COMILLAS
UNIVERSIDAD PONTIFICIA
ICAI
ICADE
cIHS

Good Optimization Modeling Practices with GAMS

All You Wanted to Know About Practical Optimization but Were Afraid to Ask

Andrés Ramos
https://www.iit.comillas.edu/aramos/
Andres.Ramos@comillas.edu

Pedro de Otaola
Pedro.Otaola@comillas.edu
"The disciples who received my instructions, and could themselves comprehend them, were seventy-seven individuals. They were all scholars of extraordinary ability." Confucius

Do not confuse the ingredients of the recipe

- Mathematical formulation
- LP, MIP, NLP, QCP, MCP
- Algebraic modeling language
- GAMS, Pyomo
- Solver
- CPLEX, Gurobi, PATH
- Optimization algorithm
- Primal simplex, dual simplex, interior point
- Input/output interfaces
- Text file, CSV, Microsoft Excel, Matlab, Microsoft Access
- Operating system
- Windows, Linux, macOS
- Advanced algorithms
- Benders decomposition, Lagrangian relaxation, genetic algorithms

- Stochastic extensions
- EMP

Few and practical tips \& tricks

- It's not a systematic approach to teach introductory/advanced GAMS features, just selected features I have used in several models

I have gambas I have chopitos I have croquetas I have jamón I have morcillas I have ensalá I have una hueva mu bien aliña.

- It is optimization for shepherds (i.e., practitioners)

Questions to deal with

-What don't you know how to do in GAMS?

- What are the most advanced features you know in GAMS?
- What is the most crucial advantage/disadvantage of GAMS for you?
- What would you like and have not been able to do?

1. Programming Style
2. GAMS Code
3. Embedded Python
4. Connect
5. Performance Issues
6. Advanced Algorithms

Programming Style

Computer programming

- Discipline whose control is essential in many engineering projec
- Science: thinking, discipline, rigorousness, and experimentation
- Art: beauty and elegance
- A good design is fundamental

- Before writing any code, the optimization problem must be written algebraically
- Learning by reading
- Coding by gradual refinement, incremental implementation
- Use a mockup for the development and verification of the model
- Be careful with the details ("God is in the detail")

Write the equations before trying to code them!!

Digital formats are useful for storing the documentation with the code

- Word: easy for beginners
- Markdown (or LaTeX):
- Faster to write once you learn
- Easy to keep track of changes using a repository
- "Reusable" to produce code

Clarity
Modularity
Completeness
Interoperability Maintainability Standardization

General recommendations

- Act according to the Pareto principle
- It takes 20% to create the prototype
- 80% of code development is devoted to
 maintenance and refinement
 not by machines. Write code to understand the model, not to obscure it.
- Say what you mean and directly.
- Don't stop with your first draft. Refine it.

Code style

- Any project manager ought to define the style before starting up a multiple-participant project (or maybe just for their help)
- Systematic and consistent use of uppercase and lowercase letters
- Use lowercase letters instead of uppercase. We are more used to reading lowercase letters.
- GAMS doesn't distinguish them; you are responsible for always using the same.
- Clean code and take care of the aesthetics when coding
- Aesthetics is as important as the content. The code must be read immediately.
- Format the code to help the reader understand it.
- Indent to show the logical structure of a program.
- Keep coherence in the coding rules (indent in repetitive sentences)
- Align code to show patterns.
- Make reading easier (parallelism among consecutive similar sentences, indent)
- Use meaningful and long names for identifiers. The consistent use of identifiers in different parts of the code.

Efficiency vs. Clarity

- Make it clear and right before you make it faster
- Keep it simple to make it faster
- Don't sacrifice clarity for small gains in efficiency

Documentation. Comments

- It is a crucial task in code development
- GAMS was born to include documentation in the code explicitly.
- Code must be self-documented
- Illustrative comments and well-localized
- Make sure comments and code agree
- Don't just echo the code with comments - make every comment count
- Don't comment on lousy code or tricks - rewrit,
- Don't patch the wrong code - rewrite it
- Don't over-comment

The Zen of Python (https://www.python.org/dev/peps/pep-0020/)

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

Procrastination

- Don't procrastinate when coding

NEVER LEAVE THAT TILL TOMORROW WHICH YOU CAN DO TODAY.

BENJAMIN FRANKLIN

1. Programming Style
2. GAMS Code
3. Embedded Python
4. Connect
5. Performance Issues
6. Advanced Algorithms

GAMS Code

Interfaces, Languages, Solvers

Interface (graphical)
Microsoft Excel
Microsoft Access
SQL
Matlab

Solver
IBM CPLEX
Gurobi
FICO-XPRESS
GLPK
CBC
PATH

- Decision Support Models in the Electric Power Industry (https://pascua.iit.comillas.edu/aramos/openmodels.htm)

Primer on optimization

- Optimization techniques
- https://pascua.iit.comillas.edu/aramos/OT.htm
- Deterministic optimization cases
- https://pascua.iit.comillas.edu/aramos/simio/transpa/s OptimizationCas es.pdf
- Stochastic optimization cases
- https://pascua.iit.comillas.edu/aramos/simio/transpa/s StochasticOptim izationCases.pdf
- A GAMS Tutorial by Richard E. Rosenthal
- https://www.GAMS.com/latest/docs/UG Tutorial.html

Developing in GAMS

- Development environment GAMS Studio
- Documentation
- GAMS Documentation Center https://www.GAMS.com/latest/docs/UG MAIN.html
- GAMS World Forum https://forum.GAMSworld.org/
- Bruce McCarl's GAMS Newsletter https://www.GAMs.com/newsletter/signup/
- Solver manuals https://www.GAMS.com/latest/docs/S MAIN.html
- Model: FileName.gms
- Results: FileName.Ist
- Process log: FileName.log

My first minimalist optimization model

Blocks in a GAMS model

- Mandatory
variables
equations
model
solve
- Optional
sets: (alias)
- alias (i, j) i and j can be used indistinctly
- Checking of domain indexes
data: scalars, parameters, table

Transportation model

There are i can factories and j consumption markets. Each factory has a maximum capacity of a_{i} cases, and each market demands a quantity of b_{j} cases (it is assumed that the total production capacity is greater than the total market demand for the problem to be feasible). The transportation cost between each factory i and each market j for each case is $c_{i j}$. The demand must be satisfied at a minimum cost.
The decision variables of the problem will be cases transported between each factory i and each market $j, x_{i j}$.

My first transportation model (classical organization)

$$
\begin{gathered}
\min _{x_{i j}} \sum_{i j} c_{i j} x_{i j} \\
\sum_{j} x_{i j} \leq a_{i} \quad \forall i \\
\sum_{i} x_{i j} \geq b_{j} \quad \forall j \\
x_{i j} \geq 0
\end{gathered}
$$

A. Mizielinska y D. Mizielinski Atlas del mundo: Un insólito viaje por las mil curiosidades y maravillas del mundo Ed. Maeva 2015

General structure of GAMS sentences

- Commenting
- Lines with * in the first column
- \$OnText \$OffText to comment on many lines
- No distinction between uppercase and lowercase letters
- Parentheses (), square brackets [], or braces \{\} can be used indistinctly to distinguish levels.
- Language-reserved words appear in bold
- Sentences end with a ";"
- Can be suppressed when the following word is a reserved one (in blue (light theme) or orange (dark theme))

Parentheses (), square brackets [] or braces \{\}

- Markdown/LaTeX/Pyomo do differentiate; keep in mind that you may want to reuse the code when choosing your style!
- Establish a style and be consistent
- Take advantage of the available option to differentiate operations and make the code easier to follow
- Suggestion:
- Mathematical expressions: ($\mathrm{A}+\mathrm{B}$)
- Sets: A\{s\}
- Functions and conditions: sum[..], smax[..], \$[..]
- Example:
- Just parentheses: $A=\operatorname{sum}(s, B(s) *(C(s)+D(s) \$($ condition $(s))))$;
- Suggested option: $A=\operatorname{sum}[s, B\{s\} *(C\{s\}+D\{s\} \$[$ condition\{s\}])];

Basic input/output in text format

- Data input from a text file
\$include FileName.txt
display IdentifierName (shows its content or value)
- Data output to a text file
file InternalName / ExternalName.txt /
put InternalName put IdentifierName
putclose InternalName

ExternalName.txt is updated each time the instruction putclose is executed.

- Specific options to control the output format
- Put Writing Facility

Reporting of complex processes

- For long processes with multiple optimizations, it's useful to print intermediate data to a file to keep track of them.
- Text is written to the file each time the command putclose is used
- Use Infoexecution.ap=1 to keep writing in the same file; otherwise, the file will be overwritten each time

```
scalar
set
set week/wi
variables v_fob;
equations eq1;
eq1.. v_fob =G= 0;
model mod
/all/
file InfoExecution / 'InfoExecution.out' /;
InfoExecution.1w=4;
InfoExecution.nd=2;
InfoExecution.nw=10;
put InfoExecution;
put "Execution report exampel"//;
put "Week solveStat modelStat optcr [%] Time [s]";
putclose InfoExecution;
InfoExecution,ap = 1;
loop (week,
    s_jnow=jnow;
    SOLVE mod minimizing v_fob using MIP;
    s_jnow = [(jnow-s_jnow)*86400];
    put InfoExecution;
        put week.tl;
        put mod.solveStat
        put mod.solveStat
        put ((100 * abs(mod.objest - mod.objval)
            /(1e-10+abs(mod.objval))
            ) $[(1e-10+abs(mod.objval))]) ;
        put s_jnow/;
    putclose InfoExecution
```


Functions and operators
 (https://www.GAMS.com/latest/docs/UG Parameters.htm|\#UG Parameters Functions

- +, - $*, /, * *$ or $\operatorname{power}(\mathrm{x}, \mathrm{n})$
- abs, arctan, sin, cos, ceil, floor, exp, log, log10, max, min, mod, round, sign, sqr, sqrt, trunc, normal, uniform
- gyear, gmonth, gday, ghour, gminute, gsecond, gdow, gleap, jdate, jnow, jstart, jtime
- lt <, gt >, eq =, ne <>, le <=, ge >=
- not, and, or, xor
- diag(set_element, set_element) $=\{1,0\}$
- sameas(set_element, set_element) $=\{T, F\}$
- ord, card ordinal and cardinal of a set, SetName. pos ordinal of a set
- set.ord and ord(set) are valid, but only card(set) is valid
- sum, prod, smax, smin
- inf, eps, pi are valid as data

Model temporal license
abort $\$[j$ start > jdate $(2021,11,21)]$ 'License for this model has expired and it cannot be used any more. Contact the developers'

\$ Operator in assignments, summations, constraints

- Sets a condition
\$(value > 0) \$(number1 <> number2)
- On the left of an assignment ($p \$$ [condition]=v), it does the assignment ONLY if the condition is satisfied
if (condition,
DO THE ASSIGNMENT
);
- On the right of an assignment ($p=v \$$ [condition]), it does the assignment ALWAYS, and if the condition is not satisfied, it assigns a value of 0
if (condition,
DO THE ASSIGNMENT
else
ASSIGNS VALUE 0);
- Conditions to parts: $a=b+c \$[d]$. If $d=$ true, then $a=b+c$. If $d=$ false, then $a=b$.
- Useful to avoid division by zero $a=b+(c / d) \$[d<>0]$.

Existence vs. value=0

- Be careful with eps values when protecting against divisions by 0 . The two checking options there are:
- $1:(a / b) \$[b]$ problematic if $b=e p s$
- 2: (a/b) \$[b<>0] works every time, protecting the division even if b=eps


```sets nulo /eps,0/ comprobacion /existe,distinto/ ; parameters par(comprobacion, nulo) ; par(comprobacion, nulo)=1;```
par('existe' ,'eps')\$[eps ] = 10 ;
$\begin{array}{ll} \text { par('existe' ,'0' }) \$[0 & ]=10 ; \\ \operatorname{par('distinto',~'eps')\$ [eps~}<>0]=10 ; \\ \operatorname{par('distinto','0'~}) \$[0 \quad<>0]=10 ; \end{array}$

## Dynamic sets

- Efficiency is strongly related to the use of dynamic sets
- Subsets of static sets whose content may change by assignments

```
sets d months /d1*d7/
```

        ed(d) even days
        display \(d ;\)
        ed(d) \(\$[\bmod (\operatorname{ord}(d), 2)=0]=\) yes;
        display ed;
        ed('d3') = yes;
        display ed;
        ed(d) \(\$[\) ord \((d)=4]=\) no;
        display ed;
    

- Fundamental elements in developing GAMS models
- Must be used systematically to avoid the formulation of superfluous equations, variables, or assignments

According to legend Roland's Breach was cut by Count Roland with his sword Durendal to destroy that sword, after being defeated during the Battle of Roncesvalles in 778.

## Use and abuse of dynamic sets



## Index shifting. Lag and lead

- $t=J, F, M A R, A P, M A Y, J U N, J U L, A U, S, O, N, D$ vReserve(t-1) $+\operatorname{pInflow}(t)-\operatorname{vOutflow}(t)=e=\operatorname{vReserve}(t)$
- Vector values out of the domain are 0

0 + pInflow('J') - vOutflow(’J') =e= vReserve('J')

- Circular sequence of an index (++, --)
$t=J, F, M A R, A P, M A Y, J U N, J U L, A U, S, O, N, D$
vReserve(t-1) + pInflow ( $t$ ) - vOutflow ( $t$ ) =e= vReserve( $t$ ) vReserve('D' ) + pInflow('J') - vOutflow('J') =e= vReserve('J')
- Inverted order sequence of PP index even though $t$ is traversed in increasing order PP(t+[card(t)-2*ord(t)+1])


## Operations with sets

- Intersection
$d(a)=b(a) * c(a)$
- Union
$d(a)=b(a)+c(a)$
- Complementary
$d(a)=$ NOT $c(a)$
- Difference
$d(a)=b(a)-c(a)$


## These constructs also exist in GAMS

```
loop (set,
) ;
```

```
while (condition,
) ;
```



```
```

repeat

```
```

repeat
until condition;

```
```

until condition;

```
```

```
if (condition,
else
) ;
```

for (i=beginning to/downto end by increment, ) ;

## Efficiency in GAMS code usage (1oop)

```set i / 1*2000 / alias (i,ii) parameter X(i,i)```	```set i / 1*2000 / alias (i,ii) parameter X(i,i) ;```
```loop ((i,ii), X(i,ii) = 4 ; ) ;```	$X(i, i i)=4$;



$$
0.3 \mathrm{~s}
$$

If you think you need a loop, Think again!
Among all the times a loop can be used, situations where they are needed are scarce.

## Efficiency in GAMS code usage (index order)

```option Profile=10, ProfileTol=0.01 set i / 1*200 / j / 1*200 / k / 1*200 / parameter X(k,j,i), Y(i,j,k) ; Y(i,j,k) = 2 ;```	```option Profile=10, ProfileTol=0.01 set i / 1*200 / j / 1*200 / k / 1*200 / parameter X(i,j,k), Y(i,j,k) ; Y(i,j,k) = 2 ;```
$X(k, j, i)=Y(i, j, k)$	$X(i, j, k)=Y(i, j, k)$
$4.5 \mathrm{~s}$	1.3 s

Efficiency in GAMS code usage (condition checking)

Dynamic sets are your friends!!

Observer effect

- Changes that the act of observation will make on a phenomenon being observed

```
```

option Profile=10, ProfileTol=0.01

```
```

option Profile=10, ProfileTol=0.01
set i / 1*2000 /
set i / 1*2000 /
alias (i,ii)
alias (i,ii)
parameter X(i,i)
parameter X(i,i)
loop ((i,ii),
loop ((i,ii),
X(i,ii) = 4 ;
X(i,ii) = 4 ;
);

```
```

);

```
```

```
```

set i / 1*2000 /

```
```

set i / 1*2000 /
alias (i,ii)
alias (i,ii)
parameter X(i,i)
parameter X(i,i)
loop ((i,ii),
loop ((i,ii),
X(i,ii) = 4 ;
X(i,ii) = 4 ;
) ;

```
```

) ;

```
```

72.9 s
72.9 s

Introducing flexibility

```
$SetGlobal ppp 100
parameter pDimension / %ppp% /
set u / unit1*unit%ppp% /
display pDimension, u
```

Alterative, modify the value from the command line.

- GAMS Studio

ppp defined from the command line:
-> pDimension = 50
command line is empty
-> pDimension = 100

COMILLAS
UNIVERSIDAD PONTIFICIA

Execution options and parameters

Passing parameters to a GAMS execution:

- Executing the model from the console (or from another software)
- Syntax: "GAMS modelName.gms [parameters]"
- GAMS directory must be included in the environment variables of the OS
- Executing the model from GAMS studio
- Write parameters in the command line
- Define the parameters in a file, and send the fite as a parameter to the execution from the command line or GAMS Studio: "parmFile=filename"
- Option parameters: parameters to control the execution such as the type of log (logOption=4), the depth of the profiling (profile=1), or defining a save file for the execution (save the file.g00).
- A complete list of options is here: https://www.GAMS.com/latest/docs/UG GamsCall.html
- User-defined parameter: can store numeric values or strings. Definition "userN=value". Usage in the code \%GAMS.userN\% (substitute N by a number from 1 to 5).
- Double dash parameters: like user-defined parameters, but there is no limit; the names can be specified and can only store numeric values. Definition "--name=value". Usage in the code \%name\%.

Execution options and parameters

- Both user-defined and double-dash parameters are substituted in the code by their values at compilation time.
- For example, during the compilation time, the following substitutions are performed:
- \%GAMS.user1\% is substituted by outputfile.gdx (defined in the command line with user1)
- \%par\% is substituted by 1 (defined in the command line with -par)
- It is possible to include a check in the code to assign default values when parameters are not defined in the command line. In the example, the first line establishes that when par is not set, it should be set equal to 2

CAUTION

Observe the constraint matrix

- It is important to know the estimated size of the optimization problem and its dependence considering
 the core elements
- It can be used for detecting formulation errors
- Use LimRow/LimCol
- Suitable to know the constraint matrix structure (GAMSChk)
option LP=GAMSChk

	-		Variables
Producción térmica	$p t_{p p^{\prime} t}^{\delta}$	$P P^{\prime} S T$	240000
Producción hidráulica	$p h_{p p^{\prime} \text { \% }}^{\text {\% }}$	$P P^{\prime} S H$	100000
Producción del bombeo	$p b_{p p^{\prime} \hbar}^{s}$	$P P^{\prime} S H^{\prime}$	20000
Vertido del embalse	$v_{p e}^{s}$	PSE	50000
Reserva artificial del embalse	$r a_{p e}^{s}$	PSE	50000
Reserva del embalse	$r_{p e}^{s}$	PSE	50000
Defecto y exceso de entre reservas consecutivas	$d r_{p e}^{e}, e r_{p e}^{*}$	$2 P S E$	100000
Defecto y exceso de reserva	$d r_{e}, e r_{e}^{s}$	$2 S E$	5000
Defecto de reserva mínima y exceso de reserva máxima	$d r m_{p e}^{\sigma}$, $\mathrm{erm}_{p e}^{s}$	2PSE	100000
Horas de funcionamiento por periodo	$h r_{p t}^{s}$	$P S T$	120000
Defecto y exceso de horas de funcionamiento por periodo	$d h r_{p t}^{*}, e h r_{p t}^{3}$	$2 P S T$	240000
Defecto y exceso de horas de funcionamiento	$d h n_{t}^{s}, e h x_{t}^{s}$	$2 S T$	12000
Gasto del embalse por central	$g_{p e h}^{o}$	PSEH	250000
Gasto del embalse	$g_{p \epsilon}^{s}$	PSE	50000
Consumo del bombeo	$b_{p e}^{s}$	$P S E^{\prime}$	10000
TOTAL			1397000

Scaling

- Solvers are powerful but not magic
- Input data and output results must be in commonly used units
- But internally, variables, equations, and parameters must be around 1 (i.e., from 0.01 to 100). The ratio of the largest to smallest matrix coefficient should be $<10^{5}$
- Scaling can be done:
- Manually (e.g., from MW to GW, from € to M€). Modelers can typically do better because they know the problem
- Automatically by the language (ModelName.ScaleOpt=1)
- By the solver (ScaInd 1 in CPLEX, ScaleFlag 2 in Gurobi)
- Especially useful in large-scale LP problems or NLP problems and/or when willing to get the dual variables
- The condition number measures the sensitivity of the solution of a system of linear equations to errors in the data.
- It is the ratio between the largest and smallest eigenvalues
- Condition numbers $<10^{6}$ are good enough. Numerical problems arise for condition numbers $>10^{8}$ (illconditioned)
- Quality 1 in CPLEX
- Kappa 1 in Gurobi

Feasibility, optimality, and integrality tolerances should be less than the smallest meaningful coefficient in the model. Source: Gurobi

[^0]
How big is a big optimization problem

- Memory requirements for loading the model (solver)
- 1 GB for every 1 million rows
- Memory requirements for solving the model (solver)
- Depends on the difficulty in solving the model
- Integrality gap is a good performance measure for MIP problems

THIS IS BIG

Avoid creation of superfluous constraints and variables

- Or how to achieve a compact formulation (small size of the constraint matrix or small density)
- Some "redundant" constraints can introduce a tighter model; see later
- However, introduce logical conditions (with a \$ in GAMS) in the creation of equations or the use of variables to avoid superfluous ones
- Reduction rules: mathematical reasoning or common sense based on the problem context
- Flows by nonexistent connections in a network
- Solvers can detect some of these superfluous equations/variables, but it is more efficient to avoid their creation (pre-processing)
- Profile, ProfileTol

Compilation time vs. execution time

- GAMS compiles the entire code and then executes it.
- Some functions are only available for compilation or execution. In contrast, others have two versions (executing external code can be performed with "\$call" (compilation time) or "execute" (execution time). Data from a GDX can be read with "\$GDXin" and "\$load" (compilation time) or execute_load (execution time), etc.
- It is essential to understand these two phases and make the proper choices.
- For example, when using GDXs as input/output files, usually the read operation is performed during compilation (otherwise, GAMS would give a compilation error because sets and parameters are empty), and write operations are performed during execution (because until the model is executed, there are no values for the variables)

COMILLAS
universidad pontificia
ICAI ICROE Clis

Compilation time vs. execution time Using \$call for data processing

*mainF
set w ;
'GAMS updateW.gms' 'w.gdx'
w.ga
w

- We receive a GDX file (original.gdx) that contains a set w with some elements.
- For our execution, we want w to contain the original elements plus others (ad1*ad5).
- We want the code to be generic
- Hardcoding the name of the original w elements is not acceptable.

	Comp/exe time	mainFlle.gms	updateW.gms	createGDX.gms (temporal file)
$\mathbf{1}$	Comp	Executes updateW.gms		
$\mathbf{2}$	Comp		Reads w from original.gdx	
$\mathbf{3}$	Exe		Writes createGDX.gms with all desired w elements	
$\mathbf{4}$	Exe		Executes createGDX.gms	
$\mathbf{5}$	Exe			Creates w.gdx
$\mathbf{6}$	Comp	Reads w.gdx with all desired w elements		

- This example gives an idea of the options that the combination of $\$ c a l l$, execute and put can provide. However, a much simpler option is available for this case: use \$onmulty to add new elements to w.
\qquad
set w/ad1*ad5/;
*updateW.gms
set w;
'original.gdx'
w
file createGDX /'createGDX.gms'/;
put createGDX;
put "set w /"
loop(w,
put w.tl "," ;
put "ad1*ad5/;"//;
put "execute_unloaddi 'w.gdx'"/;
put "w;"/;
putclose createGDX;
execute 'GAMS createGDX.gms'
*mainFile.gms
set w;
original.gdx
w

Compilation time vs. execution time Using \$call for data processing

- Killing flies with a cannon (\$call+put+execute) is not a good idea...
- However, it may come in handy to know how to fire a cannon
- Using a cannon would be needed, for example, if we wanted the resulting set w to have the following:
- All original elements except some of them
- All original and new elements alternated

Order	Original w	New elements	Desired w
1	old1	ad1	old1
2	old2	ad2	ad1
3	old3	ad3	old2
4			ad2
5			old3
6			ad3

COMILLAS
UNIVERSIDAD PONTIFICIA

Compilation time vs. execution time

Remember the order of the phases:
$1^{\text {st }}$ Compilation
$2^{\text {nd }}$ Execution
Execution does not start until compilation is done!!
Order in which the code is written:

1. Include $w 1$ as element of w
2. Create a GDX file with the elements of w
3. Include w2 as element of w

Order in which the operations are performed when the file is run by GAMS

1. Include $w 1$ as element of w
2. Include $w 2$ as element of w
3. Create a GDX file with the elements of w
```
*include w1 as element of w during COMPILATION
Set
w /w1/
*create a GDX with all elements of w during EXECUTION
execute_unload 'setW.gdx',
w
*include w2 as element of w during COMPILATION
Set
w /w2/
W /w2/
```


Using workfiles

-save nameFile (or-s nameFile)
It is a command line parameter that creates a workfile (nameFile) containing a snapshot of the GAMS execution estate.
-restart nameFile (or -r nameFile)
Loads a workfile created with - save
Options A and B have the exact same effect:

Option A
GAMS OnlyFile.gms

Option B

GAMS FirstFile.gms -s estado.g00
GAMS SecondFile.gms $-r$ estado.g00

```
*FirstFile.gms
set s/s1/;
```

*SecondFile.gms
execute_unload 's.gdx', s ;

- Secure Work Files
- Control the access to symbol names
- Link the model to a specific license
- Set declaration
- Parameter declaration
- Variables declaration
- Equations declaration
- Equations definition
- Model definition
- Include and manipulate input data: sets and parameters
- Bounds and initialization of variables
- Solve the optimization problem
- Output of the results

COMILLAS
UNIVERIIDAD PONTIFICIA
ICAI ICROE Clis

Transportation model (ready for deployment)

\$include Data.gms	Remaining.gms
solve mTransport using LP minimizing vCost	

| Generate the runtime model
 GAMS Formulation.gms Save=model |
| :--- |\rightarrow Send model.g00 \Rightarrow| Execute runtime model + data |
| :--- |
| GAMS Remaining.gms Restart=model |

Debugging (Using workfiles)

- Suppose we have a process where, instead of a single execution with the whole-time horizon, several executions are run using a loop.
- If we detect a problem in execution N, we could run the model till that execution and then abort it. This way, we can restart from a separate file and focus only on the specific execution without having to solve all the previous ones again.
ha(h)=yes\$[ejh(ej,h)];
solve modModelo minimizing v_fo using MIP;
Fix variables for ha
);

1) Add the abort to mainFile.gms
2) Run mainFile.gms with -s file.g00
3) Use debugFile.gms to debug, running it with -r file.g00
4) Repeat as many times as needed trying different options to find the error
```
*debugFile.gms
*modifications to try to find the error
10op (ej {[j].ond >= N],
    ha(h)=yes$[ejh(ej,h)];
    solve modModelo minimizing v_fo using MIP;
* Fix variables for ha
    if(ej.ord = N,
        abort ej;
    );
```


Model log

- Open console from GAMSIDE for logging messages from the model
- Code specific for Windows, UNIX/Linux/macOS

```
$set console
$if '%system.filesys%' == 'MSNT' $set console con
$if '%system.filesys%' == 'UNIX' $set console /dev/tty
$if '%console%.' == '.' abort 'console not recognized'
file console / '%console%' /
sets
    day day / day01*day10 /
    sc scenario / sc01* sc02 /
put console
loop ((day,sc),
    putclose 'Day ' day.tl:0 ' Scenario ' sc.tl:0 ' Elapsed Time ' [(jnow-jstart)*86400]:6:3 ' s' sleep(1)
) ;
```

\$ifthen.MSNT '\%system.filesys\%' == 'MSNT'
execute 'del pp.txt' ;
\$endif.MSNT
\$ifthen.UNIX '\%system.filesys\%' == 'UNIX'

GAMS Code Conventions

- Must be defined in blocks. For example, a set and all its subsets should constitute one block in the sets section.
- Names are intended to be meaningful. Follow conventions
- Items with the same name represent the same concept in different models
- Units should be used in all definitions
- Parameters are named pParameterName (e.g., pTotalDemand)
- Variables are named vVariableName (e.g., vThermalOutput)
- Equations are named eEquationName (e.g., eLoadBalance)
- Use short set names (one or two letters) for easier reading
- Alias duplicate the final letter (e.g., p, pp)

```
Use of camelCase
(uppercases to differentiate)
Everything long and descriptive
except sets, that are compact
Scalars: s_name
Sets: n
Parameters: p_NameName
Variables:v_nameName
Equations: EQ_NameName
Models:modNameName
```

- Equations are laid out as clearly as possible, using brackets for readability
- In the case of variables, the blocks should be defined by meaning and not by variable type (Free (default), Positive, Negative, Binary, Integer, SOS1, SOS2, SemiCont, Semilnt). The objective function must be a free variable

Example model: general structure

- Model information
- Declarations: scalar, sets, alias, variables, parameter, and equations
- Equation definition
- Model definition
- Model solve configuration
- Data input (preprocessed)
- Data processing strictly associated with the model
- Variable limits/fix values
- Model solving
- Data output

Example model: description and declarations (sets and variables

Example model: GAMS version of the pyomo example https://gitlab001.iit.comillas.edu/pdeotaola/Ejemplo Optimizacion Python-Pyomo

```
* Developed by
```

* Paulo Brito Pereira and Pedro de Otaola Arca
* Instituto de Investigacion Tecnologica
* Escuela Tecnica Superior de Ingenieria - ICAI
* UNIVERSIDAD PONTIFICIA COMILLAS

Definitions may become very large and require the use of the slider Having the units first makes it easier to consult

* UNIVERSIDAD PONTIFICIA
* 28015 Madrid, Spain
* May 2022 Units

se
t
t
ta
ta
t) " Active time per
one piece even if there is data for a very long horizon
one piece even if there is data for a very long horizon
g
ga

Alberto Aguilera 23
28015 Madrid, Spain
May 2022 Units

one piece even if there is data for a very long horizon
g
ga
*alias shoulc be defined here
variables
v_fob
"[M€]
positive variables
positive variables
$v_{t} \quad(g, t)$ " $[\mathrm{GW}]$
$\begin{array}{cc}(g, t) & {[\mathrm{GW}]} \\ (\mathrm{g}, \mathrm{t}) & \text { " }[\mathrm{ME}]\end{array}$
binary variables
$\begin{array}{lll}v_{1}{ }^{v} & (g, t) & "\{0,1\} \\ v-y & (g, t) & "\{0,1\}\end{array}$
v_y
(g, t) " $\{0,1\}$
Power output above the minimum of the
Total power output of the generator"
Generatior cost"

Start up decision"
Shut down decision

Power output above the minimum of the generator"

| Commitment status" |
| :--- | :--- |
| Start up decision" |\quad| Vertical alignment |
| :---: |
| improves readability |

Define dynamic sets as the active elements of the static sets. Even if you don't use them, they can be very useful to isolate problems
when debugging

Shern

Example model: declarations (parameters and equations)

```
parameters
paramet
P_Gcaco
p_Gcvar
P_Gcarr
P_Gcpar
P_Gpmn
P_Gpmn
p_Gpmx
p_GPini
P_GPini
p_Grs
p_Grb
p_Precio
equations
EQ_FObj
EQ_CostT
EQPotAcoT
(g ) "[M€/h] Commitment cost
Grs
(g ) "[M€/GWh] Variable cost"
EQ_AcoParPmr
EQ AcoArrPmn (g, t) "Commitment: stop at minimum power"
Q_AcoArrPmn (g, t) "Commitment: start at minimum power"
EQ_AcoPar
EQ_RampSub
EQ_RampBaj
EQ_Dummy
(g, t) "Limit incease in commitment st
(g, t) "Limit increase in power output
(g, t) "Limit decrease in power output"
EQ_Dummy (g, t) "Dummy: used for explanation"
EQ_Dummy
( \(\mathrm{g}, \mathrm{t}\) ) "Dummy: used for explanation"
```


Example model: equation definition

Example model: equation documentation (outside the model)

$$
\begin{aligned}
& \text { *Objective funciton: cost-income minimization } \\
& E Q_{F} O b j \\
& v_{-} f o b=\sum_{g \in g a, t \in t a}\left[v_{-} c t_{g, t}-v_{-} t_{g, t} * p_{-} \text {Precio }_{t}\right] \\
& { }^{*} \text { Generation cost } \\
& E Q_{C} o s t T: g \in g a, t \in t a \\
& v_{-} c t_{g, t}=p_{-} \text {Gcarr }_{g} * v_{-} y_{g, t}+p_{-} \text {Gcparg }_{g} * v_{-} z_{g_{2} t}+p_{-} \text {Gcaco }_{g} * v_{-} v_{g_{,} t}+p_{-} \text {Gcvarg }_{g} * v_{-} p_{g, t} \\
& \text { *Generation units total power output } \\
& E Q_{P} \text { ot Aco } T: g \in g a, t \in t a \\
& v_{-} t_{g, t}=p_{-} G p m n_{g} * v_{-} v_{g, t}+v_{-} p_{g, t} \\
& \text { Commitment: stop at minimum power } \\
& E Q_{A} c o P a r P m \pi: g \in g a, t \in \text { ta if }[t-1 \in t a] \\
& v_{-} p_{g, t-1} \leq\left(p_{-} G p m x_{g}-p_{-} G p m n_{g}\right) *\left(v_{-} v_{g, t-1}-v_{-} z_{g, t}\right) \\
& \text { *Commitment: start at minimum power } \\
& E Q_{A} c o A r r P m n: g \in g a, t \in t a \\
& v_{-} p_{g, t} \leq\left(p_{-} G p m x_{g}-p_{-} G p m n_{g}\right) *\left(v_{-} v_{g, t}-v_{-} y_{g, t}\right) \\
& { }^{*} \text { Coherence between commitment status and start up and shut down decisions } \\
& E Q_{A c o P a r: ~} g \in g a, t \in t a \\
& v_{-} y_{g, t}-v_{-} v_{g, t}-v_{-} z_{g . t}+v_{-} v_{g, t-1} \$[t . \text { ord }>1]+p_{-} G e i_{g} \$[t . \text { ord }=1]=0 \\
& \text { *Limit increase in power output } \\
& E Q_{R} a m p S u b: g \in g a, t \in t a \\
& +v_{-} p_{g, t}-v_{-} p_{g, t-1} \$[\text { t.ord }>1]-p_{-} \text {GPini } i_{g} \$[\text { t.ord }=1] \leq p_{-} \text {Grs }_{g} \\
& \text { *Limit decrease in power output } \\
& E Q_{R} a m p B a j: g \in g a, t \in t a \\
& -v_{-} p_{g, t}+v_{-} p_{g, t-1} \$[t . o r d>1]+p_{-} \text {GPini } \$[\text { t.ord }=1] \leq p_{-} \text {Grb } b_{g} \\
& E Q_{D} u m m y: g \in g a, t \in t a \\
& v_{-} c t_{g, t} \geq 0
\end{aligned}
$$

Example model: model definition and attributes

```
*Ramp related equations
model rampas
EQ_RampSub
EQ_RampBaj
EQ_Dummy
/;
* Complete optimization mod
model modelo
/ EQ_FObj
EQ_FObj
EQ_CostT
EQ_PotAcoT
EQ_AcoParPmn
Q_AcoArrPmb
E AcoPar
EQ_AcoPa
    rampas
/;
* Branch and bound relative tolerance
modelo.optcr = 0.01;
Limit execution time
modelo.reslim = 2*60
* Ommit fixed variables
modelo.holdfixed = 1;
* Tolerance to take two numbers as equal.
* It is often useful to set a very small value but different from 0 when numerical errors due to rounding or decimal precisions occur
* The typical error that pops up is "equation infeasible due to rhs" and when we go to see the error, 0 = very low value like 10e-13
* Then we set the infeasibility tolerance slightly above that value to tell it that in those cases it assumes that they are the same.
modelo.tolInfeas = 0.00001;
```

UNIVERSIDAD PONTIFICIA

Example model: solver option file

```
* Use cplex.opt option file
```

modelo.OptFile = 1;

Example model: data input, model solving and data output

Example model: solver related information

*Useful solve information:

* in complex codes this information can be used to condition the development of the program, for example with multiple executions or loops).
*Total time
display modelo.etSolve
*Solver time
display modelo.resUsd;
*Solver termination
* 1-Normal Completion
* 2-Iteration Interrupt
* 3-Resource Interrupt
* 4-Terminated By Solver
*-Evaluation Interrupt
display modelo.solveStat
*Model status code
* 1-Optimal

2-Locally Optimal

* 3-Unbounded
* 4-Infeasible
* 5-Locally Infeasible

6-Capability Problems \quad 11-Internal Solver Failure
7-Licensing Problems
8-User Interrupt
9-Setup Failure
10-Solver Failure

6-Intermediate Infeasible
7-Intermediate Nonoptimal
8-Integer Solution
9-Intermediate Non-Integer
10-Integer Infeasible
13-System Failure

11-Licensing Probl
12-Error Unknown
13-Error No Solution
14-No Solution R
display modelo.modelStat;
*Number of discrete variables of the problem
display modelo.numDVar;
*Number of equations
isplay modelo.numEqu:
*Number of variables
display modelo. numVar;
scalars
s_optcr "Optcr achieved"
; GAMS Optcr
s_optcr = (100 * abs(modelo.objest - modelo.objval) / max(abs(modelo.objest),abs(modelo.objval)))\$[max(abs(modelo.objest),abs(modelo.objval))];
display s_optcr;
*Cplex Optcr
s_optcr = (100 * abs(modelo.objest - modelo.objval) /(1e-10+abs(modelo.objval)))\$[(1e-10+abs(modelo.objval))];
display s_optcr

16-Solved
7-Solved Singular
18-Unbounded - No Solution
19-Infeasible - No Solution

Example model: time considerations for equation definitions and performing partial executions

```
*The equation has v_p and v_v of one time period and v_z of the next, the straightforward definition would be:
EQ_AcoParPmn(g,ta(t))$[t.ord < card(t)]...
    v_p[g,t] <= (p_Gpmx[g] - p_Gpmn[g]) * (v_v[g,t] - v_z[g,t+1]);
*However, it may be a better idea to use past time indices instead of future time indices and write the equation as follows:
EQ_AcoParPmn{ga{g},ta{t}}$[ta(t-1)]..
    v_p{g,t-1} =L= (p_Gpmx{g} - p_Gpmn{g}) * (v_v{g,t-1} - v_z{g,t});
The reason is that if the entire period being executed were split into several sequential runs, for the executions that were not the first one, the
value of the variables v_p and v_v would be available in the last period of the previous execution. That would avoid the need to fix the value of
```

the variable v _z in the first period of the subsequent execution.
sets
ej "Executions in which the time horizon is to be split" /ej1*ej3/
ejt (ej, t) "Time periods of each execution"
$e j t(e j, t)=y e s \$[(e j . o r d-1) * \operatorname{card}(t) / \operatorname{card}(e j)<t . o r d$ and $t . o r d<=e j . o r d * \operatorname{card}(t) / \operatorname{card}(e j)]$;
ga(g) = yes;
loop(ej,
$\operatorname{ta}(\mathrm{t})=\operatorname{yes} \$[\operatorname{ejt}(\mathrm{ej}, \mathrm{t})] ;$ 1. Define active periods
ta(t) $=$ yes $\$[e j t(e j, t)] ;$
SOLVE modelo minimizing v_{-}fob using MIP;

$v_{-} t . f x\{g, t a\{t\}\}=v_{-} t .1\{g, t\} ;$
v_ct.fx\{g,ta\{t\}\} = v_ct.l\{g,t\};
$v_{-} \mathrm{v} . f \mathrm{fx}\{\mathrm{g}, \mathrm{ta}\{\mathrm{t}\}\}=\mathrm{v}$ v.l $\{\mathrm{g}, \mathrm{t}\} ;$
v_y.fx $\{\mathrm{g}, \mathrm{ta}\{\mathrm{t}\}\}=\mathrm{v} y .1\{\mathrm{~g}, \mathrm{t}\} ;$

);
UNIVERSIDAD PONTIFIIIA

Data in and out of the model

- Data is one of the primary sources of problems. During development, an excellent practice isolates the model from the data processing.
- Data processing outside the model
- Construct parameters from other parameters
- Scaling parameters to standardize units. All parameters should be in the same units, and all scaling should be performed previously. Never hardcode scaling in equations!!
- Data processing inside model
- Scaling parameter for the execution particularities. For example, the associated cost of a monthly decision can be scaled to $7 / 30$ if the model executes just a week horizon.
- If you are forced to perform data processing in the model, do it together and in a separate file (use an include).

Personal recommendation: if you need data processing in GAMS, do it in a separate file and a separate process (using \$call) that builds a GDX to be read from the main file. This way, you write the input data to disk and reread it. There are more efficient ways. However, having a single file that is easy to consult with all the input data is convenient for debugging.

A good option is parametrizing the process so that when you are debugging, that GDX file is created, and in standard executions, a more direct data input method is used.

- In list view, you can order by different sets (be aware that all order is alphabetical and not numerical, therefore, to have proper numerical order, your sets need to be defined with zeros on the left)
- In the list view, you can set filters to display just some elements
- In table view, you can click and drag the rows and columns to change the display order
- Select the entire table (click in the corner)to copy and paste it into an Excel file
- When looking at variables, you can use the attributes option to display or hide the levels, limits, and marginal.

Filter:		All Colums			Table view		Atrates			Preferences .	Reset	
Entry	Name	Type	Dim	$1 \times$	$\times \mathrm{gts}$	x	\times	k	$\times \mathrm{Val}$	lue		\star
18	P_GTSPini_x	Parameter	2		CCGTI	3	k4	4		100		
13	p_GTSpmn_x	Parameter	3		CCGT1	3	k5	5		100		
14	P_GTSpmx_x	Parameter	3		CCGTi	3	$k 6$	6		100		
16	P_GTStminOff. x	Parameter	2		CCGTI	3	k7	7		100		
17	p_GIStminOn_x	Parameter	2		CCGTI	3	k^{8}	8		100		
36	Penalizacion	Parameter	0		CCGTI	3	k9	9		100		
24	Precio	Parameter	1		CCGTI	3		10		100		
19	RDu	Parameter	2		CCGT1	3		11		100		
22	RDv	Parameter	3		CCGTI	3		12		100		
20	RUu	Parameter	2		CCGT1	3		13		100		
	RUv	Parameter	3		CCGT1	3		14		100		

Lstyiew				Preferences -	
4	CCGT1		CCGT2	CCGT3	
	3	4	3	4	3
k1	100	175	50	100	100
k2	100	175	50	100	100
k3	100	175	50	100	100
k4	100	175	50	100	100
k5	100	175	50	100	100

Good Optimization Modeling Practices with GAMS. January 2024

Rule of thumb for selecting an LP optimization algorithm

- Simplex (or dual simplex) method can be the best choice for moderate size (up to 100000×100000)
- Interior point method is usually the most efficient for huge and difficult problems
- It is the most numerically sensitive algorithm. Numerical issues can cause crossover to stall
- It can be threaded quite efficiently (compared to simplex)
- Difference in solution time can reach one order of magnitude

Algorithm improvements

- For solving LP/MILP, computer hardware got about 20 times faster, and the algorithms improved by a factor of about 9 for LP and around 50 for MILP, which gives a total speed-up of about 180 and 1,000 times, respectively

Th. Koch, T. Berthold, J. Pedersen, Ch. Vanaret "Progress in mathematical programming solvers from 2001 to 2020" EURO Journal on Computational Optimization 10 (2022) 100031 https://doi.org/10.1016/j.ejco.2022.100031

Debugging an optimization model

- Grammar error
- Read the error and click on the red line of the log file
- Infeasibility detection
- Soft (elastic) constraints
- Introduce a deficit or surplus variables in each equation and penalize it in the objective function. Be careful with the penalty parameter (FeasOpt in Gurobi/CPLEX)
- Detect the smallest core of infeasible constraints by the LP solver (option Irreducible Infeasible Subsets iis in solvers)
- Once known, they must be deleted or modified

Options

Options	Description
LimRow	Number of rows to show
LimCol	Number of columns to show
SolPrint	Solution output
SolveOpt	Replace
Decimals	Number of decimals in displaying values
IterLim	Maximum number of solver iterations
ResLim	Maximum solution time
Profile	Time profiling
ProfileTol	Profile threshold
Seed	Initialize seed for random numbers

\$ Directives

\$ Directives	Description
\$OnEmpty	Allow introduction of empty sets
\$OnMulti	Allow redeclaration of sets
\$OffListing	Suppress listing of the code

Variable attributes (varName.Attribute)

Attribute	Description
Io	lower bound
up	upper bound
fx	fixes the variable to a constant
Range	range of the variable
I	initial value before and optimal value after
m	marginal value (reduced cost)
Scale	numerical scale factor
Prior	branching priority in a MIP model ($\infty \rightarrow$ not discrete)
SlackUp	slack from upper bound
SlackLo	slack from lower bound
Infeas	infeasibility out of bounds

Equation attributes (equationName.Attribute)

Attribute	Description
lo	lower bound
up	upper bound
I	initial value before and optimal value after
m	marginal value (dual variable or shadow price)
Scale	numerical scaling factor

UNIVERSIDAD PONTIFICIA
ICAI ICAD

Model

model ModelName1 / Equation1 Equation3 Equation5 Equation7 /
model ModelName2 / all /
model ModelName3 / ModelName1 - Equation5 + Equation8 /

Model attributes (modelName.Attribute)

Attribute	Description	Attribute	Description
ResLim	Resource limit	IterUsd	Number of iterations
SolveOpt	Replace/merge/clear in consecutive solves	ResUsd	Resource used
SolSlack	Show slack variables	BRatio	Basis ratio controls the use of previous basis
SolvePrint	0, 1, 2 (to remove the detailed solution from the .Ist file)	HoldFixed	Fix and eliminate variables
TryLinear	Try linear model first	IterLim	Iteration limit
ModelStat	Model status	NodLim	Node limit
SolveStat	Solve status	OptCA	Absolute optimality tolerance
NumEqu	Number of equations	Relative optimality tolerance	
NumVar	Number of variables	OptFile	Use of an option file
NumDVar	Number of discrete variables	PriorOpt	Use of priority
NumNz	Number of non zeros		

GAMS Call Options

GAMS Options	Description
Suppress	Suppress echo of the code listing
PW	Page width
PS	Page size
RF	Shows all the symbols
Charset	Allows international characters
U1..U10	User parameter

For example, InterfaceName, SolverSelection, SkipExcelInput, SkipExcelOutput,

```
u1="Excel_Interface_Name" u2=0 u3=0 u4=1 --NumberCores=4
```

Options
Editor \mid Execute \mid Output Solvers \mid Licenses \mid Colors \mid File Extensions \mid Charts/GDX \mid Execute2

Solver	License	CNS	DNLP	EMP	LP	MCP	MINLP	P/ MIP	MIQCP	MPEC	NLP	QCP	RMINLP	RMIP	RMIQCP	RMPEC
ALPHAECP	Demo						-		-							
AMPL	Full	-	-		-	-	-	-		-	-		-	-		-
ANTIGONE	Demo	-	-				-		-		-	-	-		-	
BARON	Full	-	-		-		-	-	-		-	-	-	-	-	
BDMLP	Full				-			-						-		
BENCH	Full	-	-		-	-	-	-	-	-	-	-	-	-	-	-
BONMIN	Full						-		-							
BONMINH	Demo						-		-							
CBC	Full				-			-						-		
CONOPT	Full	-	-		-						-	-	X	-	-	
CONOPT4	Full	-	-		-						-	-	-	-	-	
CONVERT	Full	-	-		-	-	-	-	\bullet	-	-	\cdot	-	-	-	-
COUENNE	Full	-	-				-		-		-	-	-		-	
CPLEX	Full				-			-	-			-		-	-	
DE	Full			-												
DECIS	Demo			-												
DECISC	Demo				-											
DECISM	Demo				-											
DICOPT	Demo						-		-							
EXAMINER	Full		-		-	-	\cdot	-	-	-	-	\cdot	\cdot	-	-	-
GAMSCHK	Full		-		-	-	-	-	\bullet		-	\bullet	-	-	-	
GLOMIQO	Demo								-			-			-	
GUROBI	Full				X			X	X			X		x	X	
IPOPT	Full	-	-		-						-	-	-	-	-	
IPOPTH	Demo	-	-		-						-	-	-	-	-	

Boosting performance

- Threads
- Use of multiple cores of a computer by the solver
- GUSS (Gather-Update-Solve-Scatter)
- Use of sensitivity analysis for solving many similar problems
- Grid and Multi-Threading Solve Facility
- Send many problems to solve and collect them after solved
- You can launch several GAMS processes simultaneously, being careful with conflicting filenames

Scenario analysis of the transportation problem solved with GUSS

```
sets
    I origins
    SC scenarios
parameters
pA (i \(\quad\) ) origin capacity
\(\mathrm{pB} \quad(\mathrm{j}, \mathrm{O})\) destination demand
\(\begin{array}{lll}\text { pC } & (i, j) & \text { per unit transportation cost } \\ \text { pBS } & (s c, j) & \text { stochastic destination demand }\end{array}\)
\(\begin{array}{ll}\mathrm{pBS} \\ \mathrm{pX} & (\mathrm{sc}, \mathrm{j}, \mathrm{j}) \\ \mathrm{s}, \mathrm{j} \text { ) stochastic destination demand } \\ \text { stochastic units transported }\end{array}\)
pX (sc,i,j) stochastic units transported
pCost (sc \()\) stochastic transportation cos pPrice(sc, j) stochastic spot price
```

variables
vX(i,j) units transported
vX $(1, j)$ units transported
vcost
transportation cost
positive variable vX
equations
eCost transportation cost
Capacity(i) maximum capacity of each origin
eDemand (j) demand supply at destination ;
eCost .. $\quad \operatorname{sum}[(i, j), p C(i, j) * v X(i, j)]=e=v C o s t$
eCapacity (i) $\ldots \operatorname{sum}[i, j, \quad v(i, j)]=1=p A(i)$
eDemand (j) .. sum $[i, \quad v X(i, j)]=g=p B(j)$;
model mTransport / all

COMILLAS
 UNIVERSIDAD PONTIFICIA

```
set scen_dem stochastic demand scenario dictionary /
    sc
scenario
pB
``` \(\qquad\)
``` param . pB
```

store in the RHS with

```
vx level • pX
. pCost
eDemand . marginal - pPrice
```


sets

```
I origins
/ VIGO, ALGECIRAS /
J destinations / MADRID, BARCELONA, VALENCIA SC scenarios / sc000*sc999
parameters
\(\mathrm{pA}(\mathrm{i})\) origin capacity
1 VIGO 350
ALGECIRAS \(700 /\)
\(\mathrm{pBS}(\mathrm{sc}, \mathrm{j})\) stochastic destination demand
/ sc000 . MADRID
sc000. BARCELONA 450
scooo. VALENCIA 150 /;
```

* Lazy input, feeding data for all the scenarios with random demand $\operatorname{pBS}(\mathrm{sc}, \mathrm{j})=\operatorname{pBS}($ 'sc000',j) * [1+uniform(-0.05,0.05)];
table $\mathrm{pC}(\mathrm{i}, \mathrm{j})$ per unit transportation cost
VIGO
MADRID BARCELONA VALENCIA
ALGECIRAS 0.0
0.12

ALGECIRAS $0.05 \quad 0.15 \quad 0.11$;

* initialization of the destination demand
pB(j) = pBS('sc000',j) ;
solve mTransport using LP minimizing vCos scenario scen_dem

Scenario analysis of the transportation problem solved with Grid computing and GUSS (i)

```
sets I origins
    destinations
    SC scenarios
```


parameters

pA (i) origin capacity
$\begin{array}{lll}\mathrm{pB} \\ \mathrm{pC} & (\mathrm{j} & \mathrm{i}, \mathrm{j}) \\ \text { destination demand } \\ \text { per unit transportation cost }\end{array}$
${ }_{\mathrm{pBS}}^{\mathrm{pC}} \quad(\mathrm{sc}, \mathrm{j}, \mathrm{j})$ stochastic destination demand
pX ($\mathrm{sc}, \mathrm{i}, \mathrm{j}$) stochastic units transported
pCost (sc (sc) stochastic transportation cost
variables
vX(i,j) units transported
vCost transportation cost
positive variable vX

equations

eCapacity(i) transportation cost each origin
eDemand (j) demand supply at destination ;
eCost .. $\quad \operatorname{sum}[(i, j), p C(i, j) * v X(i, j)]=e=v C o s t ~ ; ~$
Capacity(i) .. sum $\left[\mathrm{sin}^{\mathrm{j}}, \quad \mathrm{vX}(\mathrm{i}, \mathrm{j})\right]=1=\mathrm{pA}(\mathrm{i})$
$\mathrm{vX}(\mathrm{i}, \mathrm{j})]=\mathrm{g}=\mathrm{pB}(\mathrm{j})$;
model mTransport / all /
gs(sc) scenarios per GUSS run
sh solution headers / System.GUSSModelAttributes /
sc \quad. scenario
scen_optn . opt
st_report_o

$* ~(~) ~$
sets
I origins / VIGO, ALGECIRAS /
destinations / MADRID, BARCELONA, VALENCIA
SC scenarios / sc000*sc999

parameters

pA(i) origin capacity VIGO VIGO 350
ALGECIRAS 700
$\mathrm{pBS}(\mathrm{sc}, j)$ stochastic destination demand scooo . MADRID 400
sc000 . barcelona 450
sc000 . VALENCIA 150 / ;

* Lazy input, feeding data for all the scenarios with random demand $\operatorname{pBS}(\mathrm{sc}, \mathrm{j})=\mathrm{pBS}(' \mathrm{sc} 000$ ', j$) *[1+$ uniform $(-0.05,0.05)]$;
table $\mathrm{pC}(\mathrm{i}, \mathrm{j})$ per unit transportation cost
MADRID BARCELONA VALENCIA
$\begin{array}{llll} \\ & \text { IGO } & 0.06 & 0.12\end{array}$
$\begin{array}{llll}\text { ALGECIRAS } & 0.05 & 0.15 & 0.11\end{array}$

Scenario analysis of the transportation problem solved with Grid computing and GUSS (ii)

```
sets
    core
    core grid jobs to run / core001*core004
    coresc(core,sc) cores to scenario / core001. (sc000*sc249)
        core002. (sc250*sc499)
        core004.(sc750*sc999)
parameter
scen_optn
```



```
* initialization of the destination demand
\(\mathrm{pB}(\mathrm{j})=\mathrm{pBS}\left(\mathrm{s}^{2} \mathrm{sc} 000\right.\) ', j\()\);
mTransport.SolveLink = \%SolveLink.AsyncGrid\% ;
* Sending loop
loop (core,
if (sc) \(=\operatorname{coresc}(\) core, sc)
( sum [gs (sc), 1] >0, solve mTransport using LP minimizing vCost scenario scen dem pGridHandle(core) = mTransport. Handle ;
) ;
* Recovering loop
repeat
oop (core \$HandleCollect(pGridHandle(core)),
display \$HandleDelete (pGridHandle(core))' Trouble deleting handles' pGridHandle(core) \(=0\);
until \({ }^{\text {c }}\) card(pGridHandle) \(=0\) or TimeElapsed > 1000
mTransport. SolveLink = \%SolveLink.LoadLibrary\% ;
display st_report_o
```

COMILLAS
niversidad pontificia
(eal lemor cims

It could be a good idea to include a copy of the recovering loop within the sending loop to ensure that the amount of solves being executed is not larger than a certain number (for example, the number of cores):

```
loop(
    send
    repeat
            recover
    until handles < cores
)
repeat
    recover
until handles = 0
```


How to write multiple language versions

```
* Language for Excel headings: Spanish 0 English 1 French 2
$set language
$ifthen.language %language% == 0
$ set iTitle MiModelo Versión 6.19 --- 21 Noviembre 2022
$ include ModelEs.gms
$elseif.language %language% == 1
$ set iTitle MyModel Release 6.19 --- November 21, }202
$ include ModelEn.gms
$elseif.language %language% == 2
$ set iTitle MonModel Version 6.19 --- 21 Novembre 2022
$ include ModelFr.gms
$endif.language
```

* File ModelEs.gms
\$setglobal Lema Más sabe el diablo por viejo que por diablo
* File ModelEn.gms
\$setglobal Lema The devil knows many things because he is old
* File ModelFr.gms
\$setglobal Lema Le diable sait beaucoup parce qu'il est vieux

Releasing memory

a) Define a dummy solve

Clear Data

b) Clear parameters
c) Run dummy model

```
option profile=10
set i / 1 * 10000000 /
parameter pp(i) ;
pp(i) = 33 ;
* dummy optimization problem used for releasing memory
variable vDummy
equation eDummy ; eDummy .. vDummy =e= 0 ;
model mDummy / eDummy / ;
* only parameters that are no Longer used can be cleared
option Clear=pp
* solve a dummy optimization problem to release memory usage
solve mDummy using LP minimizing vDummy
```


GAMS to LaTeX

```
sets
    I origins / VIGO, ALGECIRAS /
    J origins / VIGO, ALGECIRAS / / MADRID, BARCELONA, VALENCIA /
```

parameters
pA(i) origin capacity
/VIGO 350
ALGECIRAS 700 /
$\mathrm{pB}(\mathrm{j})$ destination demand
/ MADRID
MADRID 40
BARCELONA 450
VALENCIA 150
table $\mathrm{pC}(\mathrm{i}, \mathrm{j})$ per unit transportation cost
VIGO MADRID BARCELONA VALENCIA
$\begin{array}{llll} \\ \text { ALGECIRAS } & 0.06 & 0.12 & 0.05\end{array}$
variables
$\mathrm{vX}(\mathrm{i}, \mathrm{j})$ units transported
vCost transportation cost

positive variable vX

equations
eCost transportation cost
eCapacity(i) maximum capacity of each origin
eDemand (j) demand supply at destination ;
eCost $\quad . . \operatorname{sum}[(i, j), p C(i, j) * v X(i, j)]=e=v C o s t$
eCapacity(i) .. sum $[\underset{j}{ }, \quad v \times(i, j)]=l=\operatorname{pA}(i)$
eDemand (j) .. sum[i, $\quad v X(i, j)]=g=p B(j)$
model mTransport / all /
solve mTransport using LP minimizing vCost

Symbols		
Sets		
Name	Domains	Description
I	*	origins
J	*	destinations
Parameters		
Name	Domains	Description
pA	1	origin capacity
pB	J	destination demand
pC	I, J	per unit transportation cost
Variables		
Name	Domains	Description
$\begin{array}{\|l\|l\|} \hline \mathrm{vX} \\ \mathrm{vCost} \end{array}$	I, J	units transported transportation cost
Equations		
Name	Domains	Description
eCost		transportation cost
eCapacity		maximum capacity of each origin
eDemand	J	demand supply at destination
Equation Definitions		
eCost		
$\sum\left(\mathrm{pC}_{I, J} \cdot \mathrm{vX}_{I, J}\right)=\mathrm{vCost}$		
$\underline{1, J}$		
eCapacity ${ }_{\text {I }}$		
$\sum_{l}\left(\mathrm{vX}_{I, J}\right) \leq \mathrm{pA}_{I}$		$\forall I$
eDemand ${ }_{J}$		
$\sum\left(\mathrm{vX}_{I, J}\right) \geq \mathrm{pB}_{J}$		$\forall J$
$\mathrm{vX}_{I, J} \geq 0 \forall I, J$		

Equations

Cost
$\left(\mathrm{pC}_{I, J} \cdot \mathrm{vX}_{I, J}\right)=\mathrm{vCost}$
eCapacity ${ }_{I}$
$\sum\left(\mathrm{vX}_{I, J}\right) \leq \mathrm{pA}_{l}$ $\forall I$

Generate the doc file

GAMS transport.gms
DocFile=transport
Write the tex file
model2tex transport

$\overline{\bar{\delta}}$

Each tool has a specific purpose

- GDX (GAMS Data eXchange) utilities to interface with other applications
- Interfaces with other programs
- Microsoft Excel (GDX2xls, xls2gms)
- Microsoft Access (GDX2access, mdb2gms)
- SQL (GDX2sqlite, sql2gms)
- Matlab (GDXmrw)
- R (GDXrrw)
- APIs
- . Net
- Java

- Python
- Input/output data and simple graphs (Microsoft Excel, Microsoft Access)
- Advanced graphs (GNUPlot, Matlab)

1. Programming Style
2. GAMS Code
3. Embedded Python
4. Connect
5. Performance Issues
6. Advanced Algorithms

Embedded Python

GAMS Embedded Code Facility: Python

- From GAMS, it is possible to execute external code in Python.
- Can be useful to perform actions that GAMS cannot (print figures) or that are more complex (complex data processing with functions and loops)
- Example: Print figures during an iterative process to keep track of it
- GAMS Studio is not an excellent debugging option for Python code. The proposed example provides a generic structure that allows the Python code to be executed during the GAMS execution. It also allows its standalone execution from a more convenient tool like VSCode.
- GAMS execution from GAMS Studio: no additional concerns are needed, just to run the GAMS code
- Standalone execution from VSCode: select as python interpreter the one included in the GAMS installation located in "GAMSdirectory"/GMSPython/python.exe
- The example is prepared for a particular directory structure:

COMILLAS
 UNIVERSIDAD PONTIFICIA

```
Project main directory
GAMS source code
Specific directory for python code and data
Python source code
Python input data for standalone execution
Python output data
```


Python embedded code: GAMS code

set
nameset /i1*i3/
parameters
*value of eps
s_eps /eps/
*parameters for the example

Create a parameter with the "eps" value
p_parameter (nameset)
p_parameterB(nameset)
p_parameterC(nameset)
p_parameter(nameset)=3;
*sum eps to everything that is going to be send to python so that * all records are contained in the GDX

Add "eps" to all data
*GDX file with the input data to python.
*This is only needed when you plan to execute the python file as standalone, * otherwise, all data are accessible from the GAMS memory
execute_unloaddi 'Python/entradaPython.gdx'
s_eps
nameset
p_parameter

GDx with all data used

in python. Only needed to run python as standalone
*look for the path of the current file
"\%GAMS.i\%" filepath filename fileextension
*Inicia Python
embeddedCode Python
import traceback
try:
import pathlib
import sys
\#insert the current path in the system path
path=r'\%filepath\%
sys.path.insert(0, $\operatorname{str}($ pathlib. Path(path.strip())))
\#import the function codigo_python and call it sending the GAMS memory,
\# and entornoGams=1 so the function knows it has been called from GAMS
from Python. codigoPython import codigo_python
from Python.codigoPython import codigo
codigo_python(GAMS=GAMS, entornoGams=1)

endembeddedCode p_parameterB
*subtract eps from all the data sent to python * to restore their original values.

Restore data
*unload python results from GDX
execute_loaddc 'Python/salidaPython.gdx' , p_ parameterC;

Python embedded code: Python code

import pathlib

import pathlib
\#path to this fil
path_algoritmo = pathlib.Path(_file__).parent.absolute()
class ParProcessError(Exception):
pass
\#\%\% Python Main Function to be called from GAMS
def codigo_python(GAMS, entornoGams=1):
if entornoGams == 1:
printGams = lambda msn: GAMS.printLog(str(msn))
elif entornoGams == 0:
printGams = lambda msn: print(str(msn))
else:
raise Exception("no esta definido el entono de GAMS correctamnte")

GAMS.epsAsZero=True

\#remove pyomo warnings from the \log so that you do not see
\# the precision loss warnings when writing the problem in text
import logging
logging.getLogger('pyomo.core').setLevel(logging.ERROR)
\#import libraries

import pandas as pd

printGams('Data loaded')
\#When used outside GAMS, eps becomes $5,0 \mathrm{e}+300$ and must be set to 0 .
if entornoGams == 0 :

ss_eps = list(GAMS.get("s_eps"))
 s_eps=ss_eps[0]

if s_eps>1:
correction
\#Python may have decimal error when loading from GAMS, therefore, p_parameter = p_parameter. round(0).astype('int')

P_parameterB= pd.Series(p_parameter, p_parameter.index) GAMS.set("p_parameterB", list(p_parameterB.items()))
p_parameterC= pd.DataFrame(p_parameterB, p_parameter.index)

Python/Pyomo

Pyomo is a Python library that allows defining optimization models using an algebraic language like the one used by GAMS.

Pros:

- Open source
- Active development by a vast community
- Processing of data and results can benefit from Python libraries, graphical functions, etc.
Cons:
- GAMS has been developed for a longer time. Some options that are easy to use in

GAMS are not so trivial with Pyomo (or may not exist yet)

- Worse documentation

A simple but detailed (following good practices) example that can be used as a base
 is available in the:
https://gitlab001.iit.comillas.edu/pdeotaola/Ejemplo Optimizacion Python-Pyomo

1. Programming Style
2. GAMS Code
3. Embedded Python
4. Connect
5. Performance Issues
6. Advanced Algorithms

Connect (data input and output)

Connect

GAMS Connect allows reading and writing data directly from/to:

- Excel
- CSV
- GDX

It uses yaml for a user-friendly programming code
The code can be run with the embedded code facility or with a command line parameter:

- Connectln='scriptfile': executes the instructions in 'file' at the beginning of the GAMS execution. As the sets and parameters are not defined, it can be used, for example, to build a single GDX from several input files that will be available for latter
- ConnectOut ='scriptfile': executes the instructions in 'file' at the end of the GAMS execution. It can be used to store all the required data from the model

When using the embedded code facility is also possible to use python code.

https://www.GAMS.com/latest/docs/UG GAMSCONNECT.html

Connect

Connect Database
GAMSReader/Writer

GAMS Database

The World
COMILLAS
UNIVERSIDAD PONTIFICIA
teal tchor chis

Connect

Connect agent	Description
CSVReader	Allows reading a symbol from a specified CSV file into the Connect database.
CSVWriter	Allows writing a symbol in the Connect database to a specified CSV file.
GAMSReader	Allows reading symbols from the GAMS database into the Connect database.
GAMSWriter	Allows writing symbols in the Connect database to the GAMS database.
GDXReader	Allows reading symbols from a specified GDX file into the Connect database.
GDXWriter	Allows writing symbols in the Connect database to a specified GDX file.
Options	Allows to set more general options that can affect the Connect database and other Connect agents.
PandasExcelReader	Allows reading symbols from a specified Excel file into the Connect database.
PandasExcelWriter	Allows writing symbols in the Connect database to a specified Excel file.
Projection	Allows index reordering and projection onto a reduced index space of a GAMS symbol.
PythonCode	Allows executing arbitrary Python code.
RawExcelReader	Allows reading unstructured data from a specified Excel file into the Connect database.

1. Programming Style
2. GAMS Code
3. Embedded Python
4. Connect
5. Performance Issues
6. Advanced Algorithms

Performance Issues

Finding and Fixing Execution Errors and Performance Problems

- Resolving Execution Errors
- Small to Large: Aid in Development and Debugging
- Increasing Efficiency: Reducing GAMS Execution Time
- Increasing Efficiency: Reducing Memory Use

[^1]- Avoid rounding of input
- Real numbers are not real
- Tolerances and user-scaling
- Models at the edge of infeasibility
- Gurobi tolerances and the limitations of double-precision arithmetic
- Why scaling and geometry is relevant
- Recommended ranges for variables and constraints
- Improving ranges for variables and constraints
- Advanced user scaling
- Avoid hiding large coefficients
- Dealing with big-M constraints
- Does my model have numerical issues?
- Solver parameters to manage numerical issues
- Presolve
- Choosing the right algorithm
- Making the algorithm less sensitive
- Instability and the geometry of optimization problems
- The case of linear systems:
- The geometry of linear optimization problems
- Multiple optimal solutions
- Dealing with epsilon-optimal solutions
- Thin feasible regions
- Optimizing over the circle:
- Optimizing over thin regions:
- Stability and convergence

COMILLAS
UNIVERSIDAD PONTIFICIA
ical lexper cins

LP Performance issues and their suggested resolution

$\left.\left.\begin{array}{ll}\hline \text { LP performance issue } & \text { Suggested resolution } \\ \hline \text { Numerical instability } & \begin{array}{l}\text { - Calculate and input model data in double precision } \\ \text { - Eliminate nearly-redundant rows and/or columns of } A \text { a priori } \\ \text { - Avoid mixtures of large and small numbers: } \\ \text { (i) Be suspicious of } \kappa \text { between } 10^{10} \text { and } 10^{14} ; \\ \text { (ii) Avoid data leading to } \kappa \text { greater than } 10^{14}\end{array} \\ \begin{array}{ll}\text { - Use alternate scaling (in the model formulation or optimizer settings) } \\ \text { - Increase the Markowitz threshold }\end{array} \\ & \text { - Employ the numerical emphasis parameter (if available) }\end{array}\right] \begin{array}{ll}\text { - Try all other algorithms (and variants) } \\ \text { - Perturb data either } a \text { priori or using algorithmic settings }\end{array}\right]$
E. Klotz, A.M. Newman Practical guidelines for solving difficult linear programs Surveys in Operations

prenrocesposing oy uno i

StarNetLite_TEPM_Iceland.gms(15000) 986 Mb
--- $1,167,736$ rows $2,004,441$ columns $8,140,314$ non-zeroes 0 nl-code 0 nl-non-zeroes
--- 7 discrete-columns
*** 63,652 relaxed-columns WARNING

40% reduction in rows,
 38% in columns and
 30% in nonzeros

--- StarvetLIte_IEPM-ICeIana.gms(15000) 98
--- StarNetLite_TEPM_Iceland.gms(15000) 984 Mb 3 secs
Gurobi $\quad 24.6 .1$ r55820 Released Jan 18, 2016 WEI x86 64bit/MS
Windows
Gurobi link license.
Gurobi library version 6.5.0
Reading parameter(s) from "C:\Users \aramos\Desktop\Aramos\TEPES \backslash gurobi.opt"
>> Method 2
>> IntFeasTol 1e-9
>> OptimalityTol 1e-9
>> Feasibil
>> RINS 100
>> DisplayInterval 1
>> NumericFocus 1
>> Kappa 1
>> MarkowitzTol 0.999
>> UseBasis 0
>> Names 0
>> Names 0
>> GomoryPasses 0
>> Heuristics 0.001
>> MipFocus 3
>> *PreDual 0
>> *PrePasses 3
>> *PreSolve 2
>> *PreSparsify 1

Finished reading from "C:\Users\aramos \Desktop\Aramos\TEPES\gurobi.opt" Starting Gurobi...
Optimize a model with 1167735 rows, 2004440 columns and 8140308 nonzeros Coefficient statistics:

Matrix range [7e-09, 1e+03]
Objective range [1e+00, 1e+00]
Bounds range [4e-07, 5e+00]
RHS range [1e-18, 1e+01]
Presolve removed 257457 rows and 497937 columns (presolve time = 2s) ... Presolve removed 259520 rows and 500000 columns (presolve time $=2 s$) ... Presolve removed 470416 rows and 710896 columns (presolve time = 3s) .. Presolve removed 470616 rows and 711132 columns (presolve time $=4$ s) ... Presolve removed 470666 rows and 753485 columns (presolve time $=5$ s) Presolve removed 470705 rows and 753535 columns (presolve time $=6$ s) Presolve removed 470705 rows and 753535 columns

Preprocessing by Gurobi

Case SEP2030
Read LP format model from file openTEPES_SEP2030sto.lp
Reading time $=106.19$ seconds
eTotal Cost. 2999548 rows, 35134
Linear constraint matrix
Vanear constraint matrix Variable types

2999548 Constrs, 3513436 Vars, 11508142 NZs
Matrix coefficient range $\quad:$ [$0.00092,5000$]
Objective coefficient range
Variable bound range
$[1,1]$
[0.00120252, 4307.64]
RHS coefficient range : [0.00120223, 2765.6]
Presolve removed 445826 rows and 519558 columns (presolve time $=6 s$) \ldots
Presolve removed 927371 rows and 840000 columns (presolve time $=15$ s) ..
Presolve removed 927371 rows and 840060 columns (presolve time $=15 \mathrm{~s}$)
Presolve removed 932122 rows and 845683 columns (presolve time $=20$ s)
Presolve removed 932122 rows and 845683 columns (presolve time $=20 \mathrm{~s}$)
Presolve removed 941267 rows and 858479 columns (presolve time $=25 \mathrm{~s}$)
Presolve removed 941267 rows and 858479 columns (presolve time $=25 \mathrm{~s}$)
Presolve removed 952315 rows and 872117 columns (presolve time $=30$ s)
Presolve removed 952315 rows and 872117 columns (presolve time $=30 \mathrm{~s}$)
Presolve removed 969568 rows and 892522 columns (presolve time $=35 \mathrm{~s}$)
Presolve removed 969568 rows and 892522 columns (presolve time $=35 \mathrm{~s}$)
Presolve removed 974714 rows and 902410 columns (presolve time $=44 \mathrm{~s}$)
Presolve removed 974731 rows and 902410 columns (presolve time $=53 \mathrm{~s}$)
Presolve removed 974731 rows and 902410 columns
Presolve time: 53.20s
Statistics for model eTotalTCost pre :
Linear constraint matrix : 2024817 Constrs, 2611026 Vars, 8347459 NZs
$\begin{array}{ll}\text { Variable types } & : 2392626 \text { Continuous, } \\ \text { Matrix coefficient range } & :[0.0319163,5000]\end{array}$
Objective coefficient range : [0.00092, 2]
Variable bound range : [0.0002, 4307.64]
RHS coefficient range $\quad:$ [$0.000141,3281.46$]

Case ES2030
eTotalTCost: 5162243 rows, 6832942 columns, 21554828 nonzeros
Statistics for model eTotalTCost :
Linear constraint matrix Linear constraint matrix
Matrix coefficient range Objective coefficient range Variable bound range
[0.000107523 Cons, 6832942

RHS coefficient range [1, 1]

Presolve removed 547789 rows and 739037 columns (presolve time $=85$) ... Presolve removed 1386313 rows and 1577561 columns (presolve time $=10$ s) . Presolve removed 1387761 rows and 1579009 columns (presolve time $=16 s$) \ldots Presolve removed 1389569 rows and 1611781 columns (presolve time = 20s) Presolve removed 1389569 rows and 1614605 columns
Statistics for model eTotalTCost_pre
Linear constraint matrix : 3772674 Constrs, 5218337 Vars, 15088689 NZs Matrix coefficient range : [0.0002813, 2488.05]
Objective coefficient range : [0.000107523, 163.402]
Variable bound range
RHS coefficient range

$$
\left[\begin{array}{lll}
{[6.08628 e-06,} & 4307.64 \\
{[0.00258675,} & 2844.48
\end{array}\right]
$$

Preprocessing by Gurobi Python shell

- Before and after presolve can help you in detecting improvements in the formulation
- Allows getting the optimization problem after the presolve

```
ModelName = read("OriginalProblem.lp")
ModelNamePresolved = ModelName.presolve()
ModelNamePresolved.write("PresolvedProblem.lp")
```

- Gurobi Model Analyzer (gurobi_modelanalyzer) allows to detect numerical problems

Some tips for MIP

- Think about lazy constraints (only in GAMS/CPLEX/Gurobi)
- Avoid introducing symmetry (totally equal decision variables). GAMS/CPLEX has a symmetry-breaking cut parameter
- Symmetry-breaking constraint $x_{i} \geq x_{i+1}$
- Avoid the use of big M parameters or put tight (lowest upper bound) values for the big M
- GAMS/CPLEX/Gurobi supports the use of an indicator constraint $x \leq M y$

$\operatorname{minFy}+V x$	$\operatorname{minFy}+V x$	Write in the file cplex.opt
$x \leq M y$	$x \leq 0$	indic constraint $\$ y 0$
$x \geq 0$	$x \geq 0$	
$y \in\{0,1\}$	$y \in\{0,1\}$	

Reformulation in MIP problems

- Most MIP problems can be formulated in different ways
- In MIP problems, a good formulation is crucial to solve the model
- How good is a MIP formulation?
- Integrality gap: the difference between the objective function of the MIP and LP relaxation solutions
- Given two equivalent MIP formulations, one is stronger (tighter/better) than the other if the feasible region of the linear relaxation is strictly contained in the feasible region of the other. The integrality gap is lower.

Warehouse location problem (no limits) (i)

- Choose where to locate warehouses among a set of locations and assign clients to the warehouses, minimizing the total cost. No limits mean that there is no limit on the number of clients assigned to a warehouse.
- Data
j locations
i clients
c_{j} localization cost in j
$h_{i j}$ cost of satisfying the demand of client i from j
- Variables $y_{j}= \begin{cases}1 & \text { warehouse located in } j \\ 0 & \text { otherwise }\end{cases}$
$x_{i j}$ fraction of demand of client i met from j

Warehouse location problem (no limits) (ii)

Formulation \#1

```
min}\mp@subsup{\sum}{j}{}\mp@subsup{c}{j}{}\mp@subsup{y}{j}{}+\mp@subsup{\sum}{ij}{}\mp@subsup{h}{ij}{}\mp@subsup{x}{ij}{
\sum\mp@subsup{x}{ij}{}=1\quad\foralli
xij}\leq\mp@subsup{y}{j}{}\quad\foralli
yj\in{0,1},\mp@subsup{x}{ij}{}\in[0,1]
```

Number of constraints: $I+I J$

Formulation \#2

$$
\begin{aligned}
& \min \sum_{j} c_{j} y_{j}+\sum_{i j} h_{i j} x_{i j} \\
& \sum_{j} x_{i j}=1 \quad \forall i \\
& \sum_{i} x_{i j} \leq M y_{j} \quad \forall j \\
& y_{j} \in\{0,1\}, x_{i j} \in[0,1]
\end{aligned}
$$

Number of constraints: $I+J$

- Both formulations are MIP equivalent. However, formulation \#1 is stronger
- Intuitively the fewer constraints the better. That's true in LP. However, in many MIP problems, the more constraints, the better.

Production problem with fixed and inventory costs (i)

- Data t time period
c_{t} fixed cost, p_{t} variable cost, h_{t} inventory cost d_{t} demand
- Variables
$y_{t}=\left\{\begin{array}{l}1 \text { to produce } \\ 0 \text { not produce }\end{array}\right.$
x_{t} amount produced
s_{t} inventory at the end of the period
- Formulation \#1

$$
\begin{aligned}
& \min \sum_{t}\left(c_{t} y_{t}+p_{t} x_{t}+h_{t} s_{t}\right) \\
& s_{t-1}+x_{t}=d_{t}+s_{t} \quad \forall t \\
& x_{t} \leq M y_{t} \quad \forall t \\
& s_{0}=s_{T}=0 \\
& x_{t}, s_{t} \geq 0, y_{t} \in\{0,1\}
\end{aligned}
$$

Number of constraints: $2 T$
Number of variables: $3 T$

Production problem with fixed and inventory costs (ii)

- Variables

$$
y_{t}=\left\{\begin{array}{l}
1 \text { to produce } \\
0 \text { not produce }
\end{array}\right.
$$

$q_{i t}$ quantity produced in period i to meet the demand in period $t \geq i$

- Formulation \#2

$$
\begin{aligned}
& \min \sum_{t=1}^{T} \sum_{i=1}^{t}\left(p_{i}+h_{i}+h_{i+1}+\cdots+h_{t-1}\right) q_{i t}+\sum_{t=1}^{T} c_{t} y_{t} \\
& \sum_{i=1}^{t} q_{i t}=d_{t} \quad \forall t \\
& q_{i t} \leq d_{t} y_{i} \quad \forall i t \\
& q_{i t} \geq 0, y_{t} \in\{0,1\}
\end{aligned}
$$

- Formulation \#2 is better. However, it has a greater number of constraints and variables.

Tight and compact unit commitment

- D.A. Tejada-Arango, S. Lumbreras, P. Sánchez-Martín, and A. Ramos Which Unit-Commitment Formulation is Best? A Systematic Comparison IEEE Transactions on Power Systems 35 (4): 29262936 Jul 2020 10.1109/TPWRS.2019.2962024
- G. Gentile, G. Morales-España and A. Ramos A Tight MIP Formulation of the Unit Commitment Problem with Start-up and Shut-down Constraints EURO Journal on Computational Optimization 5 (1), 177-201 March 2017 10.1007/s13675-016-0066-y
- G. Morales-España, C.M. Correa-Posada, A. Ramos Tight and Compact MIP Formulation of Configuration-Based Combined-Cycle Units IEEE Transactions on Power Systems 31 (2), 13501359, March 2016 10.1109/TPWRS.2015.2425833
- G. Morales-España, J.M. Latorre, and A. Ramos Tight and Compact MILP Formulation for the Thermal Unit Commitment Problem IEEE Transactions on Power Systems 28 (4): 4897-4908, Nov 2013 10.1109/TPWRS.2012.2222938
- G. Morales-España, J.M. Latorre, and A. Ramos Tight and Compact MILP Formulation of Start-Up and Shut-Down Ramping in Unit Commitment IEEE Transactions on Power Systems 28 (2): 12881296, May 2013 10.1109/TPWRS.2012.2222938

Ramp constraints

$$
\begin{gathered}
P_{n t}-P_{n-1, t} \leq r u p_{t} \\
P_{n-1, t}-P_{n t} \leq r d w_{t} \\
P_{n t}-P_{n-1, t} \leq r u p_{t} U C_{n t} \\
P_{n-1, t}-P_{n t} \leq r d w_{t}\left(U C_{n t}+S D_{n t}\right)
\end{gathered}
$$

Classical

Tighter

- Ramp equations are considered in the periods only when the unit is connected

$$
\begin{aligned}
& P_{n t}: \text { output above the minimum load } \\
& r u p_{t}: \text { upwards ramp limit for generator } t \\
& r d w_{t}: \text { downwards ramp limit for generator } t \\
& U C_{n t}: 1 \text { if generator } t \text { is connected in hour } n, 0 \text { otherwise } \\
& S U_{n t}: 1 \text { if generator } t \text { is started in hour } n \\
& S D_{n t}: 1 \text { if generator } t \text { is shutdown in hour } n
\end{aligned}
$$

Why the constraint is tighter?

Given that the constraint uses the output above the minimum load, it can only be applied when the unit is committed until the following period the unit was committed.

n	1	2	3	4	5	6	7	8	9	10	
$U C_{n}$	0	0	0	0	1	1	1	1	0	0	
	$S U_{n}$	0	0	0	0	1	0	0	0	0	0
	$S D_{n}$	0	0	0	0	0	0	0	0	1	0
RampUp	$U C_{n}$	0	0	0	0	1	1	1	1	0	0
RampDw $U C_{n}+S D_{n}$	0	0	0	0	1	1	1	1	1	0	

Reformulation of an NLP problem

$$
\begin{array}{ll}
\min \sum_{i=1}^{n} \sum_{j=i+1}^{n} q_{i j} x_{i} x_{j} & \min \sum_{i=1}^{n} x_{i} \sum_{j=i+1}^{n} q_{i j} x_{j} \\
\sum_{j=1}^{n} x_{j}=1 & \sum_{j=1}^{n} x_{j}=1 \\
\sum_{j=1}^{n} r_{j} x_{j}=r_{0} & \sum_{j=1}^{n} r_{j} x_{j}=r_{0}
\end{array}
$$

$$
\begin{aligned}
& \min \sum_{i=1}^{n} x_{i} w_{i} \\
& w_{i}=\sum_{j=i+1}^{n} q_{i j} x_{j} \\
& \sum_{j=1}^{n} x_{j}=1 \\
& \sum_{j=1}^{n} r_{j} x_{j}=r_{0}
\end{aligned}
$$

- Formulation \#2 is better than the \#1. The evaluation of the objective function in \#1 requires $2 n^{2} / 2$ multiplications. In \#2 only $n+n^{2} / 2$
- Formulation \#3 has essentially the same number of multiplications, but they appear in linear constraints. The number of constraints is bigger, but all of them are linear. Linear algebra is much more efficient. Formulation \#3 is the most efficient

Reformulation of an NLP problem

$$
\begin{aligned}
& \min \frac{x+y}{\sum_{i} z_{i}} \begin{array}{c}
u \\
u
\end{array}=x+y \\
& v=\sum_{i} z_{i} \\
& v \geq \varepsilon
\end{aligned}
$$

- Formulation \#1 has a lot of nonlinear variables, and it is not protected against division by zero
- Formulation \#2 has only 2 nonlinear variables; the remaining ones appear in linear equations, and the denominator is lower bounded to avoid division by zero. The model is easier to solve and more robust

Product of two variables $x_{1} x_{2}$

$$
\begin{gathered}
x_{1} x_{2}=y_{1}^{2}-y_{2}^{2} \\
y_{1}=\left(x_{1}+x_{2}\right) / 2 \\
y_{2}=\left(x_{1}-x_{2}\right) / 2 \\
l_{1} \leq x_{1} \leq u_{1} \\
l_{2} \leq x_{2} \leq u_{2} \\
\frac{1}{2}\left(l_{1}+l_{2}\right) \leq y_{1} \leq \frac{1}{2}\left(u_{1}+u_{2}\right) \\
\frac{1}{2}\left(l_{1}-u_{2}\right) \leq y_{2} \leq \frac{1}{2}\left(u_{1}-l_{2}\right)
\end{gathered}
$$

Solving large-scale problems

- MIP
- Solve with a sensible relative optimality tolerance
- Provide an initial solution based on specific knowledge of the model or use the solution from a previous solve
- NLP
- Introduce sensible bounds on variables AND
- Provide a good enough starting point AND
- Scale the problem

MIP models. Gurobi parameters

- Most important parameters
- Threads, MIPFocus
- Solution Improvement
- ImproveStartTime, ImproveStartGap
- Termination
- TimeLimit
- MIPGap, MIPGapAbs
- NodeLimit, IterationLimit, SolutionLimit
- Cutoff
- Speeding Up The Root Relaxation
- Method
- Numerical issues
\checkmark Presolve, PrePasses, Aggregate, AggFill, PreSparsify, PreDual, PreDepRow
\checkmark NumericFocus
\square Heuristics
\checkmark Heuristics, SubMIPNodes, MinRelNodes, PumpPasses, ZeroObjNodes
\checkmark RINS 100
- Cutting Planes
\checkmark Cuts, GomoryPasses, FlowCoverCuts, MIRCuts

CPLEX Performance Tuning for MIP

- Names no
- NodeFileInd 3
- NodeSel 0
[VarSel 3
- StartAlg 4
- MemoryEmphasis 1
- WorkMem 1000
- MIPEmphasis 2
- MIPSearch 2
- SolveFinal 0
- Solution Polishing
- Solution pool
[FlowCovers
- FeasOptMode 2
- FeasOpt 1
- tuning cplex.opt
- RINSHeur 100
- FpHeur 2

Pure branch and bound

- Cuts-1
- HeurFreq-1

Presolve

- Prelnd, PrePass
- Solution method of LP problem
\checkmark First iteration (interior point or simplex method)
\checkmark Successive iterations (primal or dual simplex)
- Priority for variable selection
\checkmark Select variables that impact the most in the o.f. (e.g., investment vs. operation variables)
- Initial cutoff or incumbent
\checkmark Initial valid bound of the o.f. estimated by the user

How to Tune CPLEX Options for TIMES models

CPLEX \backslash Barrier options for TIMES models

https://iea-etsap.org/webinar/CPLEX\%20options\%20for\%20running\%20TIMES\%20models.pdf

1. Programming Style
2. GAMS Code
3. Embedded Python
4. Connect
5. Performance Issues
6. Advanced Algorithms

Advanced Algorithms

Fixed-Charge Transportation Problem (FCTP)

 Complete problem $\min _{x_{i j}, y_{i j}} \sum_{i j}\left(f_{i j} y_{i j}+c_{i j} x_{i j}\right)$
 connections

- Bd Relaxed Master
$\min _{y_{i j}, \theta} \sum_{i j}\left(f_{i j} y_{i j}\right)+\theta$
 subproblem at iteration l

Dual variables of linking constraints at iteration l

- Bd Subproblem

$$
\begin{aligned}
& \theta^{k}=\min _{x_{i j}} \sum_{i j}\left(c_{i j} x_{i j}\right) \\
& \sum_{j} x_{i j} \leq a_{i} \quad \forall i \\
& \sum_{i} x_{i j} \geq b_{j} \quad \forall j \\
& x_{i j} \leq M_{i j} y_{i j}^{k} \quad \forall i j \quad: \pi_{i j}^{k} \\
& x_{i j} \geq 0
\end{aligned}
$$

Fixed-Charge Transportation Problem. Bd Solution

- Possible arcs

- Solutions along Benders decomposition iterations

I	I	I	I	I
$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & { }_{a}^{0} \\ & \alpha_{0}^{0} \end{aligned}$	α_{0}^{0}	\mathscr{O}_{0}^{∞}	$<_{0}^{0}$
\underbrace{I}_{0}	$\begin{aligned} & 9 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & I \\ & \infty \end{aligned}$		a_{0}^{a}
$)_{0}^{2}$	α_{0}^{a}			

Fixed-Charge Transportation Problem. Bd

 Convergence

Iteration	Lower Bound	Upper Bound
1 a 6	$-\infty$	∞
7	140	390
8	140	390
9	140	390
10	360	390
11	370	390
12	380	380

FCTP solved by Benders decomposition (i)

```
$Title Fixed-charge transportation problem (FCTP) solved by Benders decomposition
    * relative optima 
    sets
        iterations / 11 * 120
        Ll(1) literations subset { i1 *i4,
    * Begin problem dat
    A(i)
        (i) product offer
        B(j) product demand
    table ((i,j) per unit variable transportation cost
    i1 [\begin{array}{c}{1}\\{1}\end{array})
    li2
    table F(i,j) fixed transportation cost
        i1 10 20 30
        l12
        li2
    End problem data
    abort $(sum[i, A(i)] < sum[j, B(j)]) 'Infeasible problem'
    parameters RdTol relative Benders tolerance / 1e-6
        z_Lower lower bound
        Z_Upper li,jupper bound,
        MI_L (1,i,j) dual variables of second stage in iteration
        PI L (1,i,j) dual variables of second stage constraints in iteration
        72L (1) cut cype(feasibility Q optimality 1) in iteration
    \(i,j)
    Y(i,j)
    variables
        Z1 }\begin{array}{l}{\mathrm{ _irst stage objective function}}\\{\mathrm{ z2 }}\\{\mathrm{ second stage objective function}}
```


FCTP solved by Benders decomposition (ii)

FCTP solved by Benders decomposition (iii)

```
* parameter initialization
LL
Melta (1)= 0;
M,
* Benders algorithm iterations
```



```
    solving master problem
        solve Master_Bd using MIP minimizing Z1;
        Storing the master solutio
        -((1,i,j)= v.i(i,j)
    fixing first-stage variables and solving subproble
    Y.fx(i,j) = Y.l(i,j);
    solve Subproblem_Bd using RMIP minimizing z2
    if (Subproblem_Bd.ModelStat = 4,
        (Subproblem_Bd.M
        M2_L(1)= Subproblem_Bd.SumInfes
    else
        upating tower and upper bound
            Z_Lower = min(Z_Upper, z1.1 ; Theta.1 + 22.1);
            Theta.lo = - -inf;
```



```
PI_L(l,i,j) = FlowLimit.m(i,j);
l}\begin{array}{l}{\textrm{Y}.10(i,j)=0;}\\{\mathrm{ Y.up( i,j)=1;}}
increase the set of Benders cuts
LL(1) = yes;
solve Complete using MIP minimizing z1
```


Stochastic FCTP

Deterministic \& Stochastic FCTP

```
$Title Deterministic fixed-charge transportation problem (DFCTP)
* relative optim
\
```



```
table \(C(i, j)\) per unit variable transportation cost
    lll
    lllll
table F(i,j) fixed transportation cost
    M1,
    llllllll
    llll
abort $(sum[i,A(i)] < sum[j, B(j)]) 'Infeasible problem'
positive variable
Mositive variable flom
imary(i,j)
M(i,j)
```



```
    M
```



```
Cffer (i ).. sum[j, X(i,j),=1= (i)
```



```
model Complete / EQ_OBJ offer Demand FlowLimit /
x.up(i,j)=min[A(i),B(j)]
```

\$\$Title stochastic fixed-charge transportation problem (SFCTP)

- relative optimality tolerance in solving MIP problems
option OptcR $=\theta$, Decimals $=6$
sets
I origins
origins
destination
scenarios

arameters
$A(i)$
$B(t)$ product offer
product demand product demand
scenario orobability
product demand sto
bility
stochastic ;
$(-0.05,0.05)]$
$\mathrm{BS}(\mathrm{s}, \mathrm{j})=\mathrm{B}(\mathrm{j}) *[1+$ uniform $(-0.05,0.05)] ;$
$\mathrm{P}(\mathrm{s})$
$=1 / \operatorname{card}(\mathrm{s})$
table $C(i, j)$ per unit
able $C(i, j)$ per unit variable transportation cost
$\begin{array}{llll}12 & 3 & 2 & 1 \\ \text { i3 } & 2 & 3 & 4 \\ 14 & 4 & 3 & 2 ;\end{array}$
table $F(\mathbf{i}, \mathrm{j})$ fixed transportation cost

$\begin{array}{llll}12 & 28 & 30 & 48 \\ \text { i3 } & 38 & 48 \\ 14 & 48 \\ 14 & 58 & 60\end{array}$
loop (s , abort $\$($ sum $[\mathrm{i}, \mathrm{A}(\mathrm{i})]$ < sum[j, BS($(\mathrm{j}, \mathrm{j})]$) 'Infeasible problem')
positive variable
X(s,i,j $)$
X(S, $, \mathrm{j}, \mathrm{j})$
arc arc flow
inary
$Y(i, j) \quad$ arc investment decision
${ }_{z 1}^{\text {variables objective function }}$
$\underset{\substack{\text { equations } \\ \text { EQ } \\ \text { OBJ }}}{ }$
EDOBS (E, i Complete problem objective function

model Complete / EQ OBJ offer Demand FlowLimit /
x. up (s, i, j) = 100 ;

Complete.OptFile = 1 ;
file copt / cplex.opt 1;
put copt putclose writelp fCTp_Sto.lp' / ;
olve Complete using MIP minimizing z1
isplay z1.1, Y. 1

Stochastic FCTP with EMP (Extended Mathematical

Programming) (https://www.GAMS.com/latest/docs/UG EMP SP.html)

```
$title Deterministic fixed-charge transportation problem (FCTP)
relative optimality tolerance in solving MIP problems
option OptcR =0, Decimals =6
sets
```



```
parameters
    # (i)
table C(i,j) per unit variable transportation cost
```



```
    llll
    i3
able F(i,j) fixed transportation cost
    C
    M11 (10 20 30
```



```
\0sitive variable
    x(i,j) arc flow
binary variable
    Y(i,j)
z1
                                objective function
    EQ_OBJ complete problem objective function
    Offer (i) offer at origin
    Demand (` j) demand at destination
    Q_овл .. Z1 =e= sum[(i,j),F(i,j)*Y(i,j)]+\operatorname{sum[(i,j),C(i,j)*X(i,j)];}
    \ EQOBJ (i,).. z1=e= sum[(i,j), F(i,j)*(i)
    lol
model Complete / all / ;
x.up(i,j) = 100 ;
```

set S scenarios / s800 * s099
$\mathrm{BS}(\mathrm{s}, \mathrm{j})$ product demand
$\mathrm{YS}(\mathrm{s}, \mathrm{i}, \mathrm{j})$ arc investment decision
$\mathrm{xs}(\mathrm{s}, \mathrm{i}, \mathrm{j})$ arc flow
$\underset{\mathrm{P}(\mathrm{s}, \mathrm{s})}{\mathrm{XS}(\mathrm{s}, \mathrm{j})}$ scenario probability ;
$B S(s, j)=B(j) *[1+$ uniform $(-0.05,0.05)]$
$\mathrm{BS}(\mathrm{s}, \mathrm{j})=\mathrm{B}(\mathrm{j}) *[1+\mathrm{u}$
$\mathrm{P}(\mathrm{s})=1 / \mathrm{card}(\mathrm{s}) ;$
file emp / '\%emp.info\%' / ; emp.pc=2 ; emp.pw=102e
define probability and values of the stochastic parameter

${ }_{\text {put }}^{\text {loop }}$ (j $\mathrm{m}(\mathrm{j})$)
loop (s,
put $P(s)$,
10op (j,
${ }^{100 \mathrm{p}}$ (put . $\mathrm{BS}(\mathrm{s}, \mathrm{j})$ /
)
define stochastic parameter, variable and constraints of the second stag
)
set dict $/ \mathrm{s}$. scenario.

Y. level: YS /
loop (s, abort $\$(\operatorname{sum}[i, A(i)]$ < sum[j, BS(s,j)]) 'Infeasible problem')
file copt aplex.opt
file copt / cplex.opt / ; ;
file Dopt / de.opt / j b
put Dopt putclose 'subsolver CPLEX' / 'subsolveropt 1' /
Complete.optFile $=1$
solve Complete minimizing $\mathrm{z1}$ using emp scenario dict
display 21.1, YS

Stochastic FCTP solved with Benders using EMP

STitle Fixed-charge transportation problem (FCCP) solved by Benders decomposition relative optimactity tolerance in solving MIP problens
option optcR $=0$, Decimals $=6$
$\underset{\substack{\text { sets } \\ \text { LL(1) }}}{\substack{\text { L(}}}$
iterations
iterations
/, i1 * i4,
/, i1 * i4,

$\begin{array}{lllll}122 & 3 & 2 & 1 \\ 13 & 2 & 3 & 4 \\ 14 & 4 & 3 & 2 \\ 1 & & & \end{array}$
table $\mathrm{F}(\mathrm{i}, \mathrm{j})$ fixed transportation cost

abort $\$($ sum $[i, A(i)]$ < sum $[j, B(j)])$ 'Infeasible problen
$\substack{\text { paraneters } \\ \text { Bato } \\ \text { _ _ower }}$

${ }^{22}$-L (1)


```
* parameter initialization
ML(1)
lol
* Benders algorithm iteratio
Theta.fx =(-9;
```



```
    \
    _ixing first--ttage variables and solving subbrobtem
    solving subprobtem
    Slve Subrolem_ld minimizing 72 using emp sererio dit
    * toring parameters to build a new Benders cut
    M
    else
    *)
        M, Ldating Lower and upper bound
        *-Lowerernmin(Z_Uper, z1.1 - Theta.1 + 22.1)
    Theta.10 =-inf;
    M Nelta(1)= 1;',
    PI_L(1,s,i,j) = PI(s,i,j);
    \.loc(i,j)=0;
    \increase the set of Benders cuts
```

display z_{-}Lower, z_Upper, r .1
to allow cPLEE correctly detect rays in on infeasible problem
only simplex methoc can be used ound no preprocessine
optimatity and
file copT / Cplex.opt / '
put copt putclose ' 'writelp pep. 1p' / 'names 1. /;

\
\
M)
M)

x .up $(\mathrm{i}, \mathrm{j})=100$;

${ }^{\text {100p }(j)}$ put. $\operatorname{tn}(j)$
${ }_{\substack{\text { 1oop (s. } \\ \text { put } p(s)}}^{\text {(s) }}$
$\underset{\substack{\text { poop } \\ \text { put } \\ \text { pS }(s, j)}}{\substack{\text { Puts } \\ \text { (s) }}}$
define stochastic parameter, variable and constraints of the second stage
r, variable and cons stro
Offer Demand flowl imit'
_

Stochastic FCTP solved with Benders using Guss


```
    \:(t)
    c
\
*)
*)
Bd_Lut(11)
\,
x.up(i,j) = 100;
set
    setm_dem stochastic demand scenario dictionary
```



```
    < store in the RHS with values of the LHS
    *)
```



```
10op (s, abort $(sum[i, A(i)] < sum[j, B(s(, j)]) 'Infeasible problem' );
```

```
\[
\text { Subprobilem_Bd.optFile = } 1 \text {; }
\]
```

```
LM
M
& Benders algorithm iterations
```



```
    storing the master solution
    \
    f\times(i,j) = r.1(i,j);
    *Nitialization of the destiontion deman
    O(3)=5(500%,
    *)
    * storing parameters to unta a new Benders cut
    M,
    Z2_L( (1,5) = Subproblem_Bd.SumInfes
    Z_Lower = lower and upper bound
        -Lower = min(z_Upper, 21.1 ;-Theta.1 + sum[s, P(s)* 22S(s)])
    Theta.10 =- inf ;
    Melta(1,)=1;
    PI_L(1,s,i,j) = PI(s,i,j)
    \.10( i,j)=0;
    \
```

display z_{-}_ower, z_{-}upper,, . 1

Stochastic FCTP solved with Benders using

Guss\&Grid

```
STitle Fixed-charge transportation problem( (FCTP) solved by Benders decomposition
*)* relative ootinality tolerance in solving MIP problems
l}\begin{array}{l}{\mathrm{ option}}\\{\mathrm{ sets}}
Sets
    *)
c
```



```
    N(s)
table c(i,j) per unit variable transportation cost
    lll
table F(i,j) fixed transportation cost
    {
c
abort &(sum[i, A(i)] < sum[j, B(j)]) 'Infeasible problem
    \begin{subarray}{c}{\mathrm{ parameters}}\\{\mathrm{ ator_over}}\\{\mathrm{ __lower}}\end{subarray}
```



```
    *)
    *)
```



```
    \inary,j)
```



```
in iteration \(\frac{1}{1}\)
in in interation
in
in iteration
in
in iteration
1
positive variable
\[
\underset{\gamma}{\substack{\text { binary } \\ \text { (i, j) }}} \text { variable erc investment decision }_{\text {arc }}
\]
```


sets
paraneter

$\left.\left.{ }_{T-L(11, ~}, \mathrm{i}, \mathrm{j}\right) \mathrm{j}\right) \mathrm{j}$

x. $\mathrm{up}(\mathrm{i}, \mathrm{j})=100$;

Sel Solution headers / System. Gussmodelattributes
scenaric demand scenario dictionary
se the ustreport_o

loop (s, abort $\$(s$ sum[i, A(i)] < sum $[j$, BS $(s, j)])$ 'Infeasible problem')
to allow CPLEX carrectly detect ravs in an infeasible problem

file cop / Cplex.opt $/$;
put copt putclose . ScaInd

Transportation problem solved as MCP (KKT conditions)

sets

I origins / VIGO, ALGECIRAS
J destinations / MADRID, BARCELONA, VALENCIA /
parameters
pA(i) origin capacity
/ VIGO
VIGO 350
ALGECIRAS 700
$\mathrm{pB}(\mathrm{j})$ destination demand
MADRID
bARCELONA 450
VALENCIA 150
table $\mathrm{pC}(\mathrm{i}, \mathrm{j})$ per unit transportation cost
MADRID BARCELONA VALENCIA
$\begin{array}{llll}\text { VIGO } & 0.06 & 0.12 & 0.09\end{array}$
ALGECIRAS 0.05

variables

$\mathrm{vX}(\mathrm{i}, \mathrm{j})$ units transported
vCost transportation cost

positive variable vX

equations
eCost transportation cost
eCapacity(i) maximum capacity of each origin
eDemand (j) demand supply at destination ;
eCost \quad.. sum[(i,j), pC(i,j) * vX(i,j)] =e= vCost ;
CCapacity (i) $\cdots \operatorname{sum}[i, j, \quad v \times(i, j)]=l=p A(i)$
eDemand (j) .. sum[$i \quad \quad \operatorname{vX}(i, j)]=g=p B(j)$;
model mTransport / all /
solve mTransport using LP minimizing vCost

$$
\begin{gathered}
\min _{x_{i j}} \sum_{i j} c_{i j} x_{i j} \\
\sum_{j} x_{i j} \leq a_{i} \forall i \\
\sum_{i} x_{i j} \geq b_{j} \quad \forall j \\
x_{i j} \geq 0
\end{gathered}
$$

$$
\mathcal{L}=\sum_{i j} c_{i j} x_{i j}+\alpha_{i}\left(\sum_{j} x_{i j}-a_{i}\right)+\beta_{j}\left(b_{j}-\sum_{i} x_{i j}\right)
$$

$$
\frac{\partial L}{\partial x_{i j}} \rightarrow
$$

sets
I origins / VIGO, ALGECIRAS] destinations / MADRID, BARCELONA, VALENCIA /
parameters
pA(i) origin capacity
$\begin{array}{ll}\text { VIGO } & 350 \\ \text { ALGECIRAS } 700\end{array}$
$\mathrm{pB}(\mathrm{j})$ destination demand
/ MADRID
MADRID 40 VALENCIA 150
table $\mathrm{pC}(\mathrm{i}, \mathrm{j})$ per unit transportation cost
MADRID BARCELONA VALENCIA
$\begin{array}{llll}\text { IGO } & 0.06 & 0.12 & 0.09\end{array}$
variables
$\mathrm{vX}(\mathrm{i}, \mathrm{j})$ units transported
$\mathrm{VA}(\mathrm{i}$) Lagrange multiplier of capacity constraint
$\mathrm{vB}(\mathrm{j})$ Lagrange multiplier of demand constraint
positive variables vX, vA, vB
equations
eProfit(i,j) marginal cost >= marginal profit eCapacity(i) maximum capacity of each origin
Demand (j) demand supply at destination ;
eProfit $(i, j) \cdots \quad v A(i)+p C(i, j)=g=\quad v B(j)$;
eCapacity(i) .. $-\operatorname{sum}[j, \quad v X(i, j)]=g=-p A(i)$;
eDemand (j) .. $\operatorname{sum}[\mathrm{i}, \mathrm{vX}(\mathrm{i}, \mathrm{j})]=\mathrm{g}=\mathrm{pB}(\mathrm{j})$;
model mTransport / eProfit.vX eCapacity.vA eDemand.vB
$x_{i j}, \alpha_{i}, \beta_{j} \geq 0$ solve mTransport using MCP

Antonio Machado. Cantares

"Todo pasa y todo queda, pero lo nuestro es pasar, pasar haciendo caminos, caminos sobre el mar."

"Everything passes and everything stays, but our fate is to pass, to pass making paths, paths on the sea."
"Allthings pass and stay forever, yet we pass eternally, drawing footpaths in our passing, footpaths on the restless sea."

Enjoy Formulating, writing and solving optimization models

Thank you for your attention

Prof. Andres Ramos
https://www.iit.comillas.edu/aramos/

Pedro de Otaola

Pedro.Otaola@comillas.edu

Andres.Ramos@comillas.edu

[^0]: Models with numerical issues can lead to undesirable results: slow performance, wrong answers, or inconsistent behavior. Source: Gurobi

[^1]: https://www.gams.com/latest/docs/UG ExecErrPerformance.html

