EsCuela Técnica Superior de Ingeniería Departamento de Organización Industrial

Project Management

Universidad Pontificia Comillas

Agenda

- Introduction to Project Management
- Tools for Project Management
\checkmark CPM
\checkmark PERT
- Case Study: CPM
\checkmark Context
\checkmark Project Network
\checkmark Microsoft Project
\checkmark Finding the Critical Path
. Management of randomness in duration: PERT
\checkmark Risk and Uncertainty
- Cost Management
\checkmark Application of Linear Programming
COMILLAS Escuela Técnica Superior de ingeniería

Introduction to Project Management

- Definition
\square The coordination of numerous activities with the potential use of many organizations, both internal and external to the business in order to conduct a largescale project from beginning to end.
- Characteristics of projects:
\square Unique, one-time operations
\square Involve large number of activities that must be coordinated
\square Long time-horizon
\square Goals of meeting completion deadlines and budgets
\square Examples of projects:
\square Construction of a new plant
\square Research and Development of a new product
\square Relocation of a facility
COMILLAS Escuela Técnica Superior de ingeniería

Techniques

\square CPM (Critical Path Method): to examine projects from the standpoint of costs
\square PERT (Program Evaluation and Review Technique): to examine projects from the standpoint of uncertainty
\square Both techniques have been combined over time
\square Both heavily rely on the use of networks to help plan and display the coordination of all the activities for a project

CASE STUDY The Reliable Construction Co. Project

- The Reliable Construction Company has just made the winning bid of $\$ 5.4$ million to construct a new plant for a major manufacturer.
- The contract includes the following provisions:
- A penalty of $\$ 300,000$ if Reliable has not completed construction within 47 weeks.
- A bonus of $\$ 150,000$ if Reliable has completed the plant within 40 weeks.

Questions:

1. How can the project be displayed graphically to better visualize the activities?
2. What is the total time required to complete the project if no delays occur?
3. When do the individual activities need to start and finish?
4. What are the critical bottleneck activities?
5. For other activities, how much delay can be tolerated?
6. What is the probability the project can be completed in 47 weeks?
7. What is the least expensive way to complete the project within 40 weeks?
8. How should ongoing costs be monitored to try to keep the project within budget?

Activity List for Reliable Construction

Activity	Activity Description	Immediate Predecessors	Estimated Duration (Weeks)
A	Excavate	-	2
B	Lay the foundation	A	4
C	Put up the rough wall	B	10
D	Put up the roof	C	6
E	Install the exterior plumbing	C	4
F	Install the interior plumbing	E	5
G	Put up the exterior siding	D	7
H	Do the exterior painting	E, G	9
I	Do the electrical work	C	7
J	Put up the wallboard	F, I	8
K	Install the flooring	J	4
L	Do the interior painting	J	5
M	Install the exterior fixtures	H	2
N	Install the interior fixtures	K, L	6

COMILLAS Escuela Técnica Superior de Ingeniería

Precession and Succession

\square Immediate Predecessors:
\square Activities that must be completed by no later than the start time of the given activity
\square Immediate Successors:
\square Given the immediate predecessor of an activity, this becomes the immediate successor of each of these immediate predecessors.
\square If an immediate successor has multiple immediate predecessors. Then all must be finished before an activity can begin.
\square TYPES OF LINKS:
\checkmark End - Start: Activity B can only start after activity A has finished
\checkmark End-End: Activity B can only finish after Activity A has finished.
\checkmark Start-End: Activity B can only finish once Activity A has started.
\checkmark Start-Start: Activity B can only start after Activity A has started.

Project Management 7

Project Networks

- A network used to represent a project is called a project network.
- A project network consists of several nodes connected by several arcs.
- Two types of project networks:
- Activity-on-arc (AOA): each activity is represented by an arc. A node is used to separate an activity from its predecessors. The sequencing of the arcs shows the precedence relationships.
- Activity-on-node (AON): each activity is represented by a node. The arcs are used to show the precedence relationships.
- Advantages of AON (we will use this one):
a considerably easier to construct
- easier to understand
a easier to review when there are changes
COMILLAS Escuela Técnica Superior de Ingeniería

Using a Network to visually display a project

COMILLAS Escuela Técnica Superior de Ingeniería

Using Microsoft Project

Creating a Gantt Chart:

The Critical Path

- A path through a network is one of the routes following the arrows (arcs) from the start node to the finish node.

The length of a path is the sum of the (estimated) durations of the activities on the path.

The (estimated) project duration equals the length of the longest path through the project network.

This longest path is called the critical path. (If more than one path tie for the longest, they all are critical paths.)

The Paths for Reliable's Project Network

Path	Length (Weeks)
Start $\rightarrow \mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{D} \rightarrow \mathrm{G} \rightarrow \mathrm{H} \rightarrow \mathrm{M} \rightarrow$ Finish	$2+4+10+6+7+9+2=40$
Start $\rightarrow \mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{E} \rightarrow \mathrm{H} \rightarrow \mathrm{M} \rightarrow$ Finish	$2+4+10+4+9+2=31$
Start $\rightarrow \mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{E} \rightarrow \mathrm{F} \rightarrow \mathrm{J} \rightarrow \mathrm{K} \rightarrow \mathrm{N} \rightarrow$ Finish	$2+4+10+4+5+8+4+6=43$
Start $\rightarrow \mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{E} \rightarrow \mathrm{F} \rightarrow \mathrm{J} \rightarrow \mathrm{L} \rightarrow \mathrm{N} \rightarrow$ Finish	$2+4+10+4+5+8+5+6=44$
Start $\rightarrow \mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{I} \rightarrow \mathrm{J} \rightarrow \mathrm{K} \rightarrow \mathrm{N} \rightarrow$ Finish	$2+4+10+7+8+4+6=41$
Start $\rightarrow \mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{I} \rightarrow \mathrm{J} \rightarrow \mathrm{L} \rightarrow \mathrm{N} \rightarrow$ Finish	$2+4+10+7+8+5+6=42$

Method to find the Critical Path

Earliest Start and Earliest End Times (FORWARD):

- The starting and finishing times of each activity if no delays occur anywhere in the project are called the earliest start time and the earliest finish time.
- ES = Earliest start time for an activity
- $E F=$ Earliest finish time for an activity

Earliest Start Time Rule:

$E S=$ Largest $E F$ of the immediate predecessors
$E F=E S+$ Duration of Activity
Procedure for obtaining earliest times for all activities:

1. For each activity that starts the project (including the start node), set its ES $=0$.
2. For each activity, whose ES has just been obtained, calculate $E F=E S+$ duration.
3. For each new activity, whose immediate predecessors now have EF values, obtain its ES by applying the earliest start time rule. Apply step 2 to calculate EF.
4. Repeat step 3 until ES and EF have been obtained for all activities.

COMILLAS Escuela Técnica Superior de ingenieria

ES and EF Values for Reliable Construction

Latest Start and Latest Finish Times (BACKWARD):

- The latest start time for an activity is the latest possible time that it can start without delaying the completion of the project (so the finish node still is reached at its earliest finish time). The latest finish time has the corresponding definition with respect to finishing the activity..
- $L S=$ Latest start time for an activity
- $L F=$ Latest finish time for an activity

Latest Finish Time Rule:

$L F=$ Smallest LS of the immediate successors
$L S=L F-$ Duration of Activity
\square Procedure for obtaining latest times for all activities:

1. For each of the activities that together complete the project (including the finish node), set LF equal to EF of the finish node.
2. For each activity, whose LF value has just been obtained, calculate LS = LF - duration.
3. For each new activity, whose immediate successors now have LS values, obtain its LF by applying the latest finish time rule. Apply step 2 to calculate its LS.
4. Repeat step 3 until LF and LS have been obtained for all activities.

COMILLAS Escuela TÉcnica Superior de ingeniería

LS and LF Values for Reliable Construction

The Complete Project Network

Slack (How much an activity can be delayed without affecting finish time)

COMILLAS Escuela Técnica Superior de ingeniería

Time-Cost Trade-Offs

Question: If extra money is spent to expedite the project, what is the least expensive way of attempting to meet the target completion time (40 weeks)?

CPM Method of Time-Cost Trade-Offs:
\square Crashing an activity refers to taking special costly measures to reduce the duration of an activity below its normal value. Special measures might include overtime, hiring additional temporary help, using special time-saving materials, obtaining special equipment, etc.
\square Crashing the project refers to crashing several activities to reduce the duration of the project below its normal value.

Time-Cost Graph for an Activity

Assumption: Partially Crashed Activities will lie on the line segment between the Crash and Normal points.

Time-Cost Trade-Off Data

Activity A:

- Normal Point:
- Time= 2 weeks
- Cost=\$180,000
- Crash Point:
- Time= 1 week
- Cost= \$280,000
- Max Reduction in Time

$$
\text { = 2-1= } 1 \text { week }
$$

- Crash Cost per week saved $=(280,000-180,000) / 1$ =\$100,000

	Time (weeks)			Cost	
Activity	Normal	Crash		Normal	Crash
A	2	$\frac{1}{2}$		$\$ 180,000$	$\$ 280,000$
B	4	2		320,000	$\frac{420,000}{}$
C	10	7		620,000	860,000
D	6	4		260,000	340,000
E	4	3		410,000	570,000
F	5	3		180,000	260,000
G	7	4		900,000	$1,020,000$
H	9	6		200,000	380,000
I	7	5		210,000	270,000
J	8	6		430,000	490,000
K	4	3		160,000	200,000
L	5	3	250,000	350,000	
M	2	1		100,000	200,000
N	6	3		330,000	510,000

Maximum Reduction in Time (weeks)	Crash Cost per Week Saved
1	$\$ 100,000$
3	50,000
2	80,000
1	40,000
2	160,000
3	40,000
3	40,000
2	60,000
2	30,000
1	30,000
2	40,000
1	50,000
3	100,000
	60,000

COMILLAS EsCueLA TÉCNICA SUPERIOR DE INGENIERÍA

Marginal Cost Analysis

Goal: Find the least expensive way of reaching 40 weeks of Project duration		$\begin{gathered} \text { Crash } \\ \text { Cost } \\ \hline \end{gathered}$	Length of Path					
				$\begin{aligned} & \overrightarrow{0} \\ & \text { :्x̃ } \\ & \text { 食 } \end{aligned}$			$\stackrel{e}{3}$	
Step 1: Find the longest path ABCEFJLN	$\begin{gathered} \text { Activity } \\ \text { to } \\ \text { Crash } \end{gathered}$							
Step 2: Find the Activity in the longest path which has the smallest Crash Cost Per Week (Last column in the previous table)			40	31	43	(44)	41	42
	J	\$30,000	40	31	42	(43)	40	41
	J	\$30,000	40	31	41	(42)	39	40
	F	\$40,000	40	31	40	(41)	39	40
	F	\$40,000	40	31	39	40	39	40
J								
Step 3: Crash said Activity reducing its duration by 1 week	Conclusion:		Cost	of	Co	\$140		
Step 4: Repeat the procedure		uld he d	?					

New Project Network after Crashing

Scheduling and Controlling Project Costs

Question: How should ongoing costs be monitored to try to keep the Project within Budget?
\square PERT/Cost is a systematic procedure (normally computerized) to help the project manager plan, schedule, and control costs.

- Assumption: A common assumption when using PERT/Cost is that the costs of performing an activity are incurred at a constant rate throughout its duration.

Project Budget				
	Activity	Estimated Duration (weeks)	Estimated Cost	Cost per Week of Its Duration
	A	2	\$180,000	\$90,000
	B	4	320,000	80,000
	C	10	620,000	62,000
Cost Per Week of	D	6	260,000	43,333
Duration	E	4	410,000	102,500
$=$	F	5	180,000	36,000
Estimated Cost	G	7	900,000	128,571
Duration (weeks)	H	9	200,000	22,222
	I	7	210,000	30,000
	J	8	430,000	53,750
	K	4	160,000	40,000
	L	- 5	250,000	50,000
	M	2	100,000	50,000
	N	6	330,000	55,000
COMILLAS Escuela Técnica Superior de in unvuestana poontrica DEPARTAMENTO DE ORGANIZACIÓN	$\frac{\text { IIERÍA }}{\text { USTRIAL }}$			Project Management 2

Weekly Schedule of Expenses (Earliest Start Times)

PERT/Cost Spreadsheet

$$
=\operatorname{IF}(\mathrm{AND}(\mathrm{G} 5>E 6, \mathrm{G} 5<=\mathrm{E} 6+\mathrm{C} 6), \mathrm{F} 6,0)
$$

	B	C	D	E	F	G	H	I	J
3		Estimated							
4		Duration	Estimated	Start	Cost Per Week	Week	Week	Week	Week
5	Activity	(weeks)	Cost	Time	of Its Duration		2	3	4
6	A	2	\$180,000	0	\$90,000	\$90,000	\$90,000	\$0	\$0
7	B	4	\$320,000	2	\$80,000	\$u	\$0	\$80,000	\$80,000
8	C	10	\$620,000	6	\$62,000	\$0	\$0	\$0	\$0
9	D	6	\$260,000	16	\$43,333	\$0	\$0	\$0	\$0
10	E	4	\$410,000	16	\$102,500	\$0	\$0	\$0	\$0
11	F	5	\$180,000	20	\$36,000	\$0	\$0	\$0	\$0
12	G	7	\$900,000	22	\$128,571	\$0	\$0	\$0	\$0
13	H	9	\$200,000	29	\$22,222	\$0	\$0	\$0	\$0
14	I	7	\$210,000	16	\$30,000	\$0	\$0	\$0	\$0
15	J	8	\$430,000	25	\$53,750	\$0	\$0	\$0	\$0
16	K	4	\$160,000	33	\$40,000	\$0	\$0	\$0	\$0
17	L	5	\$250,000	33	\$50,000	\$0	\$0	\$0	\$0
18	M	2	\$100,000	38	\$50,000	\$0	\$0	\$0	\$0
19	N	6	\$330,000	38	\$55,000	\$0	\$0	\$0	\$0
20					-				
21					eekly Project Cost	\$90,000	\$90,000	\$80,000	\$80,000
22					lative Project Cost	\$90,000	\$180,000	\$260,000	\$340,000

COMILLAS
Escuela Técnica Superior de ingeniería

	B	E	W	X	Y	Z	AA	AB	AC	AD	AE
4		Start	Week								
5	Activity	Time	17	18	19	20	21	22	23	24	25
6	A	0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
7	B	2	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
8	C	6	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
9	D	16	\$43,333	\$43,333	\$43,333	\$43,333	\$43,333	\$43,333	\$0	\$0	\$0
10	E	16	\$102,500	\$102,500	\$102,500	\$102,500	\$0	\$0	\$0	\$0	\$0
11	F	20	\$0	\$0	\$0	\$0	\$36,000	\$36,000	\$36,000	\$36,000	\$36,000
12	G	22	\$0	\$0	\$0	\$0	\$0	\$0	\$128,571	\$128,571	\$128,571
13	H	29	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
14	I	16	\$30,000	\$30,000	\$30,000	\$30,000	\$30,000	\$30,000	\$30,000	\$0	\$0
15	J	25	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
16	K	33	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
17	L	33	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
18	M	38	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
19	N	38	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
20											
21			\$175,833	\$175,833	\$175,833	\$175,833	\$109,333	\$109,333	\$194,571	\$164,571	\$164,571
22			\$1,295,833	\$1,471,667	\$1,647,500	\$1,823,333	\$1,932,667	\$2,042,000	\$2,236,571	\$2,401,143	\$2,565,714

These tables show the amount of money Mr. Perty will need to cover each week's expenses as well as the total cumulative amount if we assume the Project will stick to this Earliest Start Time schedule.

Weekly Schedule of Expenses (Latest Start Times)

PERT/Cost Spreadsheet

	B	C	D	E	F	G	H	I	J
3		Estimated							
4		Duration	Estimated	Start	Cost Per Week	Week	Week	Week	Week
5	Activity	(weeks)	Cost	Time	of Its Duration	1	2	3	4
6	A	2	\$180,000	0	\$90,000	\$90,000	\$90,000	\$0	\$0
7	B	4	\$320,000	2	\$80,000	\$0	\$0	\$80,000	\$80,000
8	C	10	\$620,000	6	\$62,000	\$0	\$0	\$0	\$0
9	D	6	\$260,000	20	\$43,333	\$0	\$0	\$0	\$0
10	E	4	\$410,000	16	\$102,500	\$0	\$0	\$0	\$0
11	F	5	\$180,000	20	\$36,000	\$0	\$0	\$0	\$0
12	G	7	\$900,000	26	\$128,571	\$0	\$0	\$0	\$0
13	H	9	\$200,000	33	\$22,222	\$0	\$0	\$0	\$0
14	I	7	\$210,000	18	\$30,000	\$0	\$0	\$0	\$0
15	J	8	\$430,000	25	\$53,750	\$0	\$0	\$0	\$0
16	K	4	\$160,000	34	\$40,000	\$0	\$0	\$0	\$0
17	L	5	\$250,000	33	\$50,000	\$0	\$0	\$0	\$0
18	M	2	\$100,000	42	\$50,000	\$0	\$0	\$0	\$0
19	N	6	\$330,000	38	\$55,000	\$0	\$0	\$0	\$0
20									
21					eekly Project Cost	\$90,000	\$90,000	\$80,000	\$80,000
22					lative Project Cost	\$90,000	\$180,000	\$260,000	\$340,000

COMILLAS
Escuela Técnica Superior de Ingeniería

UNIVERSIDAD PONTIFICIA
ICAI
Cenot
cilis

DEPARTAMENTO DE ORGANIZACIÓN INDUSTRIAL

	B	E	W	X	Y	Z	AA	AB	AC	AD	AE
4		Start	Week								
5	Activity	Time	17	18	19	20	21	22	23	24	25
6	A	0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
7	B	2	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
8	C	6	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
9	D	20	\$0	\$0	\$0	\$0	\$43,333	\$43,333	\$43,333	\$43,333	\$43,333
10	E	16	\$102,500	\$102,500	\$102,500	\$102,500	\$0	\$0	\$0	\$0	\$0
11	F	20	\$0	\$0	\$0	\$0	\$36,000	\$36,000	\$36,000	\$36,000	\$36,000
12	G	26	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
13	H	33	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
14	।	18	\$0	\$0	\$30,000	\$30,000	\$30,000	\$30,000	\$30,000	\$30,000	\$30,000
15	J	25	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
16	K	34	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
17	L	33	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
18	M	42	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
19	N	38	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
20											
21			\$102,500	\$102,500	\$132,500	\$132,500	\$109,333	\$109,333	\$109,333	\$109,333	\$109,333
22			\$1,222,500	\$1,325,000	\$1,457,500	\$1,590,000	\$1,699,333	\$1,808,667	\$1,918,000	\$2,027,333	\$2,136,667

These tables show the amount of money Mr. Perty will need to cover each week's expenses as well as the total cumulative amount if we assume the Project will stick to this Latest Start Time schedule.

Cumulative Project Costs

COMILLAS Escuela Técnica Superior de Ingeniería

PERT/Cost Report after Week 22

We must constantly update our cost reports.

Activity	Budgeted Cost	Percent Completed A	Value Completed	Actual Cost to Date	Cost Overrun to Date
B	320,000	100%	$\$ 180,000$	$\$ 200,000$	$\$ 20,000$
C	620,000	100	320,000	330,000	10,000
D	260,000	75	620,000	600,000	$-20,000$
E	410,000	100	410,000	400,000	$-10,000$
F	180,000	25	45,000	60,000	15,000
I	210,000	50	105,000	130,000	25,000
Total	$\$ 2,180,000$		$\$ 1,875,000$	$\$ 1,920,000$	$\$ 45,000$

Value Completed $=$ Budgeted Cost \times Percent Completed
Cost Overrun to Date $=$ Actual Cost to Date - Value Completed

