{c\mu}}$$

Steady-state probabilities:

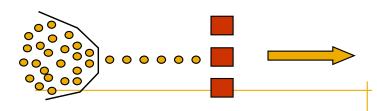
$$\lambda_{LOSS} = \lambda p_k$$





 $\lambda_{EF} = \lambda(1 - p_k)$ 



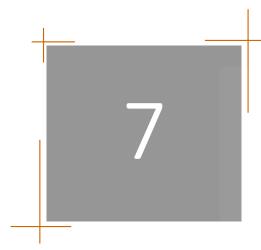


#### PERFORMANCE MEASURES

$$(\rho = 1) \quad L_q = \frac{(c\rho)^c (k-c)(k-c+1)}{2c!} p_0$$
Average number of customers waiting in line
$$(\rho \neq 1) \quad L_q = p_0 \frac{(c\rho)^c \rho}{c! (1-\rho)^2} [1-\rho^{k-c+1}-(k-c+1)(1-\rho)\rho^{k-c}]$$







- 1. What QT is for?
- 2. Elements of waiting lines
- 3. Poisson process
- 4. Birth-death process
- 5. Standard models
- 6. Infinite population
- 7. Finite population

Finite population



# Finite Population Models (Closed Systems)

Arrival rate changes based on the number of customers in the system

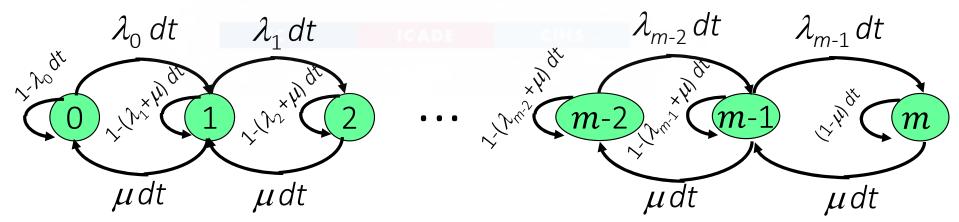
- $\checkmark$  Population size m
- $\checkmark$  Individual arrival rate  $\lambda$
- Service rate  $\mu$

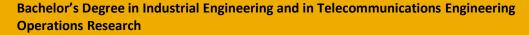
Arrival rate when n customers are in the system:

$$\lambda_n = (m-n)\lambda$$

39

#### TRANSITION DIAGRAM FOR A SINGLE SERVER:







# Model M/M/1 (Closed System)

#### Steady-State PERFORMANCE MEASURES

$$\begin{split} \hline p_0 &= \left(1 + \sum_{n=1}^m \frac{m! \rho^n}{(m-n)!}\right)^{-1} \qquad \boxed{\rho = \frac{\lambda}{\mu}} \qquad \text{Probability of not having customers in the system} \\ \hline p_n &= \frac{m!}{(m-n)!} \rho^n p_0 = (m-n+1)\rho p_{n-1} \quad 0 < n \le m \\ p_n &= 0 \qquad n > m \end{split} \qquad \text{Steady-state probabilities} \\ \hline L &= \sum_{n=1}^m n p_n = m - \frac{1-p_0}{\rho} \\ \hline L_q &= \sum_{n=2}^m (n-1)p_n = m - \frac{1+\rho}{\rho} (1-p_0) \qquad \qquad \boxed{\lambda_{\text{EF}} = (m-L)\lambda} \\ \hline W_q &= \frac{L_q}{(m-L)\lambda} = \frac{1}{\mu} \left[ \frac{m}{1-p_0} - \frac{1+\rho}{\rho} \right] \qquad \qquad \boxed{W = \frac{L}{\lambda_{EF}}} \end{split}$$

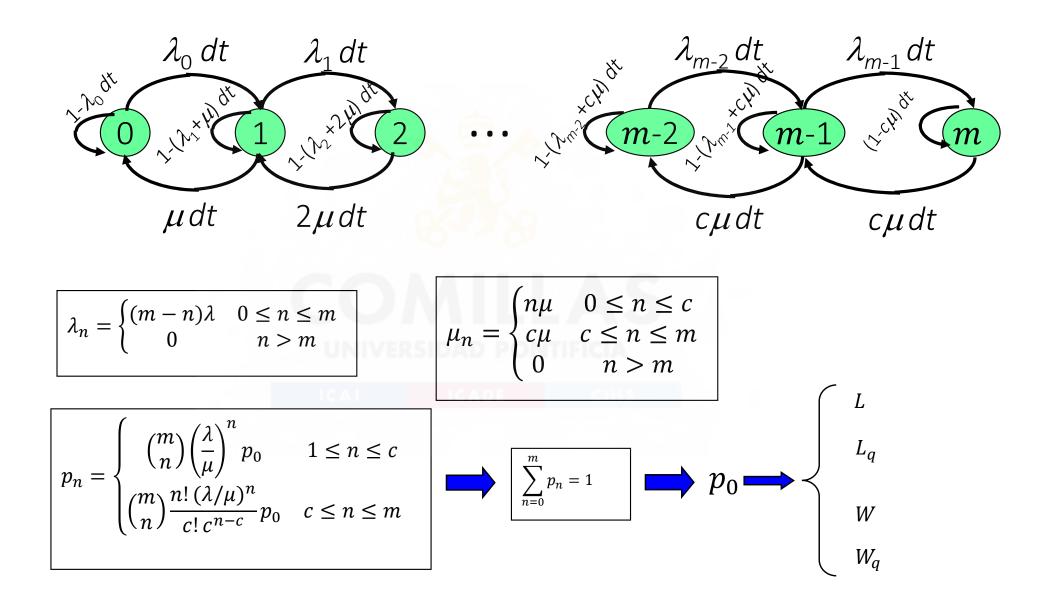
Bachelor's Degree in Industrial Engineering and in Telecommunications Engineering Operations Research

40



FINITE population

### Model M/M/c (Closed System)



FINITE population

