

Agenda

Introduction to Project Management

Definition
The coordination of numerous activities with the potential use of many organizations, both internal and external to the business in order to conduct a large scale project from beginning to end.
Characteristics of projects:
Unique, one-time operations
Involve large number of activities that must be coordinated
Long time-horizon
Goals of meeting completion deadlines and budgets
Examples of projects: SIDAD PONELECIA
Construction of a new plant
Research and Development of a new product
Relocation of a facility

COMILLAS UNIVERSIDAD PONTIFICIA UNIVERSIDAD PONTIFICIA DEPARTAMENTO DE ORGANIZACIÓN INDUSTRIAL

Techniques

CPM (Critica	I Path Method): to	examine projects fro	m the standpoint of costs
--------------	--------------------	----------------------	---------------------------

PERT (Program Evaluation and Review Technique): to examine projects from the standpoint of uncertainty

□ Both techniques have been combined over time

Both heavily rely on the use of networks to help plan and display the coordination of all the activities for a project

UNIVERSIDAD PONTIFICIA

ICAI ICAI

COMILLAS ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA UNIVERSIDAD PONTIFICA DEPARTAMENTO DE ORGANIZACIÓN INDUSTRIAL

CASE STUDY The Reliable Construction Co. Project

- □ The Reliable Construction Company has just made the winning bid of \$5.4 million to construct a new plant for a major manufacturer.
- □ The contract includes the following provisions:
 - □ A *penalty* of \$300,000 if Reliable has not completed construction within 47 weeks.
 - □ A *bonus* of \$150,000 if Reliable has completed the plant within 40 weeks.

Questions:

- 1. How can the project be displayed graphically to better visualize the activities?
- 2. What is the total time required to complete the project if no delays occur?
- 3. When do the individual activities need to start and finish?
- 4. What are the critical bottleneck activities?
- 5. For other activities, how much delay can be tolerated?
- 6. What is the probability the project can be completed in 47 weeks?
- 7. What is the least expensive way to complete the project within 40 weeks?
- 8. How should ongoing costs be monitored to try to keep the project within budget?

COMILLAS UNIVERSIDAD PONIFICIA DEPARTAMENTO DE ORGANIZACIÓN INDUSTRIAL

Activity	Activity Description	Immediate Predecessors	Estimated Duration (Weeks)
А	Excavate		2
В	Lay the foundation	А	4
С	Put up the rough wall	В	10
D	Put up the roof	С	6
Е	Install the exterior plumbing	С	4
F	Install the interior plumbing	Е	5
G	Put up the exterior siding	D	7
н	Do the exterior painting	E, G	9
Ι	Do the electrical work	С	7
J	Put up the wallboard	F, I	8
K	Install the flooring	J	4
L	Do the interior painting	J	5
М	Install the exterior fixtures	H	2
Ν	Install the interior fixtures	K, L	6

Activity List for Reliable Construction

COMILLAS UNIVERSIDAD PONTIFICIA LAN CARL CARL DEPARTAMENTO DE ORGANIZACIÓN INDUSTRIAL

Precession and Succession

□ Immediate Predecessors: Activities that must be completed by no later than the start time of the given activity **Immediate Successors:** Given the immediate predecessor of an activity, this becomes the immediate successor of each of these immediate predecessors. If an immediate successor has multiple immediate predecessors. Then all must be finished before an activity can begin. **TYPES OF LINKS:** B End - Start: Activity B can only start after activity A has finished R End-End: Activity B can only finish after Activity A has finished. Start-End: Activity B can only finish once Activity A has started. ✓ Start-Start: Activity B can only start after Activity A has started. COMILLAS ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA

DEPONTIFICIA DEPARTAMENTO DE ORGANIZACIÓN INDUSTRIAL

Project Networks

□ A network used to represent a project is called a **project network**.

□ A project network consists of several *nodes* connected by several *arcs*.

□ Two types of project networks:

Activity-on-arc (AOA): each activity is represented by an *arc*. A node is used to separate an activity from its predecessors. The sequencing of the arcs shows the precedence relationships.

Activity-on-node (AON): each activity is represented by a node. The arcs are used to show the precedence relationships.

Advantages of AON (we will use this one):

considerably easier to construct

easier to understand

□ easier to review when there are changes

COMILLAS ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA

D PONTIFICIA DEPARTAMENTO DE ORGANIZACIÓN INDUSTRIAL

Using a Network to visually display a project

COMILLAS UNVERSIDAD PONTIFICIA LAN TRAVE CONSTRUCTION DE ORGANIZACIÓN INDUSTRIAL

Using Microsoft Project

Creating a Gantt Chart:

	TAREA	C ² ∓ Proy RECURSO CREAR U	ecto1 - Project IN INFORME	Professional PROYECTO	VISTA.	HERRAMIENTAS FC	DE ESCALA DE DRMATO	TIEMPO							? — Iniciar sesió	6 6
igram Gantt Ver	na Pegar Portap	が 一部 - N K S 会 - apeles Fuente	A - 4	x 50x 75x 100x	Actualizative Respetar Desactive Programación	r según progra vínculos H	mación 👻	Programar manualment	Autoprogramar e Tareas	7 Inspeccionar Mover - 7 Modo -	Tarea	t Resumen Hito Entrega - Insertar	Información	Desplazar a tarea s Edic	nse 🥌 - Idion	
		30 dic 19 20 ene 20	10 feb '20	02 mar '20	23 mar '20	13 abr '20	04 may '20	25 may '2	0 15 jun '20	106 jul '20 127	jul '20	17 ago '20	07 sep '20	28 sep '20	19 oct '20	
	Comienzo			-		Agrega	r tareas co	n fechas	a la línea de t	tiempo		-			Fin	
	1/501					1.99-	1 1910 99 99								5/5	44
	Modo de -	Nombre de tarea	Duración 🚽	Comienzo +	Fin +	Predecesor	as - Nom	'19 13 e M X	ne '20 17 feb J V S	20 23 mar 20 D L M	27 abr '2 X J	0 01 jun '20 V S	06 Jul 20 D L M	10 ago '20 X J	14 sep 20 V 5 D	19 L
1	*	(A) Excavate	2 sem.	1/S01	5/\$02			1 mm								
2	*	(B) Foundation	4 sem.	1/503	5/\$06	1		T								
3	*	(C) Rough Wall	10 sem.	1/507	5/516	2			T							
4	*	(D) Roof	6 sem.	1/517	5/522	3										
5	*	(E) Exterior Plumbing	4 sem.	1/517	5/\$20	3						-				
6	*	(F) Interior Plumbing	5 sem.	1/521	5/\$25	5					ĩ					
7	*	(G) Exterior Siding	7 sem.	1/523	5/529	4						T				
8	*	(H) Interior Siding	9 sem.	1/\$30	5/\$38	5;7				CIAL			T			
9	*	(I) Electrical Work	7 sem.	1/517	5/523	3				T.						
10	*	(J) Wallboard	8 sem.	1/S26	5/\$33	6;9						T				
11	*	(K) Flooring	4 sem.	1/534	5/\$37	10								T		
	*	(L) Interior Painting	5 sem.	1/\$34	5/\$38	10								T		
12		I share a second second		1/020	5/5/0	0									1	
12	*	(M) Exterior Fixtures	2 sem.	1/333	5/ 540	0										

COMILLAS UNIVERSIDAD PONTIFICIA LAN CARL CHE DEPARTAMENTO DE ORGANIZACIÓN INDUSTRIAL

The Critical Path

A path through a network is one of the routes following the arrows (arcs) from the start node to the finish node.

□ The length of a path is the *sum* of the (estimated) *durations* of the activities on the path.

□ The (estimated) project duration equals the *length of the longest path* through the project network.

This longest path is called the critical path. (If more than one path tie for the longest, they all are critical paths.)

Path	Length (Weeks)
$Start {\rightarrow} A {\rightarrow} B {\rightarrow} C {\rightarrow} D {\rightarrow} G {\rightarrow} H {\rightarrow} M {\rightarrow} Finish$	2+4+10+6+7+9+2=40
Start $\rightarrow A \rightarrow B \rightarrow C \rightarrow E \rightarrow H \rightarrow M \rightarrow Finish$	2+4+10+4+9+2=31
Start $\rightarrow A \rightarrow B \rightarrow C \rightarrow E \rightarrow F \rightarrow J \rightarrow K \rightarrow N \rightarrow Finish$	2+4+10+4+5+8+4+6=43
$Start \rightarrow A \rightarrow B \rightarrow C \rightarrow E \rightarrow F \rightarrow J \rightarrow L \rightarrow N \rightarrow Finish$	2+4+10+4+5+8+5+6=44
$Start \rightarrow A \rightarrow B \rightarrow C \rightarrow I \rightarrow J \rightarrow K \rightarrow N \rightarrow Finish$	2+4+10+7+8+4+6=41
$Start \rightarrow A \rightarrow B \rightarrow C \rightarrow I \rightarrow J \rightarrow L \rightarrow N \rightarrow Finish$	2 + 4 + 10 + 7 + 8 + 5 + 6 = 42

The Paths for Reliable's Project Network

COMILLAS ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA

Method to find the Critical Path

Earliest Start and Earliest End Times (FORWARD):

- The starting and finishing times of each activity if no delays occur anywhere in the project are called the earliest start time and the earliest finish time.
 - **ES** = Earliest start time for an activity
 - **EF** = Earliest finish time for an activity

Earliest Start Time Rule:

ES = Largest EF of the immediate predecessors

EF = ES + Duration of Activity

Procedure for obtaining earliest times for all activities:

- 1. For each activity that starts the project (including the start node), set its ES = 0.
- 2. For each activity, whose ES has just been obtained, calculate EF = ES + duration.
- 3. For each new activity, whose immediate predecessors now have EF values, obtain its ES by applying the *earliest start time rule*. Apply step 2 to calculate EF.
- 4. Repeat step 3 until ES and EF have been obtained for *all* activities.

COMILLAS ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA

D PONTIFICIA ADE DEPARTAMENTO DE ORGANIZACIÓN INDUSTRIAL

ES and EF Values for Reliable Construction

Latest Start and Latest Finish Times (BACKWARD):

- The latest start time for an activity is the latest possible time that it can start without delaying the completion of the project (so the finish node still is reached at its earliest finish time). The latest finish time has the corresponding definition with respect to finishing the activity.
 - **LS** = Latest start time for an activity
 - **LF** = Latest finish time for an activity

Latest Finish Time Rule:

- LF = Smallest LS of the immediate successors
- LS = LF Duration of Activity

□ Procedure for obtaining latest times for all activities:

- 1. For each of the activities that together complete the project (including the finish node), set LF equal to EF of the finish node.
- 2. For each activity, whose LF value has just been obtained, calculate LS = LF duration.
- 3. For each new activity, whose immediate successors now have LS values, obtain its LF by applying the *latest finish time rule*. Apply step 2 to calculate its LS.
- 4. Repeat step 3 until LF and LS have been obtained for *all* activities.

COMILLAS ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA

UNIVERSIDAD PONTIFICIA ICAN CARAGE CHIST

LS and LF Values for Reliable Construction

UNIVERSIDAD PONTIFICIA LA TRADE CITA DEPARTAMENTO DE ORGANIZACIÓN INDUSTRIAL

The Complete Project Network

Time-Cost Trade-Offs

Question: If extra money is spent to expedite the project, what is the least expensive way of attempting to meet the target completion time (40 weeks)?

CPM Method of Time-Cost Trade-Offs:

- □ Crashing an activity refers to taking special costly measures to reduce the duration of an <u>activity below its normal value</u>. Special measures might include overtime, hiring additional temporary help, using special time-saving materials, obtaining special equipment, etc.
- □ Crashing the project refers to crashing several activities to reduce the duration of the project below its normal value.

ICAI ICADE CINS

COMILLAS ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA UNIVERSIDAD PONIFICIA DEPARTAMENTO DE ORGANIZACIÓN INDUSTRIAL

Time-Cost Graph for an Activity

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA

Time-Cost Trade-Off Data

			weeks)	C	ost	Maximum	Crash Cost
	Activity	Normal	Crash	Normal	Crash	in Time (weeks)	Saved
Activity A:	A	2	1	\$180,000	\$280,000		\$100,000
Normal Point:	В	4	2	320,000	420,000	2	50,000
 Time= 2 weeks 	C	10	7	620,000	860,000	3	80,000
• Cost=\$180,000	D	6	4	260,000	340,000	2	40,000
Crash Point:	E	4	3	410,000	570,000	1	160,000
• Time= 1 week	F	5	3	180,000	260,000	2	40,000
• Cost= \$280,000	G	7	4	900,000	1,020,000	3	40,000
Max Reduction in Time	Н	9	6	200,000	380,000	3	60,000
= 2-1 = 1 week	Ι	7	5	210,000	270,000	2	30,000
Crash Cost per week saved	J	8	6	430,000	490,000	2	30,000
= (280,000-180,000)/1	K	4	3	160,000	200,000	1	40,000
=\$100.000	L	5	3	250,000	350,000	2	50,000
,,	М	2	1	100,000	200,000	1	100,000
	N	6	3	330,000	510,000	3	60,000

COMILLAS UNIVERSIDAD PONTIFICIA UNIVERSIDAD PONTIFICIA DEPARTAMENTO DE ORGANIZACIÓN INDUSTRIAL

Marginal Cost Analysis

Goal: Find the least expensive way	-		Length of Path						
Step 1: Find the longest path ABCEFJLN	Activity to Crash	Crash Cost	ABCDGHM	ABCEHM	ABCEFJKN	ABCEFJLN	ABCIJKN	ABCIJLN	
Step 2: Find the Activity <u>in the</u>	~~~		40	31	43	(44)	41	42	
longest path which has the	J	\$30,000	40	31	42	43	40	41	
smallest Crash Cost Per Week	J	\$30,000	40	31	41	42	39	40	
(Last column in the previous	F	\$40,000	40	31	40	41	39	40	
table) J	F	\$40,000	40	31	39	40	39	40	
Step 3: Crash said Activity reducing its duration by 1 weekConclusion: Total Crashing Cost= sum of Crash Costs = \$140,000									
Step 4: Repeat the procedure	Shc	uld he do	it?						

COMILLAS UNIVERSIDAD PONTIFICIA UNIVERSIDAD PONTIFICIA DEPARTAMENTO DE ORGANIZACIÓN INDUSTRIAL

New Project Network after Crashing

Scheduling and Controlling Project Costs

Question: How should ongoing costs be monitored to try to keep the Project within Budget?

- □ PERT/Cost is a systematic procedure (normally computerized) to help the project manager plan, schedule, and control costs.
- Assumption: A common assumption when using PERT/Cost is that the costs of performing an activity are incurred at a constant rate throughout its duration.

COMILLAS ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA

NIVERSIDAD PONTIFICIA

	Activity	Estimated Duration (weeks)	Estimated Cost	Cost per Week of Its Duration
	A	2	\$180,000	\$90,000
	В	4	320,000	80,000
	С	10	620,000	62,000
Cost Per Week of	D	6	260,000	43,333
Duration	E	4	410,000	102,500
=	F	5	180,000	36,000
Estimatea Cost	G	7	900,000	128,571
Duration (weeks	5) H	9	200,000	22,222
	I	7	210,000	30,000
	UNIVJERSI		430,000	53,750
	K	4	160,000	40,000
	ICAL L	ICADE 5 C	250,000	50,000
	М	2	100,000	50,000
	Ν	6	330,000	55,000

Project Budget

COMILLAS UNIVERSIDAD PONTIFICIA EXAMPLE CONTINUES DEPARTAMENTO DE ORGANIZACIÓN INDUSTRIAL

Weekly Schedule of Expenses (Earliest Start Times)

PERT/Cost Spreadsheet

Н G В С D Е F J 3 Estimated 4 Estimated Cost Per Week Week Week Week Duration Start Week 5 Cost of Its Duration 2 3 4 Activity (weeks) Time 1 6 \$90,000 \$90,000 \$0 \$0 А 2 \$180.000 0 \$90,000 7 4 \$320,000 2 \$80,000 \$80,000 В \$80,000 **\$**Û \$0 8 С \$620,000 6 \$62,000 \$0 \$0 \$0 \$0 10 9 D 6 \$260,000 \$0 \$0 \$0 \$0 16 \$43,333 10 Е 4 \$102,500 \$0 \$0 \$0 \$0 \$410,000 16 11 F 5 20 \$0 \$0 \$0 \$0 \$180,000 \$36,000 12 G 7 22 \$0 \$0 \$900,000 \$128,571 \$0 \$0 13 Н 9 \$200,000 29 \$22,222 \$0 \$0 \$0 \$0 14 7 \$210,000 16 \$30,000 \$0 \$0 \$0 \$0 1 15 J 8 \$430,000 25 \$53,750 \$0 \$0 \$0 \$0 16 33 \$0 Κ 4 \$40,000 \$0 \$0 \$0 \$160,000 17 L 5 \$250,000 33 \$50,000 \$0 \$0 \$0 \$0 18 Μ 2 38 \$50,000 \$0 \$0 \$0 \$0 \$100,000 19 6 \$330,000 38 \$55,000 \$0 \$0 \$0 Ν \$0 20 21 Weekly Project Cost \$90,000 \$90,000 \$80,000 \$80,000 22 Cumulative Project Cost \$90,000 \$180,000 \$260,000 \$340,000

= IF(AND(G5>E6,G5<=E6+C6),F6,0)

COMILLAS ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA

IDAD PONTIFICIA TADE CIUS DEPARTAMENTO DE ORGANIZACIÓN INDUSTRIAL

	В	E	W	Х	Y	Z	AA	AB	AC	AD	AE
4		Start	Week								
5	Activity	Time	17	18	19	20	21	22	23	24	25
6	A	0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
7	В	2	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
8	С	6	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
9	D	16	\$43,333	\$43,333	\$43,333	\$43,333	\$43,333	\$43,333	\$0	\$0	\$0
10	E	16	\$102,500	\$102,500	\$102,500	\$102,500	\$0	\$0	\$0	\$0	\$0
11	F	20	\$0	\$0	\$0	\$0	\$36,000	\$36,000	\$36,000	\$36,000	\$36,000
12	G	22	\$0	\$0	\$0	\$0	\$0	\$0	\$128,571	\$128,571	\$128,571
13	н	29	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
14		16	\$30,000	\$30,000	\$30,000	\$30,000	\$30,000	\$30,000	\$30,000	\$0	\$0
15	J	25	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
16	K	33	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
17	L	33	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
18	M	38	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
19	N	38	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
20								_			
21			\$175,833	\$175,833	\$175,833	\$175,833	\$109,333	\$109,333	\$194,571	\$164,571	\$164,571
22			\$1,295,833	\$1,471,667	\$1,647,500	\$1,823,333	\$1,932,667	\$2,042,000	\$2,236,571	\$2,401,143	\$2,565,714

These tables show the amount of money Mr. Perty will need to cover each week's expenses as well as the total cumulative amount if we assume the **Project will stick to this Earliest Start Time schedule**.

COMILLAS UNIVERSIDAD PONTIFICIA UNIVERSIDAD PONTIFICIA DEPARTAMENTO DE ORGANIZACIÓN INDUSTRIAL

Weekly Schedule of Expenses (Latest Start Times)

PERT/Cost Spreadsheet

	В	С	D	F	F	G	Н	I 1	J
3		Estimated							
4		Duration	Estimated	Start	Cost Per Week	Week	Week	Week	Week
5	Activity	(weeks)	Cost	Time	of Its Duration	1	2	3	4
6	А	2	\$180,000	0	\$90,000	\$90,000	\$90,000	\$0	\$0
7	В	4	\$320,000	2	\$80,000	\$0	\$0	\$80,000	\$80,000
8	С	10	\$620,000	6	\$62,0 <mark>0</mark> 0	\$0	\$0	\$0	\$0
9	D	6	\$260,000	20	\$43,333	\$0	\$0	\$0	\$0
10	Е	4	\$410,000	16	\$102,500	\$0	\$0	\$0	\$0
11	F	5	\$180,000	20	\$36,000	\$0	\$0	\$0	\$0
12	G	7	\$900,000	26	\$128,571	\$0	\$0	\$0	\$0
13	Н	9	\$200,000	33	\$22,222	\$0	\$0	\$0	\$0
14	I	7	\$210,000	18	\$30,000	\$0	\$0	\$0	\$0
15	J	8	\$430,000	25	\$53,750	\$0	\$0	\$0	\$0
16	K	4	\$160,000	34	\$40,000	\$0	\$0	\$0	\$0
17	L	5	\$250,000	33	\$50,000	\$0	\$0	\$0	\$0
18	М	2	\$100,000	42	\$50,000	\$0	\$0	\$0	\$0
19	Ν	6	\$330,000	38	\$55,000	\$0	\$0	\$0	\$0
20									
21					Weekly Project Cost	\$90,000	\$90,000	\$80,000	\$80,000
22				Cu	nulative Project Cost	\$90,000	\$180,000	\$260,000	\$340,000

COMILLAS UNIVERSIDAD PONTIFICIA LAN CARL CHE DEPARTAMENTO DE ORGANIZACIÓN INDUSTRIAL

	В	Е	W	Х	Y	Z	AA	AB	AC	AD	AE
4	İ	Start	Week								
5	Activity	Time	17	18	19	20	21	22	23	24	25
6	А	0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
7	В	2	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
8	С	6	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
9	D	20	\$0	\$0	\$0	\$0	\$43,333	\$43,333	\$43,333	\$43,333	\$43,333
10	E	16	\$102,500	\$102,500	\$102,500	\$102,500	\$0	\$0	\$0	\$0	\$0
11	F	20	\$0	\$0	\$0	\$0	\$36,000	\$36,000	\$36,000	\$36,000	\$36,000
12	G	26	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
13	н	33	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
14		18	\$0	\$0	\$30,000	\$30,000	\$30,000	\$30,000	\$30,000	\$30,000	\$30,000
15	J	25	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
16	K	34	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
17	L	33	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
18	М	42	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
19	Ν	38	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
20											
21			\$102,500	\$102,500	\$132,500	\$132,500	\$109,333	\$109,333	\$109,333	\$109,333	\$109,333
22			\$1,222,500	\$1,325,000	\$1,457,500	\$1,590,000	\$1,699,333	\$1,808,667	\$1,918,000	\$2,027,333	\$2,136,667

These tables show the amount of money Mr. Perty will need to cover each week's expenses as well as the total cumulative amount if we assume the **Project will stick to this Latest Start Time schedule**.

COMILLAS UNIVERSIDAD PONTIFICIA UNIVERSIDAD PONTIFICIA DEPARTAMENTO DE ORGANIZACIÓN INDUSTRIAL

Cumulative Project Costs

PERT/Cost Report after Week 22

We must constantly update our cost reports.

Activity	Budgeted Cost	Perc <mark>ent</mark> Completed	Value Completed	Actual Cost to Date	Cost Overrun to Date
А	\$180,000	100%	<mark>\$180,000</mark>	\$200,000	\$20,000
В	320,000	100	320,000	330,000	10,000
С	620,000	100	620,000	600,000	-20,000
D	260,000	75	195,000	200,000	5,000
Е	410,000	100	410,000	400,000	-10,000
F	180,000	25	45,000	60,000	15,000
Ι	210,000	50	105,000	130,000	25,000
Total	\$2,180,000		\$1,875,000	\$1,920,000	\$45,000

Value Completed = Budgeted Cost x Percent Completed Cost Overrun to Date = Actual Cost to Date – Value Completed

COMILLAS ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA

