

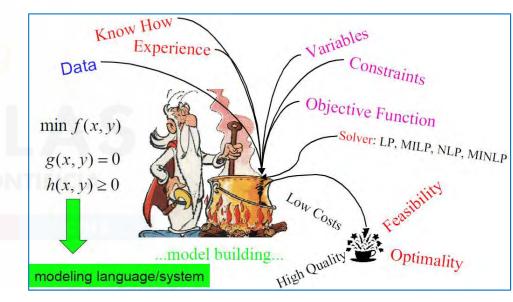
Good Optimization Modeling Practices with GAMS

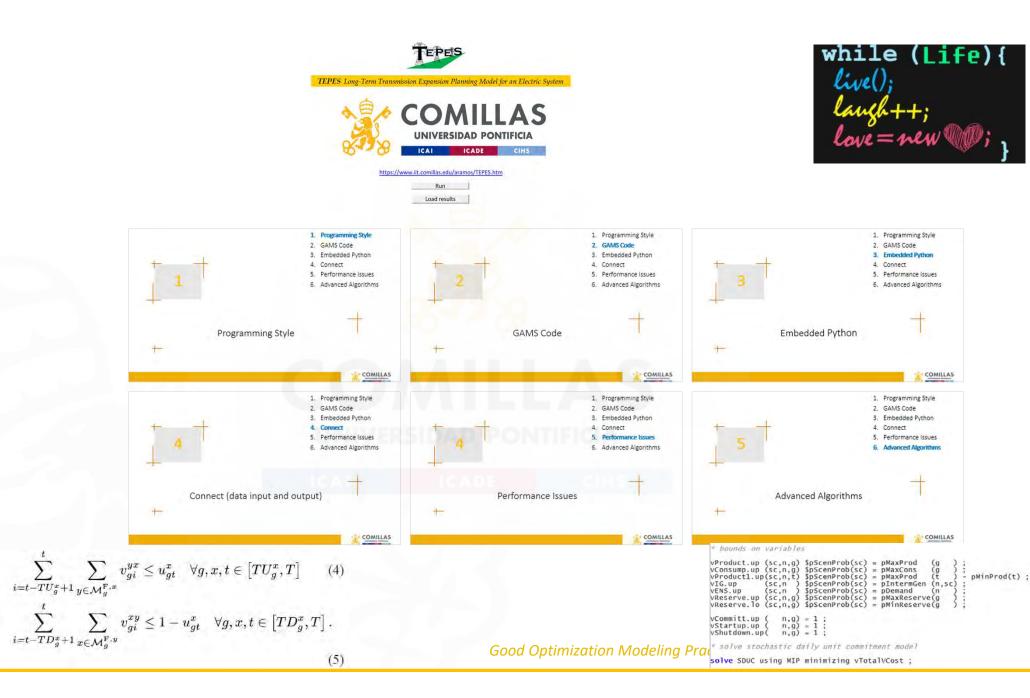
All You Wanted to Know About Practical Optimization but Were Afraid to Ask

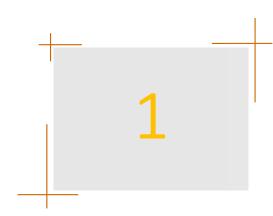
Andrés Ramos

Andres.Ramos@comillas.edu https://www.iit.comillas.edu/aramos/ Pedro de Otaola Pedro.Otaola@comillas.edu

Good Optimization Modeling Practices with GAMS. May 2025


1

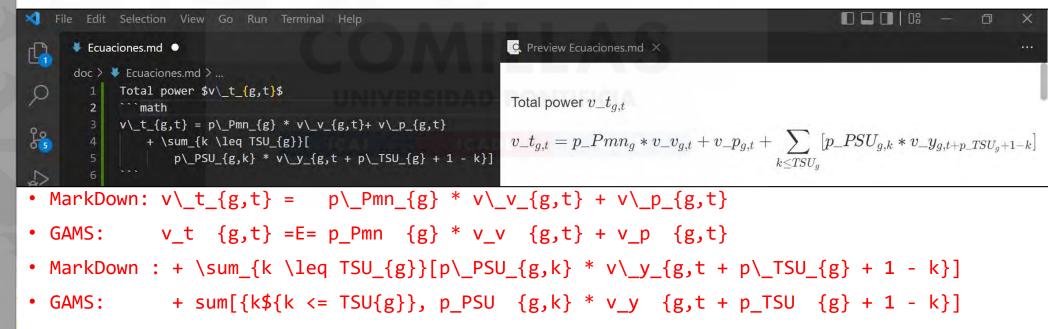

Do not confuse the ingredients of the recipe


- Mathematical formulation
 - LP, MIP, NLP, QCP, MCP
- Algebraic modeling language
 - GAMS, Pyomo
- Solver
 - Gurobi, IBM CPLEX, HiGHS, PATH
- Optimization algorithm
 - Primal simplex, dual simplex, interior point
- Input/output interfaces
 - Text file, CSV, Microsoft Excel, Matlab, Microsoft Access
- Operating system
 - Windows, Linux, macOS
- Advanced algorithms
 - Benders decomposition, Lagrangian relaxation, genetic algorithms
- Stochastic extensions
 - EMP

comillas.

1. Programming Style

- 2. GAMS Code
- 3. Embedded Python
- 4. Connect
- 5. Performance Issues
- 6. Advanced Algorithms

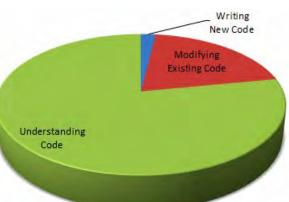

Programming Style

Write the equations before trying to code them!!

Digital formats are useful for storing the documentation with the code

- Word: easy for beginners
- Markdown (or LaTeX):
 - Faster to write once you learn
 - Easy to keep track of changes using a repository
 - "Reusable" to produce code

Modularity Completeness Interoperability Maintainability Standardization


comillas

General recommendations

- Act according to the Pareto principle
 - It takes 20 % to create the prototype
 - 80 % of code development is devoted to maintenance and refinement

Good Optimization Me http://blog.codinghorror.com/when-understanding-means-rewriting/

- MAINTAINABILITY and reusability are crucial
- Code is developed to be read by humans, not by machines. Write code to understand the model, not to obscure it.
- Say what you mean and directly.
- Don't stop with your first draft. Refine it.

Code style

- Any project manager ought to define the style before starting up a multiple-participant project (or maybe just for their help)
- Systematic and consistent use of uppercase and lowercase letters
 - Use lowercase letters instead of uppercase. We are more used to reading lowercase letters.
 - GAMS doesn't distinguish them; you are responsible for always using the same.
- Clean code and take care of the aesthetics when coding
 - Aesthetics is as important as the content. The code must be read immediately.
 - Format the code to help the reader understand it.
 - Indent to show the logical structure of a program.
 - Keep coherence in the coding rules (indent in repetitive sentences)
 - Align code to show patterns.
 - Make reading easier (parallelism among consecutive similar sentences, indent)
- Use meaningful and long names for identifiers. The consistent use of identifiers in different parts of the code.

I am not obsessive

I am not obsessivo I am not obsessive

I am NOT OBSESSIVE I AM not obsessive

I am not OBSESSIVE I am NOT OBSESSIVE

I AM NOT OBSESSIVE

I am not obsessiv

comillas

12

Efficiency vs. Clarity

- Make it clear and right before you make it faster
- Keep it simple to make it faster
- Don't sacrifice clarity for small gains in efficiency

Documentation. Comments

- It is a crucial task in code development
 - GAMS was born to include documentation in the code explicitly.
- Code must be self-documented
- Illustrative comments and well-localized
- Make sure comments and code agree
- Don't just echo the code with comments make every comment count
- Don't comment on lousy code or tricks rewrite
- Don't patch the wrong code rewrite it
- Don't over-comment

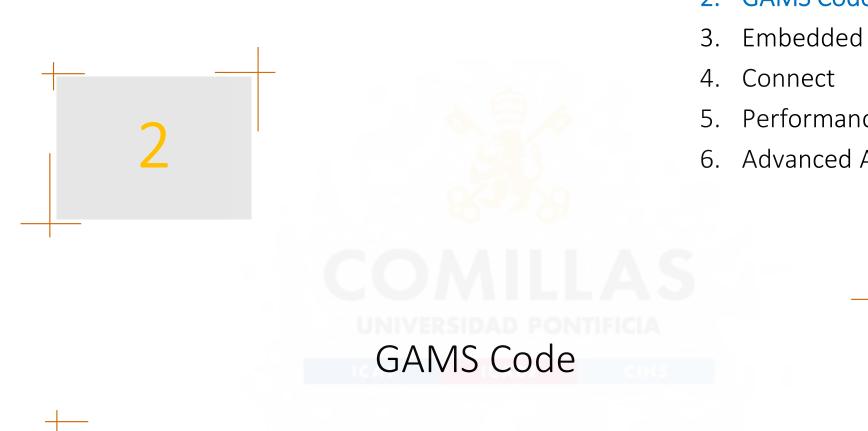
comillas

Procrastination

(noun)

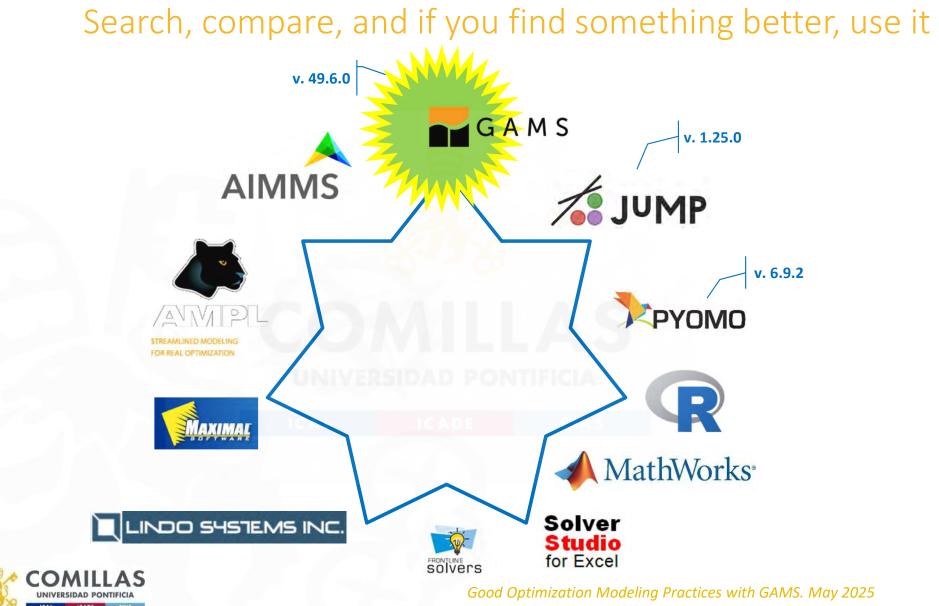
• Don't procrastinate when coding

tomorrow


a mystical land where 99% of all human productivity, motivation and achievement is stored

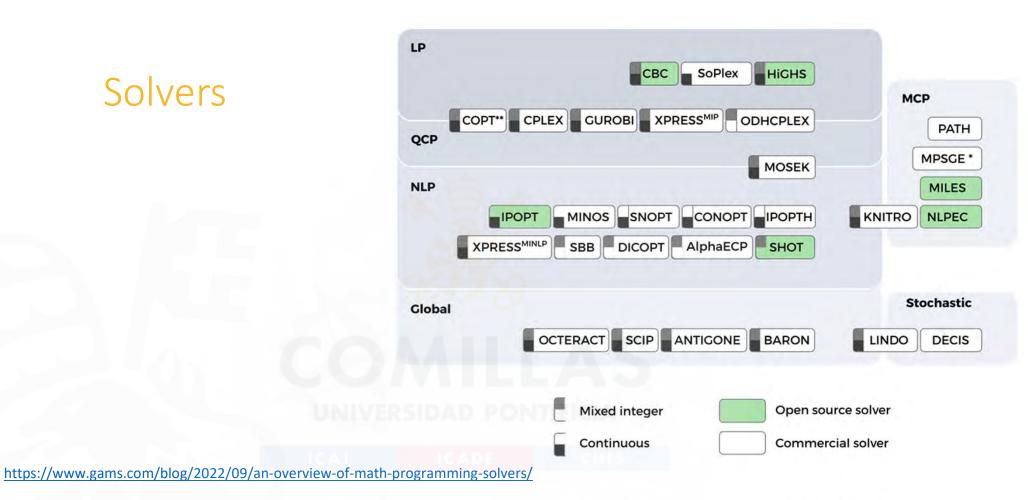
NEVER LEAVE THAT TILL TOMORROW WHICH YOU CAN DO TODAY.

BENJAMIN FRANKLIN



GAMS Code 2.

- Embedded Python
- 5. Performance Issues
- 6. Advanced Algorithms



comillas.ed

19

Solvers

* MPSGE is not a solver, but a GAMS subsystem dedicated to solving economic equillibrium models

** COPT does not handle MIQCPs

Fig. 1: Overview of the solvers included with GAMS. LP: Linear Program, QCP: Quadratically Contrained Program, NLP: Non-linear Program, MCP: Mixed Complementarity Program. Solvers that lie on the boundaries of two problem types are well suited to solve both problem types. Please note that this figure does not accurately reflect every solvers capabilites. Instead, it is meant to give a quick anser to the question: Which solver should I try first, given a problem class?

ICADE

Learning by reading first, and then by doing (

• GAMS Model Libraries

comillas.<mark>ed</mark>

(https://www.GAMS.com/modlibs/)

• Decision Support Models in the Electric Power Industry (https://pascua.iit.comillas.edu/aramos/openmodels.htm)

OPTIMIZATION. ALGEBRAIC MODELING LANGUAGES

State of the Art in United Continuation 3-My 1997, Modeling Languages: Advancementation 3-My 1997, Modelin de Continuation 3-My 1997, Marcel 3-My 1997, Marcel

moción ICAI B.

- aracterización de un sistema de energía eléctrica Octubre 2003
- Modelos de explotación v expansión. Classificación Febrero 2001. Electricity Markets and Power Systems Optimization Februar 2018
- Metodologías y modelos de planificación del equipo generador Febrero 1996. Modelos de explotación de la generación eléctrica Marzo 2004. Modelos de planificación de la explotación de la generación eléctrica Mayo 2008.

RELIABILITY

Índices, medidas y criterios de fisibilidad Diciembre 2003. <u>Modelos de lisbilidad de la ceneración</u> Diciembre 2006. <u>Generation</u> Reliability Models October 2020. <u>Modelos de fisibilidad ceneración/red</u> Diciembre 2006. <u>Composite Reliability Models</u> January 2010

StarGen Lite (Probabilistic Production Cost Model) demo Microsoft Excel version

SHORT-TERM PLANNING MODELS

- Impact of renewable energy sources in short-term generation planning, Stochastic Daily Unit Commitment October 2020. Impact of Renewables on System Operation. Real Cases January 2020. Impact of EV penetration in some electric systems January 2013.
- openSOUC. (Stochastic Daily Unit Commitment of Thermal and ESS Units) demo Python-Pyomo version (csy interface)
 StarGen Lite (Short Term Stochastic Daily Unit Commitment Model) demo GANS version
- StarGen Ltte (Short Term Stochastic Daily Unit Commitment Model) demo Python-Pyomo version [Microsoft Excel
- Interface)

 StarGen Lite (Short Term Stochastic Daily Unit Commitment Hodel) demo Julia-JuMP version

MEDIUM-TERM PLANNING MODELS. HYDROTHERMAL SCHEDULING MODEL

- Medium-term Stochastic Hydrothermal Coordination Hodel October 2020. <u>Stochastic Dual Dynamic Programming</u> January 2012. Hydrothermal scheduling. A case study January 2013.
- StarGen Lite (Medium Term Stochastic Hydrothermal Coordination Model) demo GAMS version
- LONG-TERM PLANNING MODELS. GENERATION EXPANSION (GEP)
- Generation Expansion Planning January 2020

Primer on optimization

- Optimization techniques
 - <u>https://pascua.iit.comillas.edu/aramos/OT.htm</u>
- Deterministic optimization cases
 - <u>https://pascua.iit.comillas.edu/aramos/simio/transpa/s_OptimizationCas</u>
 <u>es.pdf</u>
- Stochastic optimization cases
 - <u>https://pascua.iit.comillas.edu/aramos/simio/transpa/s_StochasticOptim_izationCases.pdf</u>
- A GAMS Tutorial by Richard E. Rosenthal
 - <u>https://www.GAMS.com/latest/docs/UG_Tutorial.html</u>

comillas.ed

26

My first minimalist optimization model

- - - VAV V V V VV

<pre>positive variables x1, x2 variable z</pre>
<pre>equations of, e1, e2, e3 ;</pre>
of 3*x1 + 5*x2 =e= z ; e1 x1 =l= 4 ; e2 2*x2 =l= 12 ; e3 3*x1 + 2*x2 =l= 18 ;
<pre>model minimalist / all / solve minimalist maximizing z using LP</pre>

$$\max_{x_1, x_2} z = 3x_1 + 5x_2$$

$$x_1 \leq 4$$

$$2x_2 \leq 12$$

$$3x_1 + 2x_2 \leq 18$$

$$x_1, x_2 \geq 0$$

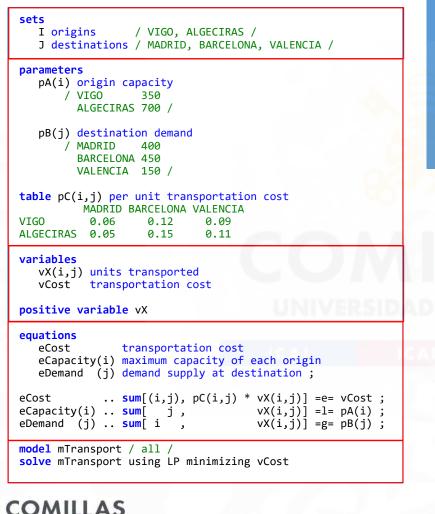
Blocks in a GAMS model

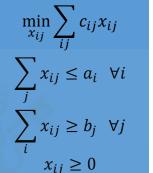
• Mandatory variables equations model solve

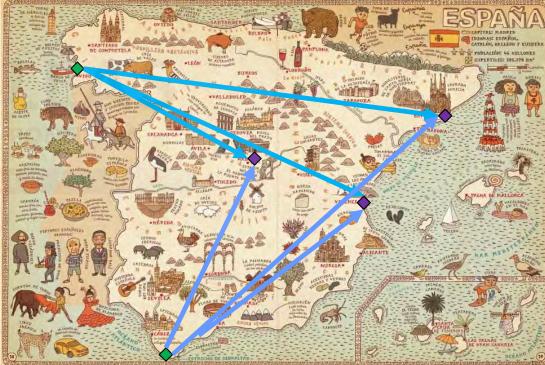
Optional sets: (alias)

alias (i,j) i and j can be used indistinctly
Checking of domain indexes
data: scalars, parameters, table

Transportation model


There are *i* can factories and *j* consumption markets. Each factory has a maximum capacity of a_i cases, and each market demands a quantity of b_j cases (it is assumed that the total production capacity is greater than the total market demand for the problem to be feasible). The transportation cost between each factory *i* and each market *j* for each case is c_{ij} . The demand must be satisfied at a minimum cost.


The decision variables of the problem will be cases transported between each factory i and each market j, x_{ij} .


My first transportation model (classical organization)

https://github.com/IIT-EnergySystemModels/Fixed-Charge-Transportation-Problem-Benders-Decomposition/blob/main/TransportModel.gms

A. Mizielinska y D. Mizielinski *Atlas del mundo: Un insólito viaje por las mil curiosidades y maravillas del mundo* Ed. Maeva 2015

UNIVERSIDAD PONTIFICIA

General structure of GAMS sentences

- Commenting
 - Lines with * in the first column
 - \$OnText \$OffText to comment on many lines
- No distinction between uppercase and lowercase letters
- Parentheses (), square brackets [], or braces {} can be used indistinctly to distinguish levels.
- Language-reserved words appear in bold
- Sentences end with a ";"
 - Can be suppressed when the following word is a reserved one (in blue (light theme) or orange (dark theme))

Parentheses (), square brackets [] or braces {}

- Markdown/LaTeX/Pyomo do differentiate; keep in mind that you may want to reuse the code when choosing your style!
- Establish a style and be consistent
- Take advantage of the available option to differentiate operations and make the code easier to follow
- Suggestion:
 - Mathematical expressions: (A + B)
 - Sets: A{s}
 - Functions and conditions: sum[..], smax[..], \$[..]
 - Example:
 - Just parentheses: A = sum(s, B(s) * (C(s) + D(s)\$(condition(s))));
 - Suggested option: A = sum[s, B{s} * (C{s} + D{s}{[condition{s}])];

comillas.ed

With complex code

makes it easier to follow

Basic input/output in text format

• Data input from a text file

\$include FileName.txt
display IdentifierName (shows its content or value)

• Data output to a text file

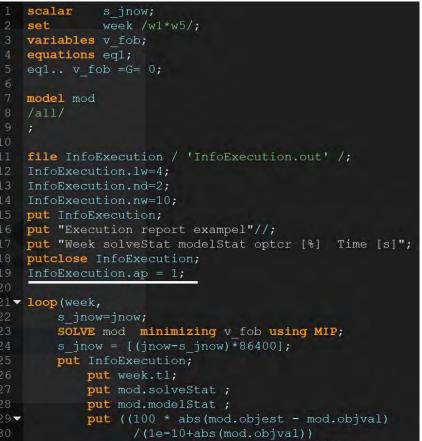
file InternalName / ExternalName.txt /

put InternalName

put IdentifierName

putclose InternalName

ExternalName.txt is updated each time the instruction **putclose** is executed.


- Specific options to control the output format
 - Put Writing Facility

Reporting of complex processes

- For long processes with multiple optimizations, it's useful to print intermediate data to a file to keep track of them.
- Text is written to the file each time the command putclose is used
- Use Infoexecution.ap=1 to keep writing in the same file; otherwise, the file will be overwritten each time

Exec	ution repo	rt example		
Weel	<pre>solveStat</pre>	modelStat	optcr [%]	Time [s]
w1	1.00	1.00	NA	0.09
w2	1.00	1.00	NA	0.09
w3	1.00	1.00	NA	0.11
w4	1.00	1.00	NA	0.12
w5	1.00	1.00	NA	0.09

) \$ [(1e-10+abs (mod.objval))] ;

put s_jnow/;
putclose InfoExecution;

Functions and operators

(https://www.GAMS.com/latest/docs/UG_Parameters.html#UG_Parameters_Functions)

- +, -, *, /, ** or power(x,n)
- abs, arctan, sin, cos, ceil, floor, exp, log, log10, max, min, mod, round, sign, sqr, sqrt, trunc, normal, uniform
- gyear, gmonth, gday, ghour, gminute, gsecond, gdow, gleap, jdate, jnow, jstart, jtime
- lt <, gt >, eq =, ne <>, le <=, ge >=
- not, and, or, xor
- diag(set_element,set_element)={1,0}
- sameas(set_element,set_element)={T,F}
- ord, card ordinal and cardinal of a set, SetName.pos ordinal of a set
 - set.ord and ord(set) are valid, but only card(set) is valid
- sum, prod, smax, smin
- inf, eps, pi are valid as data Model temporal license

abort \$[jstart > jdate(2021,11,21)] 'License for this model has expired and it cannot be used any more. Contact the developers'

\$ Operator in assignments, summations, constraints

Sets a condition

(value > 0)

- \$(number1 <> number2)
- On the left of an assignment (p\$[condition]=v), it does the assignment ONLY if the condition is satisfied
 - if (condition, DO THE ASSIGNMENT);
- On the right of an assignment (p=v\$[condition]), it does the assignment ALWAYS, and if the condition is not satisfied, it assigns a value of 0

```
if (condition,
    DO THE ASSIGNMENT
else
    ASSIGNS VALUE 0
);
```

- Conditions to parts: a = b + c [d]. If d = true, then a = b + c. If d = false, then a = b.
- Useful to avoid division by zero a = b + (c/d)\$[d<>0].

Existence vs. value=0

- Be careful with eps values when protecting against divisions by 0. The two checking options there are:
 - 1: (a/b) \$[b] problematic if b=eps
 - 2: (a/b) \$[b<>0] works every time, protecting the division even if b=eps

Entry	Name 🔶	Туре	C		eps	0
2	comprobacion	Set		existe	10	1
1	nulo	Set		distinto	1	1
3	par	Parameter				

<pre>sets nulo /eps,0/ comprobacion /existe,distinto/ ; parameters par(comprobacion,nulo) ;</pre>
<pre>par(comprobacion,nulo)=1;</pre>
<pre>par('existe' ,'eps')\$[eps] = 10 ;</pre>
<pre>par('existe' ,'0')\$[0] = 10; par('distinto','eps')\$[eps <> 0] = 10; par('distinto','0')\$[0 <> 0] = 10;</pre>

Dynamic sets

- Efficiency is strongly related to the use of dynamic sets
- Subsets of static sets whose content may change by assignments

<pre>sets d months /d1*d7/</pre>
ed(d) even days
display d;
ed(d) \$[mod(ord(d),2) = 0] = yes
display ed;
ed('d3') = yes;
display ed;
ed(d) \$[ord(d) = 4] = no;
display ed;

	41	SET d	month	s		
d1,	d2,	d3,	d4,	d5,	d6,	d7
	43	SET ed	even	days		
d2,	d4,	d6				
	45	SET ed	even	days		
d2,	d3,	d4,	d6			
	47	SET ed	even	days		
d2,	d3,	d6				

- Fundamental elements in developing GAMS models
- Must be used systematically to avoid the formulation of superfluous equations, variables, or assignments

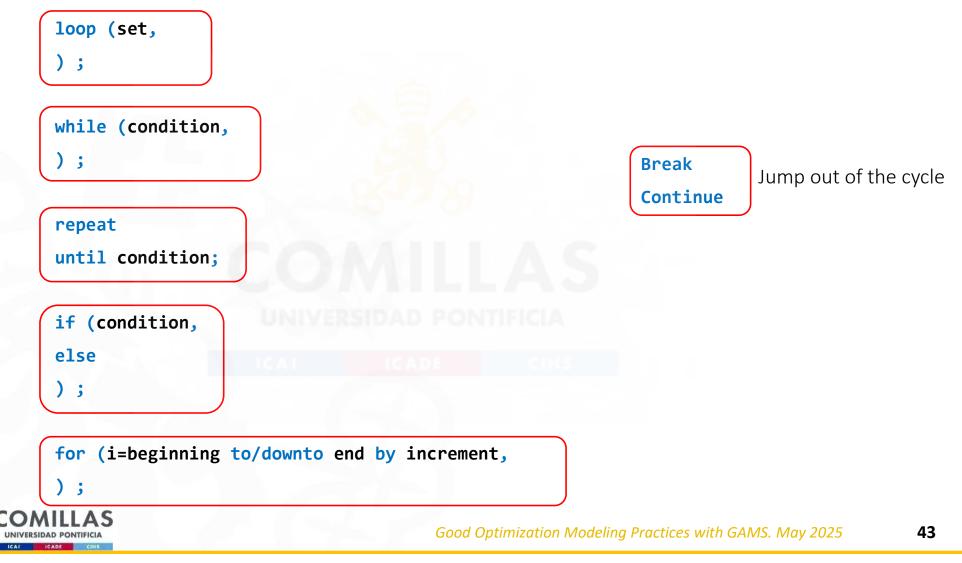
According to legend **Roland**'s Breach was cut by Count Roland with his sword **Durendal** to destroy that sword, after being defeated during the Battle of **Roncesvalles** in 778.

comillas.

Index shifting. Lag and lead

- t=J,F,MAR,AP,MAY,JUN,JUL,AU,S,O,N,D
 vReserve(t-1) + pInflow(t) vOutflow(t) =e= vReserve(t)
- Vector values out of the domain are 0
 pInflow('J') vOutflow('J') =e= vReserve('J')
- Circular sequence of an index (++, --)
 t= J,F,MAR,AP,MAY,JUN,JUL,AU,S,O,N,D
 vReserve(t--1)+ pInflow(t) vOutflow(t) =e= vReserve(t)
 vReserve('D') + pInflow('J') vOutflow('J') =e= vReserve('J')
- Inverted order sequence of PP index even though t is traversed in increasing order
 PP(t+[card(t)-2*ord(t)+1])

Operations with sets


- Intersection

 d(a) = b(a) * c(a)
- Union

d(a) = b(a) + c(a)

- Complementary d(a) = NOT c(a)
- Difference
 d(a) = b(a) c(a)

These constructs also exist in GAMS

comillas.<mark>ed</mark>u

Efficiency in GAMS code usage (loop)

set i / 1*2000 /
alias (i,ii)
parameter X(i,i)

loop ((i,ii),
 X(i,ii) = 4 ;
);

75.3 s
0.3 s
0.3 s

CADE

If you think you need a loop, Think again!

Among all the times a loop can be used, situations where they are needed are scarce.

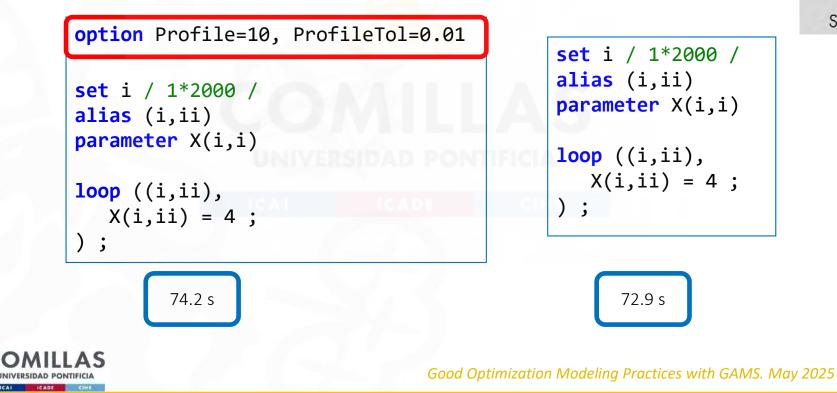
Good Optimization

Efficiency in GAMS code usage (index order)

	<pre>option Profile=10, ProfileTol=0.01</pre>		<pre>option Profile=10, ProfileTol=0.01</pre>
Y C	<pre>set i / 1*200 / j / 1*200 / k / 1*200 / parameter X(k,j,i), Y(i,j,k) ; Y(i,j,k) = 2 ;</pre>	28	<pre>set i / 1*200 / j / 1*200 / k / 1*200 / parameter X(i,j,k), Y(i,j,k) ; Y(i,j,k) = 2 ;</pre>
	X(k,j,i) = Y(i,j,k)	PON	X(i,j,k) = Y(i,j,k)
	4.5 s	DE	CPSS 1.3 s
	DAD PONTIFICIA ICADE CIHS	Good C	ptimization Modeling Practices with GAMS. May 2025

45

Efficiency in GAMS code usage (condition checking)


<pre>sets i /1*1000/</pre>
<pre>set fix{i}; fix{i}\$[p_Cond{i}=3]=yes; p_P{fix{i},j,k}=1;</pre>
s_jnow = [(jnow-s_jnow)*86400];
Condition checked <i>i</i> =10 ⁶ times 0.082s
Dynamic sets are your friends!!

COMILLAS UNIVERSIDAD PONTIFICIA

comillas.edi

Observer effect

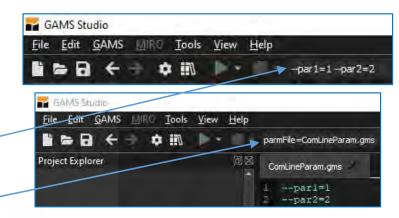
 Changes that the act of observation will make on a phenomenon being observed

THE OBSERVER EFFECT Squibstress

Introducing flexibility

display pDimension, u

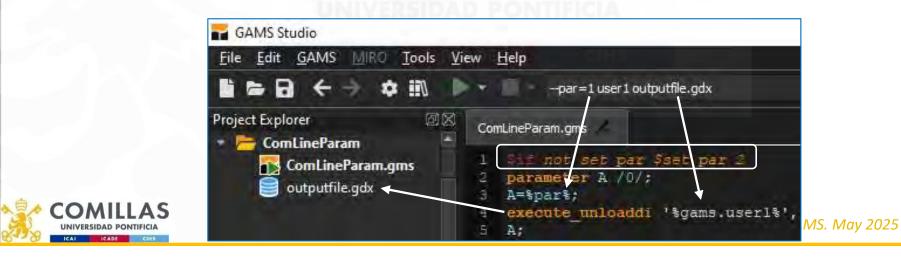
Alterative, modify the value from the command line.


ppp defined from the command line:
-> pDimension = 50
command line is empty
-> pDimension = 100

Execution options and parameters

Passing parameters to a GAMS execution:

- Executing the model from the console (or from another software)
 - Syntax: "GAMS modelName.gms [parameters]"
 - GAMS directory must be included in the environment variables of the OS
- Executing the model from GAMS studio
 - Write parameters in the command line


- Define the parameters in a file, and send the file as a parameter to the execution from the command line or GAMS Studio: "parmFile=filename"
- Option parameters: parameters to control the execution such as the type of log (logOption=4), the depth of the profiling (profile=1), or defining a save file for the execution (save the file.g00).
 - A complete list of options is here: <u>https://www.GAMS.com/latest/docs/UG_GamsCall.html</u>
- User-defined parameter: can store numeric values or strings. Definition "userN=value". Usage in the code %GAMS.userN% (substitute N by a number from 1 to 5).
- Double dash parameters: like user-defined parameters, but there is no limit; the names can be specified and can only store numeric values. Definition "--name=value". Usage in the code %name%.

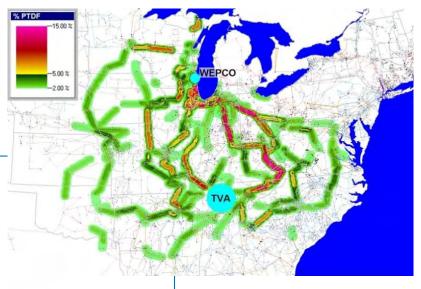
comillas

Execution options and parameters

- Both user-defined and double-dash parameters are substituted in the code by their values at compilation time.
- For example, during the compilation time, the following substitutions are performed:
 - %GAMS.user1% is substituted by outputfile.gdx (defined in the command line with user1)
 - %par% is substituted by 1 (defined in the command line with –par)
- It is possible to include a check in the code to assign default values when parameters are not defined in the command line. In the example, the first line establishes that when par is not set, it should be set equal to 2

comillas.ed

Detection of isolated subnetworks



comillas.edu

\$Phantom null sets / node01 * node19 / nd nodes current reference node / node01 / subset of reference nodes / node01 / ndref (nd) refnd (nd) (nd) current connected nodes / null / nc subset of connected nodes / null nod (nd) ln (nd,nd) lines subnet(nd,nd,nd) subnetworks parameters pAux1 auxiliary / 0 / pAux2 auxiliary / 1 / alias (nd,n1,n2,ni,nf) file out / out.gms / put out ; * create a naïve network, a chain ln(ni,nf) \$[ni.pos = nf.pos-1] = yes ; * break these Links ln('node10','node11') = no ; ln('node15','node16') = no ; * detection of isolated subnetworks * for every subnetwork => max number of iterations loop (n1 \$[sum(nod(nd), 1) < card(nd)],</pre> define the reference node for 2nd+ iterations ndref(nd) \$[n1.pos > 1 and not refnd(nd) and nd.pos = smin(n2 \$[not nod(n2)], n2.pos)] = yes; * * empty the set of connected nodes nc(nd) = no ; connect the reference node nc(ndref) = yes ; pAux2 = 1;for every node => max number of iterations loop (n2 \$pAux2, * count the number of connected nodes pAux1 = sum[nc, 1]; add nodes to the set of already connected nodes nc(nf) \$ sum[nc \$[ln(nc,nf) or ln(nf,nc)], 1] = yes; count the new added nodes * pAux2 \$[sum[nc, 1] - pAux1 = 0] = 0;if (pAux2 = 0), subnetwork of the connected lines to a reference node subnet(ln(nc,nf),ndref) = yes ; subnet(ln(nf,nc),ndref) = yes ; subnetwork of the connected nodes nod (nc) = yes ; subnetwork of the reference nodes refnd (ndref) = yes;);); display subnet, nod, refnd ;

* disconnect the reference node ndref(nd) = no ;);

Inverting a matrix, e.g., PTDF

set i / i1*i3 /

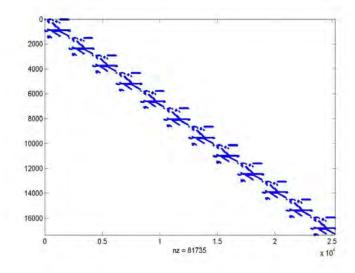
table a(i,i) matrix to invert i1 i2 i3 i1 1 i2 3 i3 5

parameter ainv(i,i) inverted matrix

execute_unload	'GDXForInverse.gdx' i a
executeTool.checkErrorLeve	'linalg.invert i a ainv -gdxIn=GDXForInverse.gdx -gdxOut=GDXFromInverse.gdx'
execute_load	'GDXFromInverse.gdx' ainv
execute 'del	GDXForInverse.gdx GDXFromInverse.gdx'

```
* computation of the susceptance matrix of the corridors
pYBUS(c2) = - sum[la(c2,cc), 1/pLineX(la)];
pYBUS(nf,ni) $c2(ni,nf) = pYBUS(ni,nf);
pYBUS(nf,nf) = - sum[ni, pYBUS(ni,nf)];
pYBUS(ni,ndref(nd)) = 0 ;
pYBUS(ndref(nd), nf) = 0;
pYBUS(ni,nd) $[not nc(ni)] = 0;
pYBUS(nd, nf) $[not nc(nf)] = 0;
```

```
* obtaining the inverse of pYBUS and saving it into pYBUSInv
execute unload
                     'GDXForInverse.gdx' noref pYBUS
executeTool.checkErrorLevel 'linalg.invert noref pYBUS pYBUSInv -gdxIn=GDXForInverse.gdx -gdxOut=GDXFromInverse.gdx'
                     'GDXFromInverse.gdx'
execute load
                                                          pYBUSInv
execute
              'del
                     GDXForInverse.gdx
                                                    GDXFromInverse.gdx';
```


* computation of the PTDF matrix UNIVERSI pPTDF(la(ni,nf,cc),ngd) = [pYBUSInv(ni,ngd) - pYBUSInv(nf,ngd)]/pLineX(la) + eps ;

Observe the constraint matrix

- It is important to know the estimated size of the optimization problem and its dependence considering the core elements
- It can be used for detecting formulation errors
- Use LimRow/LimCol
- Suitable to know the constraint matrix structure (GAMSChk)

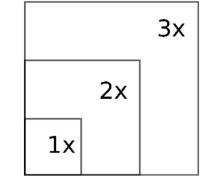
Source: MPES

option LP=GAMSChk

L		V T a T I A V C S S	R estar v	v s pi l a ge	V A r c	V E N S	V P N S	v p r o d u c t C o	V R A C S 1 a c k	v I r r i ga t i o	v com mi t t	R H S M a X M i n	E Q W a X M i n
TotalVCos	Max Min	1 26.0	07 4.6E-06 03 1.231E-09	4.6E-06		630 0.4	30 0.3	1.081 8.75E-06	230 2.3			3.083E-03 3.083E-03	63 1.231E-0
OpReserve		1 1.1346-0	1.231E-09	1.2516-09		0.4	1	0.73E-00	2.3		0.765	1.975	1.25IE-0
	Min						1				7.44E-04	0.375	7.44E-0
Balance	Max		1			1						10.76	
	Minl		1			1						5.11	
/irPlants	Min	29.3	10									1	29. 1.30
MaxOutput		1.30	14								1	1	1.5
anouchac	Mini	1.30									1		
roductCo	Max		1					1					
	Minl		1					1.207E-02				- ta 15	
OtRateCon	Max							1.207E-02				5.49E-03	L. 207E-
FuelOtRat	Min	1.393E-0						.0075				1.458E-04 3.98E-03	.00
Fuelotkat	Min	7.59E-0										3.98E-03 1.104E-03	7.59E-0
FuelAvail	Max	0.81										.0005	0.8
ue invail i	Min	3.096E-0										.0005	8.096E-
vtReserve	Max	0.51	2 1	1	1					1		5.18	1.
	Minl	1.478E-0		1	1					1		6.66E-06	L.478E-
MaxFlow	Max	0.51										0.59	0.5
AC	Min	1.478E-0	4.6									3.28E-03	L.478E-
CALL	Max		.1231						1			12.76	.12
Cmin	Max	.065							1			0.575	.06
- Canton	Min	2.678E-0										0.486	2.678E-
SCmax	Max	0.57										1.08	0.5
	Min	1.936E-0)5									3.97E-04	1.936E-0
Smin	Max		1									0.312	
Color.	Min		1									0.15	
Gmax	Max		1									0.313 0.313	

comillas.<mark>ed</mark>

CAUTION


CAUTION	Analytical numb	oor of					Variables
	Analytical numb	Jeroi		Producción térmica	$pt^{*}_{pp't}$	PP'ST	240000
₩	equations/varia	bles for	MHE	Producción hidráulica	$ph^{s}_{pp'h}$	PP'SH	100000
				Producción del bombeo	$pb^{*}_{pp'h}$	PP'SH'	20000
			a.	Vertido del embalse	v_{pe}^{s}	PSE	50000
2	0		Ecuaciones	Reserva artificial del embalse	ra [*] _{pe}	PSE	50000
Función ob	ojetivo	1	1			DOD	50000
Balance de	emanda	PP'S	2000	Reserva del embalse	r_{pe}^{s}	PSE	50000
Producción	n térmica subperiodo	P(P'-1)ST	240000	Defecto y exceso de	$dr^{*}_{_{pe}}$, $er^{*}_{_{pe}}$	2PSE	100000
Producción	n hidráulica subperiodo	P(P'-1)SH	100000	entre reservas consecutivas	1.0	OCE	5000
	idráulica subperiodo	P(P'-1)SH'	20000	Defecto y exceso de reserva	dr°_{ϵ} , er°_{ϵ}	2SE	
Bombeom	iuraunca subperiouo	F(F-1)SH		Defecto de reserva mínima y	$drm_{pe}^{*}, erm_{pe}^{*}$	2PSE	100000
Horas por	escenario	PST	120000	exceso de reserva máxima	pe pe		100
Horas mín	imas y máximas por escenario	2ST	12000	Horas de funcionamiento	hr_{pt}^{s}	PST	120000
Horas míni	imas y máximas todos escenarios	2T	240	por periodo	Pr		
Balance en		PSE	50000	Defecto y exceso de horas	dhr^{*}_{pt} , ehr^{*}_{pt}	2PST	240000
Gasto del e	embalse por central	PSEH	250000	de funcionamiento por período		0.077	12000
Gasto tota	l del embalse	PSE	50000	Defecto y exceso de horas de funcionamiento	dhn_t^* , ehx_t^*	2ST	12000
	esde el embalse	PSE'	10000	Gasto del embalse por central		PSEH	250000
	to embalse	PSE	50000		$g^{_{peh}}_{_{peh}}$	TDEII	230000
	nal embalse	SE	2500	Gasto del embalse	g_{pe}^{s}	PSE	50000
	ínima y máxima embalse	2PSE	100000	Consumo del bombeo	b ^o _{ne}	PSE'	10000
TOTAL		and the second se	1006741	TOTAL	27		1397000

nillas

Scaling

- Solvers are powerful but not magic
- Input data and output results must be in commonly used units

- But internally, variables, equations, and parameters must be around 1 (i.e., from 0.01 to 100). The ratio of the largest to smallest matrix coefficient should be < 10⁵
- Scaling can be done:
 - Manually (e.g., from MW to GW, from € to M€). Modelers can typically do better because they know the problem
 - Automatically by the language (ModelName.ScaleOpt=1)
 - By the solver (ScaInd 1 in CPLEX, ScaleFlag 2 in Gurobi)
- Especially useful in large-scale LP problems or NLP problems and/or when willing to get the dual variables
- The condition number measures the sensitivity of the solution of a system of linear equations to errors in the data.
 - It is the ratio between the largest and smallest eigenvalues
- Condition numbers <10⁶ are good enough. Numerical problems arise for condition numbers >10⁸ (*ill-conditioned*)
 - Quality 1 in CPLEX
 - Kappa 1 in Gurobi

Feasibility, optimality, and integrality tolerances should be less than the smallest meaningful coefficient in the model. Source: Gurobi

E. Klotz (2014) *"Identification, Assessment, and Correction of Ill-Conditioning and Numerical Instability in Linear and Integer Programs"* Tutorials in Operations Research <u>10.1287/educ.2014.0130</u>

Models with **numerical issues can lead to undesirable results**: slow performance, wrong answers, or inconsistent behavior. Source: Gurobi

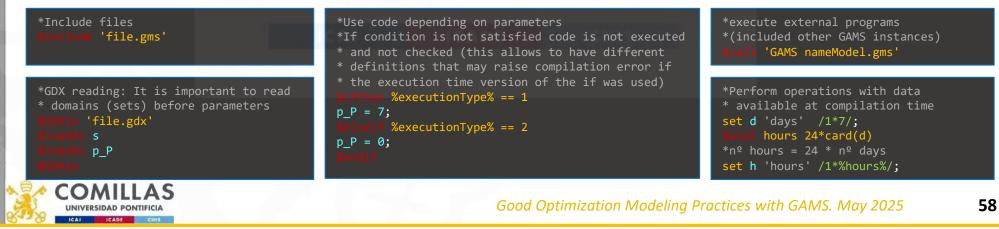
How big is a big optimization problem

- Memory requirements for loading the model (solver)
 - 1 GB for every 1 million rows
- Memory requirements for solving the model (solver)
 - Depends on the difficulty of solving the model
 - The integrality gap is a good performance measure for MIP problems

CAUTION

Avoid creation of superfluous constraints and variables

- Or how to achieve a compact formulation (small size of the constraint matrix or small density)
- Some "redundant" constraints can introduce a tighter model; see later
- However, introduce logical conditions (with a \$ in GAMS) in the creation of equations or the use of variables to avoid superfluous ones
- Reduction rules: mathematical reasoning or common sense based on the problem context
 - Flows by nonexistent connections in a network
- Solvers can detect some of these superfluous equations/variables, but it is more efficient to avoid their creation (pre-processing)
- Profile, ProfileTol


comillas.<mark>ed</mark>

Compilation time vs. execution time

• GAMS compiles the entire code and then executes it.

comillas.edu

- Some functions are only available for compilation or execution. In contrast, others have two versions (executing external code can be performed with "\$call" (compilation time) or "execute" (execution time). Data from a GDX can be read with "\$GDXin" and "\$load" (compilation time) or execute_load (execution time), etc.
- It is essential to understand these two phases and make the proper choices.
 - For example, when using GDXs as input/output files, usually the read operation is performed during compilation (otherwise, GAMS would give a compilation error because sets and parameters are empty), and write operations are performed during execution (because until the model is executed, there are no values for the variables)

Compilation time vs. execution time Using \$call for data processing

- We receive a GDX file (original.gdx) that contains a set *w* with some elements.
- For our execution, we want *w* to contain the original elements plus others (ad1*ad5).
- We want the code to be generic
 - Hardcoding the name of the original *w* elements is not acceptable.

	Comp/exe time	mainFile.gms	updateW.gms	createGDX.gms (temporal file)
1	Comp	Executes updateW.gms		
2	Comp		Reads w from original.gdx	
3	Exe		Writes createGDX.gms with all desired w elements	
4	Exe		Executes createGDX.gms	
5	Exe			Creates w.gdx
6	Comp	Reads w.gdx with all desired w elements		

GAMS updateW.gms'

*mainFile.gms

set w;

• This example gives an idea of the options that the combination of \$call, execute and put can provide. However, a much simpler option is available for this case: use \$onmulty to add new elements to *w*.

Compilation time vs. execution time Using \$call for data processing

- Killing flies with a *cannon* (\$call+put+execute) is not a good idea...
- However, it may come in handy to know how to fire a *cannon*
- Using a *cannon* would be needed, for example, if we wanted the resulting set *w* to have the following:
 - All original elements except some of them
 - All original and new elements alternated

Order	Original w		
1	old1	ad1	old1
2	old2	ad2	ad1
3	old3	ad3	old2
4			ad2
5			old3
6			ad3

	_				
	Order	Original	New	Desired	
		w	elements	w	
	1	old1	ad1	old1	
1	2	old2	ad2	ad1	
	3	old3	ad3	ad2	
	4			ad3	
	5				
	6				

Compilation time vs. execution time

Remember the order of the phases:

- 1st Compilation
- 2nd Execution

Execution does not start until compilation is done!!

Order in which the code is written:

- 1. Include w1 as element of w
- 2. Create a GDX file with the elements of w
- 3. Include w2 as element of w

Order in which the operations are performed when the file is run by GAMS

- 1. Include w1 as element of w
- 2. Include w2 as element of w

comillas.

3. Create a GDX file with the elements of w

\$onmulti *include w1 as element of w during COMPILATION Set w /w1/ ;

*create a GDX with all elements of w during EXECUTION
execute_unload 'setW.gdx',

:

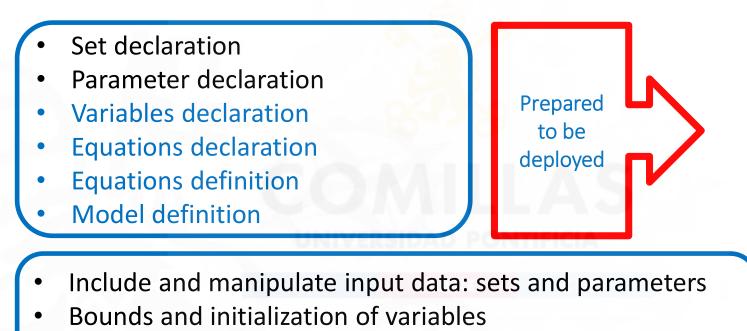
*include w2 as element of w during COMPILATION
Set
w /w2/

Good Optimization Modeling Practices with GAMS. May 2025

Using workfiles

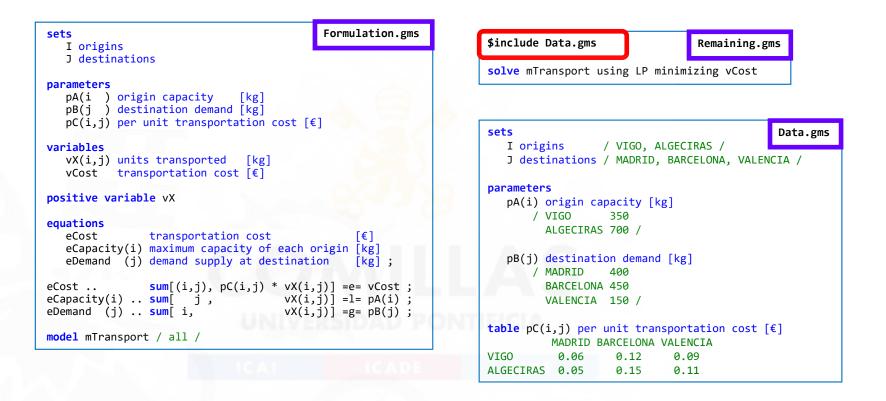
-save nameFile (or -s nameFile) It is a command line parameter that creates a workfile (nameFile) containing a snapshot of the GAMS execution estate.

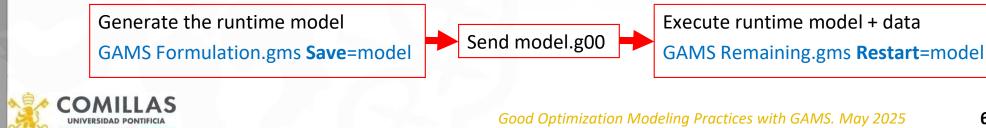
-restart nameFile (or -r nameFile)
Loads a workfile created with -save


Options A and B have the exact same effect:

Deployment ready (using workfiles)

- Split formulation from data.
- Protect formulation confidentiality
- Secure Work Files
 - Control the access to symbol names
 - Link the model to a specific license

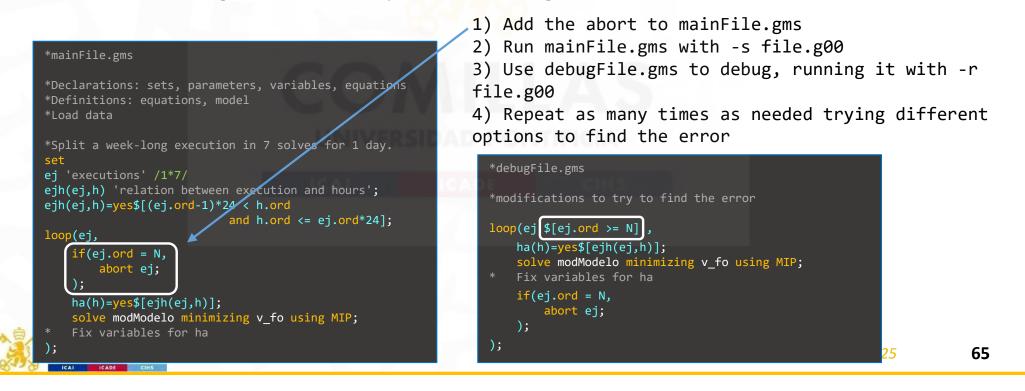

- Solve the optimization problem
- Output of the results



comillas

Good Optimization Modeling Practices with GAMS. May 2025

Transportation model (ready for deployment)



64

Debugging (Using workfiles)

- Suppose we have a process where, instead of a single execution with the whole-time horizon, several executions are run using a loop.
- If we detect a problem in execution N, we could run the model till that execution and then abort it. This way, we can restart from a separate file and focus only on the specific execution without having to solve all the previous ones again.

Model log

- Open console from GAMSIDE for logging messages from the model
 - Code specific for Windows, UNIX/Linux/macOS

```
$set console
$if '%system.filesys%' == 'MSNT' $set console con
$if '%system.filesys%' == 'UNIX' $set console /dev/tty
$if '%console%.' == '.' abort 'console not recognized'
file console / '%console%' /
sets
               / day01*day10 /
   day day
   sc scenario / sc01* sc02 /
put console
loop ((day,sc),
   putclose 'Day ' day.tl:0 ' Scenario ' sc.tl:0 ' Elapsed Time ' [(jnow-jstart)*86400]:6:3 ' s' sleep(1)
);
$ifthen.MSNT '%system.filesys%' == 'MSNT'
   execute 'del pp.txt' ;
                                                                    Conditional
$endif.MSNT
$ifthen.UNIX '%system.filesys%' == 'UNIX'
                                                                    compilation
   execute 'rm pp.txt';
$endif.UNIX
```

GAMS Code Conventions

- Must be defined in blocks. For example, a set and all its subsets should constitute one block in the sets section.
- Names are intended to be meaningful. Follow conventions
 - Items with the same name represent the same concept in different models
 - Units should be used in all definitions
 - Parameters are named pParameterName (e.g., pTotalDemand)
 - Variables are named vVariableName (e.g., vThermalOutput)
 - Equations are named **eEquationName** (e.g., eLoadBalance)
 - Use short set names (one or two letters) for easier reading
 - Alias duplicate the final letter (e.g., p, pp)
- Equations are laid out as clearly as possible, using brackets for readability
- In the case of variables, the blocks should be defined by meaning and not by variable type (Free (default), Positive, Negative, Binary, Integer, SOS1, SOS2, SemiCont, SemiInt). The objective function must be a free variable

Good Optimization Modeling Practices with GAMS. May 2025

Use of camelCase (uppercases to differentiate) Everything long and descriptive except sets, that are compact

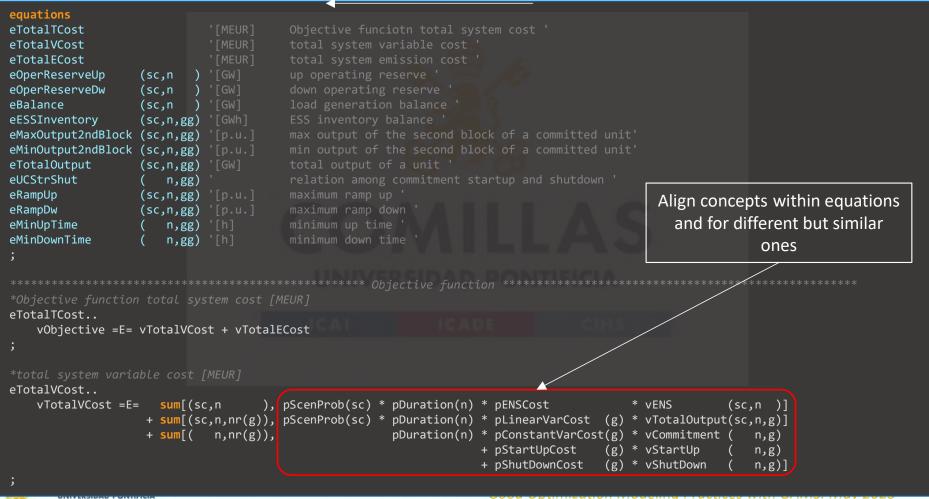
Scalars: s_name Sets: n Parameters: p_NameName Variables: v_nameName Equations: EQ_NameName Models: modNameName

Example model: general structure

- Model information
- Declarations: scalar, sets, alias, variables, parameter, and equations
- Equation definition
- Model definition
- Model solve configuration
- Data input (preprocessed)
- Data processing strictly associated with the model
- Variable limits/fix values
- Model solving
- Data output



comillas.ed


Example model: declarations

Example model: declarations

Example model: equation definition

Example model: equation definition

```
*total system emission cost [MEUR]
eTotalECost..
vTotalECost =E= sum[(sc,n,nr(g)), pScenProb(sc) * pC02Cost * pC02EmissionRate(g) * vTotalOutput(sc,n,g)]
;
*up operating reserve [GW]
eOperReserveUp(sc,n)$[pOperReserveUp(sc,n)]..
sum[(nr(g)), vReserveUp (sc,n,g)] =G= pOperReserveUp(sc,n)
;
*down operating reserve [GW]
*down operating reserve [GW]
*down operating reserve [GW]
```

```
eOperReserveDw(sc,n)$[pOperReserveDw(sc,n)]..
    sum[(nr(g)), vReserveDown(sc,n,g)] =G= pOperReserveDw(sc,n)
```

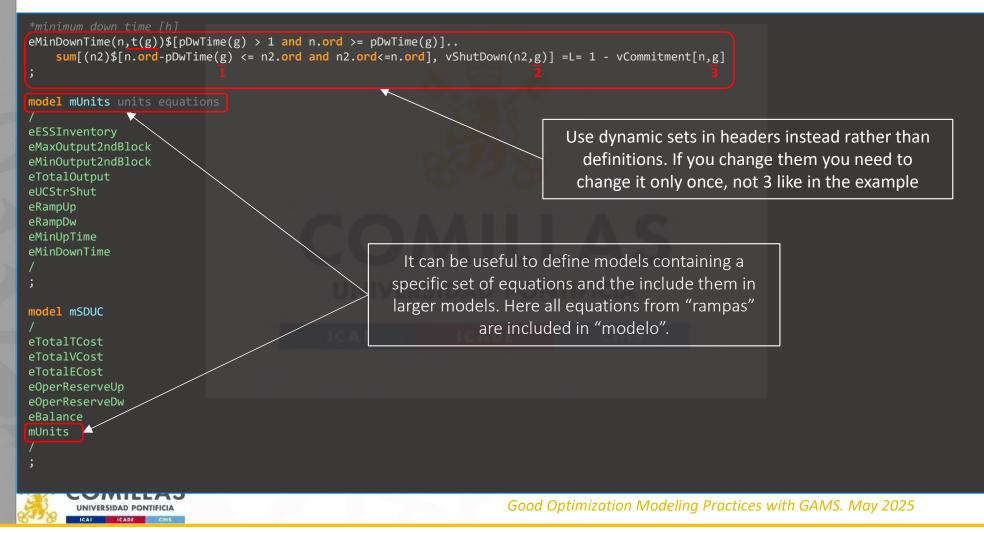
avoid the use of the horizontal slider, improving readability. Headers may become really large, as in the following real example: EQ_CenQPsup(wa(w),insa(cen(ins)),kpsb(k,pa(p),sa(s),ba(b)),sala(sal))\$[p.ord>s_kgrupo and wp(w,p) and sal.ord<=p_nsal(ins) and p.ord<=s_phoras].

```
*load generation balance [GW]
```

eBalance(sc,n)..

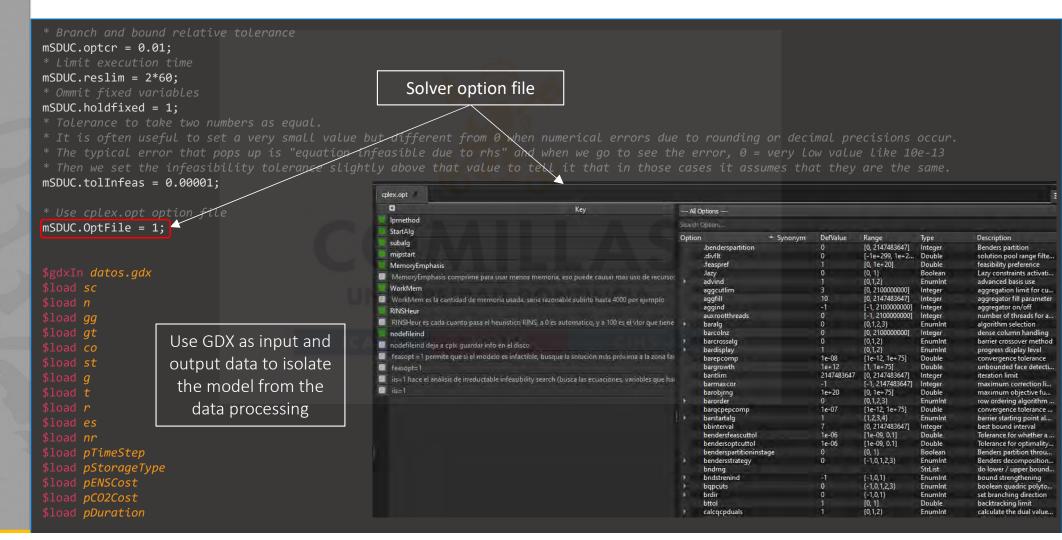
```
sum[(g), vTotalOutput(sc,n,g)] - sum[(es(g)), vESSCharge(sc,n,g)] + vENS(sc,n) =E= pDemand(sc,n)
```

```
*ESS inventory balance [GWh]
```


eESSInventory(sc,n,es(g))\$[n.ord = pCycleTimeStep(g) or (n.ord > pCycleTimeStep(g) and mod(n.ord,pCycleTimeStep(g)) = 0)]..
pInitialInventory(g) \$[n.ord = pCycleTimeStep(g)]

- + vESSInventory(sc,n-pCycleTimeStep(g),g) \$[n.ord > pCycleTimeStep(g) and mod(n.ord,pCycleTimeStep(g))= 0]
- + sum[(n2)\$[n.ord-pCycleTimeStep(g)<=n2.ord and n2.ord<=n.ord], pDuration(n2)*(pEnergyInflows(sc,n2,g) vTotalOutput(sc,n2,g)</pre>
- + pEfficiency(g)*vESSCharge(sc,n2,g))] =E= vESSInventory(sc,n,g) + vESSSpillage(sc,n,g)

Example model: equation definition



Example model: model definition

74

Example model: model attributes and input data

Example model: input data

\$load pScenProb \$load pDemand \$load pOperReserveUp \$load pOperReserveDw \$load pEnergyInflows \$load pLinearVarCost \$load pConstantVarCost \$load pStartUpCost \$load pStartUpCost \$load pShutDownCost \$load pRampUp \$load pRampDw \$load pCO2EmissionRate \$load pUpTime \$load pDwTime \$load pDwTime \$load pInitialInventory \$load pEfficiency \$load pEfficiency \$load pMinPower \$load pMinPower \$load pCycleTimeStep \$load pInitialUC \$load pInitialOutput \$gdxIn

*set active sets for debuging *g(gg)\$[condition] = yes;

UNIVERSIDAD PONTIFICIA

comillas.<mark>edu</mark>

Good Optimization Modeling Practices with GAMS. May 2025

Example model: variable fixing, model solving and data output

* fixing the ESS inventory at the last load level at the end of the time scope
vESSInventory.fx(sc,n,es(g))\$[n.ord = card(n)] = pInitialInventory(g);

*definition of the time-steps leap to observe the stored energy at ESS
pCycleTimeStep(es(g))\$[pStorageType(g)=1] = 1;
pCycleTimeStep(es(g))\$[pStorageType(g)=2] = trunc(24/pTimeStep);
pCycleTimeStep(es(g))\$[pStorageType(g)=3] = trunc(168/pTimeStep);

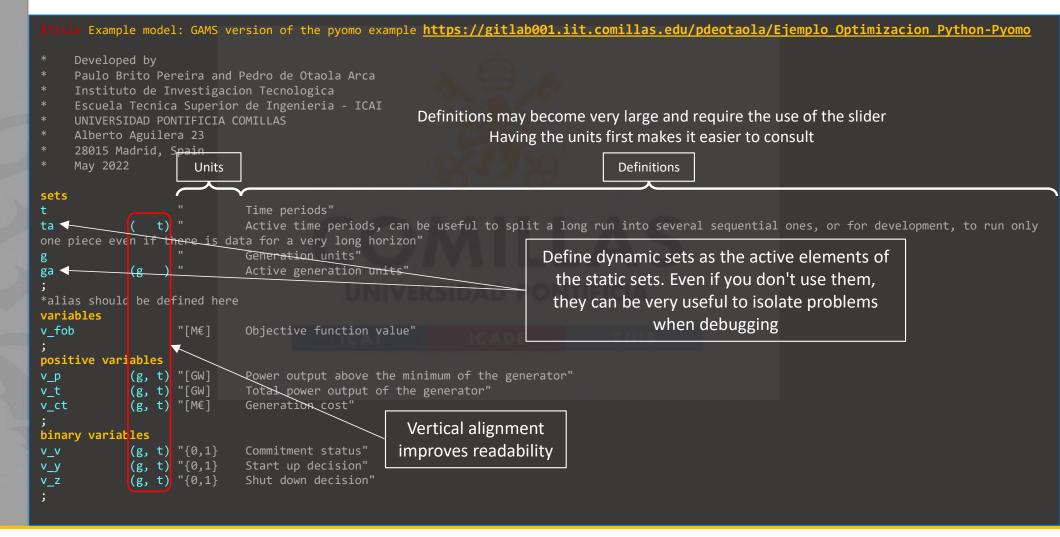
*fixing the ESS inventory at the end of the following pCycleTimeStep (weekly, yearly), i.e., for daily ESS is fixed at the end of the week, for weekly/monthly ESS is fixed at the end of the year

vESSInventory.fx(sc,n,es(g))\$[pStorageType(g)=1 and mod(n.ord, 168/pTimeStep) = 0] = pInitialInventory(g); vESSInventory.fx(sc,n,es(g))\$[pStorageType(g)=2 and mod(n.ord,8736/pTimeStep) = 0] = pInitialInventory(g); vESSInventory.fx(sc,n,es(g))\$[pStorageType(g)=3 and mod(n.ord,8736/pTimeStep) = 0] = pInitialInventory(g);

solve mSDUC using MIP minimizing vObjective ;

If you run the model with GDX creating a GDX file with the same name as the GAMS file is created execute_unloaddi 'out.gdx', vCommitment containing all the information vTotalVCost Use GDX as input and vTotalECost vTotalOutput output data to isolate the model from the GAMS Studio File Edit GAMS MIRO Tools View Help data processing Project Explorer Run Run with GDX Creation F10 </>
</>
</>
</>
</>
</>
</>
</> Shift+F9 A Compile with GDX Creation Shift+F10 Run NEOS 🔷 Run GAMS Engine

Example model: solver related information


*Useful solve information:

* in complex codes this information can be used to condition the development of the program, for example with multiple executions or loops). *Total time

s_optcr = (100 * abs(mSDUC.objest - mSDUC.objval) / max(abs(mSDUC.objest),abs(mSDUC.objval)))\$[max(abs(mSDUC.objest),abs(mSDUC.objval))]; display s_optcr; *Cplex Optcr s_optcr = (100 * abs(mSDUC.objest - mSDUC.objval) /(1e-10+abs(mSDUC.objval)))\$[(1e-10+abs(mSDUC.objval))]; display s_optcr;

Example model 2: description and declarations (sets and variables

Example model 2: declarations (parameters and equations)

parameters

p_Gcaco	(g)	"[M€/h]	Commitment cost"
p_Gcvar	(g)	"[M€/GWh]	Variable cost"
p_Gcarr	(g)	"[M€]	Start up cost"
p_Gcpar	(g)	"[M€]	Shut down cost"
p_Gpmn	(g)	"[GW]	Minimum power output"
p_Gpmx	(g)	"[GW]	Maximum power output"
p_Gei	(g)	"[-]	<pre>Initial commitment status: {0} off {1} on"</pre>
p_GPini	(g)	"[GW]	Initial power output"
p_Grs	(g)	"[GW]	Maximum power output increase"
p_Grb	(g)	"[GW]	Maximum power output decrease"
p_Precio	(t)	"[M/€GWh]	Electricity price"
;				
equations				
EO EOH			"Objective	a function, cast income minimization"

EQ_FObj		"Objective function: cost-income minimization"
EQ_CostT	(g, t) "Generation cost"
EQ_PotAcoT	(g, t) "Generation units total power output"
EQ_AcoParPmn	(g, t) "Commitment: stop at minimum power"
EQ_AcoArrPmn	(g, t) "Commitment: start at minimum power"
EQ_AcoPar	(g, t) "Coherence between commitment status and start up and shut down dec
EQ_RampSub	(g, t) "Limit increase in power output"
EQ_RampBaj	(g, t) "Limit decrease in power output"
EQ_Dummy	(g, t) "Dummy: used for explanation"

Example model 2: equation definition

<pre>*Objective function: cost-income minimization EQ_FObj v_fob =E= sum[{ga{g},ta{t}},v_ct{g,t} - v_t{g,t} * p_Precio{t}]; *Generation cost EQ_CostT {ga{g},ta{t}} v_ct{g,t} =E= p_Gcarr{g} * v_y{g,t}</pre>	For large codes copy the definition of the equations from the declaration to the definition
<pre>+ p_Gcpar{g} * v_z{g,t} + p_Gcaco{g} * v_v{g,t} + p_Gcvar{g} * v_p{g,t}; *Generation units total power output EQ_PotAcoT {ga{g},ta{t}} v_t{g,t} =E= p_Gpmn{g} * v_v{g,t} + v_p{g,t}; *Commitment: stop at minimum power EQ_AcoParPmn{ga{g},ta{t}}\$[ta(t-1)] v_p{g,t-1} =L= (p_Gpmx{g} - p_Gpmn{g}) * (v_v{g,t-1} - v_z{g,t}); *Commitment: start at minimum power EQ_AcoArrPmn{ga{g},ta{t}} v_p{g,t} =L= (p_Gpmx{g} - p_Gpmn{g}) * (v_v{g,t} - v_y{g,t}); *Coherence between commitment status and start up and shut down decisions EQ_AcoPar {ga{g},ta{t}}</pre>	Separate in different lines the "header" (equation name and sets) and the definition itself. This way you need less horizontal space and avoid the use of the horizontal slider, improving readability. Headers may become really large, as in the following real example: sithen %ex1a% == 1 EQ_CenQPsup{wa{w},insa{cen{ins}},kpsb{k,pa{p},sa{s},ba{b}},sala{sal}}{[p.ord>s_kgrupo and wp{w,p} and sal.ord<=p_nsal{ins} and p.ord<=s_phoras] Selself %excom% == 1 EQ_CenQPsup{wa{w},insa{cen{ins}},ka{k}, pa{p},sa{s},ba{b} ,sala{sal}}{[p.ord>s_kgrupo and k.ord=p.ord] Sendif
	concepts within equations I for different but similar ones Use dynamic sets in headers instead rather than definitions. If you change them you need to change it only once, not 4 like in the example

Example model 2: model definition and attributes

<pre>*Ramp related equations model rampas / EQ_RampSub EQ_RampBaj EQ_Dummy /;</pre>	It can be useful to define models containing a specific set of equations and the include them in larger models. Here all equations from "rampas" are included in "modelo".	
* Complete optimization model model modelo		
/ EQ_FObj EQ_CostT EQ_PotAcoT EQ_AcoParPmn EQ_AcoArrPmn EQ_AcoPar rampas -EQ_Dummy /;	There is also the possibility to eliminate an equation by using the symbol "-". The equation "EQ_Dummy" is included in "rampas", and therefore included in "modelo", but as we don't want that equation in "modelo" we use: "- EQ_Dummy"	
* Branch and bound relative tolerance		
<pre>modelo.optcr = 0.01; * Limit execution time</pre>		
<pre>modelo.reslim = 2*60; * Ommit fixed variables modelo.holdfixed = 1; * Tolerance to take two numbers as equal. * It is often useful to set a very small val * The typical error that pops up is "equation"</pre>	lue but different from 0 when numerical errors due to rounding or on infeasible due to rhs" and when we go to see the error, 0 = ve lightly above that value to tell it that in those cases it assume	ery low value like 10e-13

Good Optimization Modeling Practices with GAMS. May 2025

Example model 2: solver option file

* Use cplex.opt option file modelo.OptFile = 1;

plex.opt								
0	Key	All	Options					
Ipmethod			Option.					
StartAlg		Optio	and the second s		DefValue		-	Bassie
subalg		υριιο	n .benderspartition	+ Synonym	Dervalue	Range [0, 2147483647]	Type Integer	Description Benders partition
mipstart			.divfit		0	[-1e+299, 1e+2	Double	solution pool range filte
MemoryEmphasis			feaspref		1	[0, 1e+20]	Double	feasibility preference
			.lazy		Ó	{0, 1}	Boolean	Lazy constraints activati
	usar menos memoria, eso puede causar mas uso de recurso:		advind			{0,1,2}	EnumInt	advanced basis use
WorkMem			aggcutlim		.3	[0, 2100000000]	Integer	aggregation limit for cu
WorkMem es la cantidad de memo	oria usada, seria razonable subirlo hasta 4000 por ejemplo		aggfill		10	[0, 2147483647]	Integer	aggregator fill parameter
RINSHeur			aggind		-1	[-1, 2100000000]	Integer	aggregator on/off
	100 DING 0		auxrootthreads		0	[-1, 210000000]	Integer	number of threads for a
	euristico RINS, a 0 es automatico, y a 100 es el vlor que tiene		baralg		0	{0,1,2,3}	EnumInt	algorithm selection
nodefileind			barcolnz		0	[0, 210000000]	Integer	dense column handling
nodefileind deja a cplx quardar info	en el disco	÷	barcrossalg		0	{0,1,2}	Enumint	barrier crossover method
feasont -1 permite que si el mode	lo es infactible, busque la solución más próxima a la zona fai		bardisplay		1e-08	{0,1,2} [1e-12, 1e+75]	Double	progress display level
	ie es intécneré, s'ésque le servicient n'és provintie à la certa ren		barepcomp bargrowth		1e+12	[1, 1e+75]	Double	convergence tolerance unbounded face detecti
feasopt=1			baritlim		2147483647	[0, 2147483647]	Integer	iteration limit
iis=1 hace el análisis de irreductabl	e infeasibility search (busca las ecuaciones, variables que ha		barmaxcor		-1	[-1, 2147483647]	Integer	maximum correction li
iis=1			barobirng		1e+20	[0, 1e+75]	Double	maximum objective fu
			barorder		0	{0,1,2,3}	Enumint	row ordering algorithm
			bargcpepcomp		1e-07	[1e-12, 1e+75]	Double	convergence tolerance
			barstartalg			{1,2,3,4}	Enumint	barrier starting point al
	dio is an easy way of		bbinterval		7	[0, 2147483647]	Integer	best bound interval
GAIVIS SLU	ulo is all easy way of		bendersfeascuttol		1e-06	[1e-09, 0.1]	Double	Tolerance for whether a
			bendersoptcuttol		1e-06	[1e-09, 0.1]	Double	Tolerance for optimality
editing the c	plex.opt file and shows		benderspartitionins	itage	0	{0, 1}	Boolean	Benders partition throu
-			bendersstrategy		0	{-1,0,1,2,3}	Enumint	Benders decomposition
all av	ailable options.		bndrng bndstrenind			61640	StrList EnumInt	do lower / upper bound
			bagcuts		-1	{-1,0,1} {-1,0,1,2,3}	Enumint	bound strengthening boolean quadric polyto
		1	brdir		0	{-1,0,1,2,5} {-1,0,1}	Enumint	set branching direction
			bttol		1	[0, 1]	Double	backtracking limit
						No. 11	pro cipite	Southing mine

Good Optimization Modeling Practices with GAMS. May 2025

{0.1.2

Example model 2: data input, model solving and data output

*Loading input data from a GDX file					
\$GDXin 'entrada.gdx'	Use GDX as input and output data to isolate the				
Sloaddc t	model from the data processing				
\$loaddc p_Gcaco \$loaddc p_Gcvar					
\$loaddc p_Gcarr	If you run the mo	del with GDX creating a	GDX file		
Sloaddc p_Gcpar Limit the active set elements	with the same name as the GAMS file is created				
Stoaddc p_Gpmx when you are debugging, and	containing all the information				
Sloaddc p_Gei Sloaddc p_GPini activate them all for standard					
\$loaddc p_Grs executions					
\$loaddc p_Grb \$loaddc p_Precio	GAMS Studio				
\$GDXir;	<u>File Edit GAMS MIRO Tools</u>	<u>V</u> iew <u>H</u> elp			
*activate the complete sets to make a full run with everything		1 1 1 1 1 -			
ga(g) = yes;	Project Explorer	Run	F9		
ta(t) = yes;	ore require	Run with GDX Creation	F10		
*Variable limit and fixed values should be performed here		Compile	Shift+F9		
		Compile with GDX Creation	Shift+F10		
SOLVE modelo minimizing v_fob using MIP;		Run <u>N</u> EOS			
*generate GDX with certain output data from the model		Run GAMS Engine			
*no need to specify parameter variable sets, it includes them automatically					
execute_unloaddi 'salida.gdx',					

v_t v_ct

comillas.<mark>edu</mark>

Good Optimization Modeling Practices with GAMS. May 2025

Example model 2: solver related information

*Useful solve information:

· · · · · · · · · · · · · · · · · · ·	nformation can be used to con	ndition the development of	f the program, for example with	multiple executions or loops).
*Total time				
<pre>display modelo.etSolve; *Column time</pre>				
*Solver time				
<pre>display modelo.resUsd;</pre>				
*Solver termination		11 Tatanal Caluar Fails		
* 1-Normal Completion	6-Capability Problems	11-Internal Solver Fail	ire	
* 2-Iteration Interrupt	7-Licensing Problems	13-System Failure		
* 3-Resource Interrupt	8-User Interrupt			
* 4-Terminated By Solver	9-Setup Failure			
* 5-Evaluation Interrupt				
<pre>display modelo.solveStat; *Model status code</pre>				
* 1-Optimal	6-Intermediate Infeasible	11 Liconcing Duchlom	16-Solved	
* 2-Locally Optimal	7-Intermediate Nonoptimal	11-Licensing Problem 12-Error Unknown	17-Solved Singular	
* 3-Unbounded	8-Integer Solution	13-Error No Solution	17-Solved Singular 18-Unbounded - No Solution	
* 4-Infeasible	9-Intermediate Non-Integer		19-Infeasible - No Solution	
* 5-Locally Infeasible	10-Integer Infeasible	15-Solved Unique	19-III easible - No Solucion	
display modelo.modelStat;		13-301Ved Onique		
*Number of discrete varia				
display modelo.numDVar;				
*Number of equations				
display modelo.numEqu;				
*Number of variables				
<pre>display modelo.numVar;</pre>				
scalars				
s_optcr "Optcr achie	ved"			
;				
*GAMS Optcr				
s_optcr = (100 * abs(modelo.objest - modelo.objval) / max(abs(modelo.objest),abs(modelo.objval)))\$[max(abs(modelo.objest),abs(modelo.objval))];				
display s_optcr;				
*Cplex Optcr				
s_optcr = (100 * abs(modelo.objest - modelo.objval) /(1e-10+abs(modelo.objval)))\$[(1e-10+abs(modelo.objval))];				
display s_optcr;				
Universidad Pontificia GUUU Optimization ividuening Practices with GAIVIS. IVIAY 2025				
ICAI ICADE CIHS				

00

Example model 2: equation documentation (outside the model)

*Objective function: cost-income minimization	
<pre>\$EQ_FObj\$ ```math v_fob = \sum_{g \in ga, t \in ta}[v_ct_{g} ```</pre>	,t} - v_t_{g,t} * p_Precio_{t}]
<pre>*Generation cost \$EQ_CostT: g \in ga, t \in ta\$ ```math v_ct_{g,t} = p_Gcarr_{g} * v_y_{g,t}</pre>	Documentation of the equations in markdown using visual studio code
<pre>viath viath viation (in ga) t (in ga) viation (g) viation (g)</pre>	p_{g,t}
<pre>*Commitment: stop at minimum power \$EQ_AcoParPmn: g \in ga, t \in ta \ if\ [t-1 \in ```math v_p_{g,t-1} \leq (p_Gpmx_{g} - p_Gpmn_{g})</pre>	
<pre>*Commitment: start at minimum power \$EQ_AcoArrPmn: g \in ga, t \in ta\$ ```math v_p_{g,t} \leq (p_Gpmx_{g} - p_Gpmn_{g})</pre>	* (v\ v {g,t} - v\ y {g,t})
*Coherence between commitment status and start u \$EQ_AcoPar: g \in ga, t \in ta\$ ```math	up and snut down decisions
v_y_{g,t} - v_v_{g,t} - v_z_{g,t} + v_v + p_G	_{g,t-1}\\$[t.ord>1] ei_{g} \\$[t.ord=1] = 0
<pre>*Limit increase in power output \$EQ_RampSub: g \in ga, t \in ta\$ ```math</pre>	p_Grs_{g}
*Limit decrease in power output \$EQ_RampBaj: g \in ga, t \in ta\$ ```math	
<pre>- v_p_{g,t} + v_p_{g,t-1}\\$[t.ord>1]</pre>	

+ p_GPini_{g}\\$[t.ord=1] \leq p_Grb_{g}

 $EQ_Dummy: g \in ga, t \in ta$

Go

 $v_ct_{g,t} \ge 0$

Example model 2: time considerations for equation definitions and performing partial executions

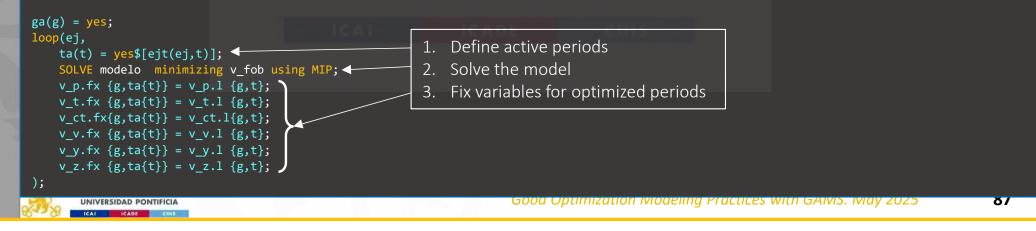
*The equation has v_p and v_v of one time period and v_z of the next, the straightforward definition would be:

EQ_AcoParPmn(g,ta(t))\$[t.ord < card(t)]....</pre>

v_p[g,t] <= (p_Gpmx[g] - p_Gpmn[g]) * (v_v[g,t] - v_z[g,t+1]);</pre>

*However, it may be a better idea to use past time indices instead of future time indices and write the equation as follows: EQ_AcoParPmn{ga{g},ta{t}}[ta(t-1)]..

v_p{g,t-1} =L= (p_Gpmx{g} - p_Gpmn{g}) * (v_v{g,t-1} - v_z{g,t});


The reason is that if the entire period being executed were split into several sequential runs, for the executions that were not the first one, the value of the variables v_p and v_v would be available in the last period of the previous execution. That would avoid the need to fix the value of the variable v_z in the first period of the subsequent execution.

sets ei

"Executions in which the time horizon is to be split" /ej1*ej3/

ejt (ej,t) "Time periods of each execution"

ejt(ej,t) = yes\$[(ej.ord-1)*card(t)/card(ej)<t.ord and t.ord<=ej.ord*card(t)/card(ej)];</pre>

comillas<mark>.edu</mark>

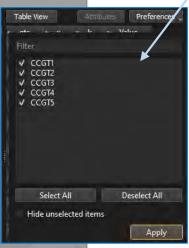
Data in and out of the model

- Data is one of the primary sources of problems. During development, an excellent practice isolates the model from the data processing.
- Data processing outside the model
 - Construct parameters from other parameters
 - Scaling parameters to standardize units. All parameters should be in the same units, and all scaling should be performed previously. Never hardcode scaling in equations!!
- · Data processing inside model
 - Scaling parameter for the execution particularities. For example, the associated cost of a monthly decision can be scaled to 7/30 if the model executes just a week horizon.
- If you are forced to perform data processing in the model, do it together and in a separate file (use an include).

<u>Personal recommendation</u>: if you need data processing in GAMS, do it in a separate file and a separate process (using \$call) that builds a GDX to be read from the main file. This way, you write the input data to disk and reread it. There are more efficient ways. However, having a single file that is easy to consult with all the input data is convenient for debugging.

A good option is parametrizing the process so that when you are debugging, that GDX file is created, and in standard executions, a more direct data input method is used.

comillas.<mark>edu</mark>


Good Optimization Modeling Practices with GAMS. May 2025

GAMS GDX viewer

	а	b
	1	001
	10	002
	100	003
1	2	010
	3	100

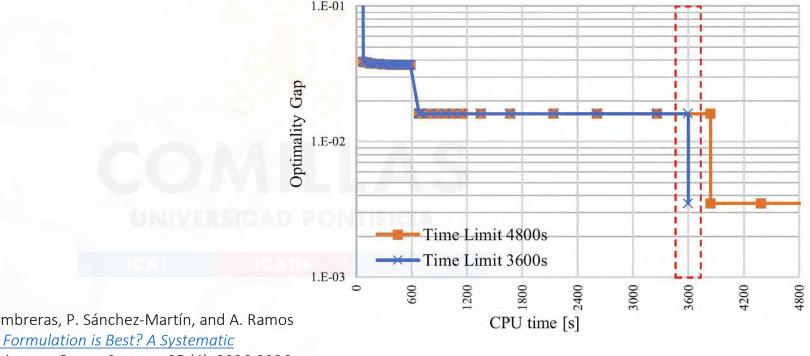
rences CCGT3

- In list view, you can <u>order</u> by different sets (be aware that all order is alphabetical and not numerical, therefore, to have proper numerical order, your sets need to be defined with <u>zeros</u> on the left)
- In the list view, you can set <u>filters</u> to display just some elements
- In table view, you can click and drag the <u>rows</u> and <u>columns</u> to change the display order
- Select the entire table (click in the corner) to copy and paste it into an Excel file
- When looking at variables, you can use the attributes option to display or hide the levels, limits, and marginal.

ter:	Ali Column	1S	Table	View	Atta (B	utes Preferences Reset			-	-	_	100 Brown	_
Entry Name -	Туре	Dim	📩 🛪 gts	××	n k	🔨 Value	Attributes Prefe	List	iew	ALTIC	AES	Prefere	nces
18 p_GTSPini_x	Parameter	2	CCGT1	3	k4	100			CCGT1	100	GT2	C	CG
13 p_GTSpmn_x	Parameter	3	CCGTI	3	k5	100	^{la} √ Level		2 4		UTL A		
14 p_GTSpmx_x	Parameter	3	CCGT1	3	k6	100	10000		5 4	2	4	13	
16 p_GTStminOff_	Parameter	2	CCGTI	3	k7	100	✓ Marginal	k1	100	175	50	100	
17 p_GTStminOn_>	Parameter	2	CCGT1	3	k8	100	✓ Lower Bound	k2	100	175	50	100	
36 Penalizacion	Parameter	0	CCGTI	3	k9	100	and a second second second	k3	100	175	50	100	
24 Precio	Parameter	1	CCGT1	3	k10	100	✓ Upper Bound		100	175	50	1.4.4	
19 RDu	Parameter	2	CCGT1	3	k11	100	✓ Scale	k4				100	
22 RDv	Parameter	3	CCGT1	3	k12	100		k5	100	175	50	100	
20 RUu	Parameter	2	CCGT1	3	k13	100							
23 RUv	Parameter	3	CCGT1	3	k14	100							

Rule of thumb for selecting an LP optimization algorithm

- Simplex (or dual simplex) method can be the best choice for moderate size (up to 100000 x 100000)
- Interior point method is usually the most efficient for huge and difficult problems
 - It is the most *numerically sensitive* algorithm. Numerical issues can cause crossover to stall
 - It can be *threaded* quite efficiently (compared to simplex)
- Difference in solution time can reach one order of magnitude

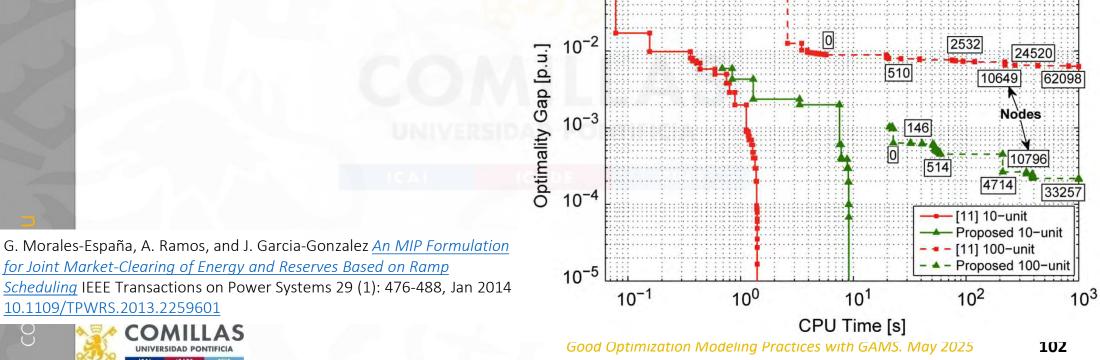


Select

The Best

Solution time for MIP problems

• Solution time depends on the CPU time limit


D.A. Tejada-Arango, S. Lumbreras, P. Sánchez-Martín, and A. Ramos <u>Which Unit-Commitment Formulation is Best? A Systematic</u> <u>Comparison</u> IEEE Transactions on Power Systems 35 (4): 2926-2936 Jul 2020 <u>10.1109/TPWRS.2019.2962024</u>

comillas.ed

Solution time for MIP problems

- Optimality gap is stepwise with the solution time
- Solution time strongly depends on the formulation quality

Algorithm improvements

• For solving LP/MILP, computer hardware got about 20 times faster, and the algorithms improved by a factor of about 9 for LP and around 50 for MILP, which gives a total speed-up of about 180 and 1,000 times, respectively

Th. Koch, T. Berthold, J. Pedersen, Ch. Vanaret "Progress in mathematical programming solvers from 2001 to 2020" *EURO Journal on Computational Optimization* 10 (2022) 100031 <u>https://doi.org/10.1016/j.ejco.2022.100031</u>

comillas.ed

Good Optimization Modeling Practices with GAMS. May 2025 **103**

Debugging an optimization model

- Grammar error
 - Read the error and click on the red line of the log file
- Infeasibility detection
 - Soft (elastic) constraints
 - Introduce a deficit or surplus variables in each equation and penalize it in the objective function. Be careful with the penalty parameter (FeasOpt in Gurobi/CPLEX)
 - Detect the smallest core of infeasible constraints by the LP solver (option *Irreducible Infeasible Subsets iis* in solvers)
 - Once known, they must be deleted or modified

comillas.ec

Options

Options	Description
LimRow	Number of rows to show
LimCol	Number of columns to show
SolPrint	Solution output
SolveOpt	Replace
Decimals	Number of decimals in displaying values
IterLim	Maximum number of solver iterations
ResLim	Maximum solution time
Profile	Time profiling
ProfileTol	Profile threshold
Seed	Initialize seed for random numbers

comillas.ed

\$ Directives

\$ Directives	Description
\$OnEmpty	Allow introduction of empty sets
\$OnMulti	Allow redeclaration of sets
\$OffListing	Suppress listing of the code

AS

UNIVERSIDAD PONTIFICIA

ICADE

ICAI

Good Optimization Modeling Practices with GAMS. May 2025 106

Variable attributes (varName.Attribute)

Attribute	Description
lo	lower bound
up	upper bound
fx	fixes the variable to a constant
Range	range of the variable
1	initial value before and optimal value after
m	marginal value (reduced cost)
Scale	numerical scale factor
Prior	branching priority in a MIP model ($\infty \rightarrow$ not discrete)
SlackUp	slack from upper bound
SlackLo	slack from lower bound
Infeas	infeasibility out of bounds

Equation attributes (equationName.Attribute)

Attribute	Description
lo	lower bound
up	upper bound
1	initial value before and optimal value after
m	marginal value (dual variable or shadow price)
Scale	numerical scaling factor

UNIVERSIDAD PONTIFICIA

Model

model ModelName1 / Equation1 Equation3 Equation5 Equation7 /
model ModelName2 / all /

model ModelName3 / ModelName1 - Equation5 + Equation8 /

comillas.edi

Good Optimization Modeling Practices with GAMS. May 2025 **109**

Model attributes (modelName.Attribute)

Attribute	Description	Attribute	Description
ResLim	Resource limit	IterUsd	Number of iterations
SolveOpt	Replace/merge/clear in consecutive solves	ResUsd	Resource used
SolSlack	Show slack variables	BRatio	Basis ratio controls the use of previous basis
SolvePrint	0, 1, 2 (to remove the detailed solution from the .lst file)	HoldFixed	Fix and eliminate variables
TryLinear	Try linear model first	IterLim	Iteration limit
ModelStat	Model status	NodLim	Node limit
SolveStat	Solve status	OptCA	Absolute optimality tolerance
NumEqu	Number of equations	OptCR	Relative optimality tolerance
NumVar	Number of variables	OptFile	Use of an option file
NumDVar	Number of discrete variables	PriorOpt	Use of priority
NumNz	Number of non zeros		

Good Optimization Modeling Practices with GAMS. May 2025

GAMS Call Options

GAMS Options	Description
Suppress	Suppress echo of the code listing
PW	Page width
PS	Page size
RF	Shows all the symbols
Charset	Allows international characters
U1U10	User parameter 🔶

NIVERSIDAD PONTIFICIA

u1="Excel_Interface_Name" u2=0 u3=0 u4=1 --NumberCores=4

comillas.edu

Boosting performance

- Threads
 - Use of multiple cores of a computer by the solver
- GUSS (Gather-Update-Solve-Scatter)
 - Use of sensitivity analysis for solving many similar problems
- Grid and Multi-Threading Solve Facility
 - Send many problems to solve and collect them after solved
- You can launch several GAMS processes simultaneously, being careful with conflicting filenames

40 30 20 10 50 50 70 70 70 70 TURBO

Scenario analysis of the transportation problem solved with GUSS

set scen_dem stochastic demand scenario dictionary /

	sc . scenario . ''
sets I origins	<pre>* update the LHS with values of the RHS pB param . pBS</pre>
J_destinations	pb . paraii . pbs
SC scenarios	A stars in the DUC with values of the UUS
	* store in the RHS with values of the LHS
parameters	vX . level . pX
pA (i) origin capacity	vCost . level . pCost
pB (j) destination demand	eDemand . marginal pPrice /
pC (i,j) per unit transportation cost	
pBS (sc, j) stochastic destination demand	
pX (sc,i,j) stochastic units transported	sets
<pre>pCost (sc) stochastic transportation cost pPrice(sc, j) stochastic spot price</pre>	I origins / VIGO, ALGECIRAS /
price(sc, j) scochastic spot price	J destinations / MADRID, BARCELONA, VALENCIA /
variables	SC scenarios / sc000*sc999 /
vX(i,j) units transported	
vCost transportation cost	parameters
	pA(i) origin capacity
positive variable vX	/ VIGO 350
equations	ALGECIRAS 700 /
eCost transportation cost	
eCapacity(i) maximum capacity of each origin	<pre>pBS(sc,j) stochastic destination demand</pre>
eDemand (j) demand supply at destination ;	/ sc000 . MADRID 400
	sc000 . BARCELONA 450
eCost sum[(i,j), pC(i,j) * vX(i,j)] =e= vCost ;	sc000 . VALENCIA 150 / ;
eCapacity(i) sum[j , vX(i,j)] =l= pA(i) ;	
eDemand (j) sum[i, vX(i,j)] =g= pB(j) ;	* Lazy input, feeding data for all the scenarios with random demand
	pBS(sc,j) = pBS('sc000',j) * [1+uniform(-0.05,0.05)];
<pre>model mTransport / all /</pre>	
	<pre>table pC(i,j) per unit transportation cost</pre>
	MADRID BARCELONA VALENCIA
	VIGO 0.06 0.12 0.09
	ALGECIRAS 0.05 0.15 0.11;

	* initialization of the destination demand
	pB(j) = pBS('sc000', j);
	po(j) - pos(scooo ; j) ;
AULIAC	solve mTransport using LP minimizing vCost scenario scen dem
MILLAS	Source minimizing the minimizing vost scenario scen_dem
RSIDAD PONTIFICIA	

Scenario analysis of the transportation problem solved with Grid computing and GUSS (i)

	sets
	gs(sc) scenarios per GUSS run
	sh solution headers / System.GUSSModelAttributes /
	scen dem stochastic demand scenario dictionary /
sets	sc . scenario . ''
I origins	
J destinations	<pre>scen_optn . opt . st_report_o</pre>
SC scenarios	
	* update the LHS with values of the RHS
parameters	pB . param . pBS
pA (i) origin capacity pB (j) destination demand	
pC (i,j) per unit transportation cost	* store in the RHS with values of the LHS
pBS (sc, j) stochastic destination demand	vX .level .pX
pX (sc,i,j) stochastic units transported	vCost . level . pCost
pCost (sc) stochastic transportation cost	eDemand . marginal . pPrice /
pPrice(sc, j) stochastic spot price	
price(se, j) stochastic spot price	****
variables	
vX(i,j) units transported	sets
vCost transportation cost	I origins / VIGO, ALGECIRAS /
	<pre>J destinations / MADRID, BARCELONA, VALENCIA /</pre>
positive variable vX	SC scenarios / sc000*sc999 /
equations	parameters
eCost transportation cost	pA(i) origin capacity
eCapacity(i) maximum capacity of each origin	/ VIGO 350
eDemand (j) demand supply at destination ;	ALGECIRAS 700 /
eCost sum[(i,j), pC(i,j) * vX(i,j)] =e= vCost ;	pBS(sc,j) stochastic destination demand
eCapacity(i) sum[j, vX(i,j)] =1= pA(i); eDemand (j) sum[i, vX(i,j)] =g= pB(j);	/ sc000 . MADRID 400
eDemand (j) sum[i, vX(i,j)] =g= pB(j) ;	
	sc000 BARCELONA 450
nodel mTransport / all /	sc000 . VALENCIA 150 / ;
	* lazy input, feeding data for all the scenarios with random demand
	pBS(sc,j) = pBS('sc000',j) * [1+uniform(-0.05,0.05)];
	$\mu \sigma (\sigma \sigma) = \mu \sigma (\sigma \sigma \sigma) $
	table pC(i,j) per unit transportation cost
	MADRID BARCELONA VALENCIA
	VIGO 0.06 0.12 0.09
	ALGECIRAS 0.05 0.15 0.11 :

Good Optimization Modeling Practices with GAMS. May 2025

116

Scenario analysis of the transportation problem solved with Grid computing and GUSS (ii)

coresc(core,sc) cores to sce	run / core001*core004 / nario / core001.(sc000*sc249) core002.(sc250*sc499) core003.(sc500*sc749) core004.(sc750*sc999) /
<pre>parameter scen_optn scenario st_report_o(sc,sh) status re pGridHandle(core) grid hand</pre>	options / OptFile 2, LogOption 1, SkipBaseCase 1, UpdateType 1, RestartType 1, NoMatchLimit 999 / port les ;
<pre>* initialization of the destina pB(j) = pBS('sc000',j);</pre>	tion demand
mTransport.SolveLink = %SolveLi	nk.AsyncGrid% ;
<pre>* Sending Loop loop (core, gs(sc) = coresc(core,sc) if (sum[gs(sc), 1] > 0, solve mTransport using LP pGridHandle(core) = mTran);</pre>	<pre>minimizing vCost scenario scen_dem ; sport.Handle ;</pre>
);	ICAI ICADE CIHS
* Recovering Loop	
<pre>repeat loop (core \$HandleCollect(pG</pre>	ridHandle(core)), ridHandle(core)) 'Trouble deleting handles' ;
<pre>repeat loop (core \$HandleCollect(pG display \$HandleDelete (pG</pre>	ridHandle(core)) 'Trouble deleting handles' ; TimeElapsed > 1000 ;

It could be a good idea to include a copy of the recovering loop within the sending loop to ensure that the amount of solves being executed is not larger than a certain number (for example, the number of cores):

```
loop(
    send
    repeat
        recover
    until handles < cores
)
repeat
    recover
until handles = 0
```

117

Releasing memory

- a) Define a dummy solve
- b) Clear parameters
- c) Run dummy model

```
option profile=10
set i / 1 * 10000000 /
parameter pp(i) ;
pp(i) = 33 ;
* dummy optimization problem used for releasing memory
variable vDummy
equation eDummy ; eDummy .. vDummy =e= 0 ;
model mDummy / eDummy / ;
* only parameters that are no longer used can be cleared
option Clear=pp
* solve a dummy optimization problem to release memory usage
solve mDummy using LP minimizing vDummy
```

comillas.edu

GAMS to LaTeX

<pre>sets I origins / VIGO, ALGECIRAS / J destinations / MADRID, BARCELONA, VALENCIA /</pre>	Generate the doc file	Symbols Sets		
<pre>parameters pA(i) origin capacity / VIG0 350 ALGECIRAS 700 /</pre>	GAMS transport.gms DocFile=transport Write the tex file	Name I J Parameters	Domains * *	Description origins destinations
pB(j) destination demand / MADRID 400 BARCELONA 450 VALENCIA 150 / $\sum_{ij} c_i$	model2tex transport j ^x ij	Name pA pB pC	Domains I J I, J	Description origin capacity destination demand per unit transportation cost
table pC(i,j) per unit transportation cost MADRID BARCELONA VALENCIA VIGO $\sum_{j} x_{ij} \le a$ $\sum_{j} x_{ij} \le a$ $\sum_{j} x_{ij} \ge b$ variables $\sum_{j} x_{ij} \ge b$		Variables Name vX vCost	Domains I, J	Description units transported transportation cost
variables vX(i,j) units transported vCost transportation cost $\sum_{i} x_{ij} \ge 0$ $x_{ij} \ge 0$ positive variable vX		Equations Name eCost eCapacity	Domains I	Description transportation cost maximum capacity of each
equations eCost transportation cost eCapacity(i) maximum capacity of each origin eDemand (j) demand supply at destination ;	A I ICADE CIHS	eDemand Equation Definit	J	origin demand supply at destina- tion
eCost sum[(i,j), pC(i,j) * vX(i,j)] =e= vCost ; eCapacity(i) sum[j , vX(i,j)] =l= pA(i) ; eDemand (j) sum[i , vX(i,j)] =g= pB(j) ;		eCost $\sum_{I,J} (pC_{I,J} \cdot vX_{I,J}) = vCa$	st	
<pre>model mTransport / all / solve mTransport using LP minimizing vCost</pre>		$\begin{aligned} \mathbf{eCapacity}_{I} \\ \sum_{J} (\mathbf{vX}_{I,J}) \leq \mathbf{pA}_{I} \end{aligned}$		$\forall I$
	Good Optimization M	$\begin{aligned} \mathbf{eDemand}_J \\ \sum (\mathbf{vX}_{I,J}) \geq \mathbf{pB}_J \\ \mathbf{OC} \ \mathbf{t} \mathbf{vX}_{I,J} \geq 0 \ \forall I, J \end{aligned}$		$\forall J$

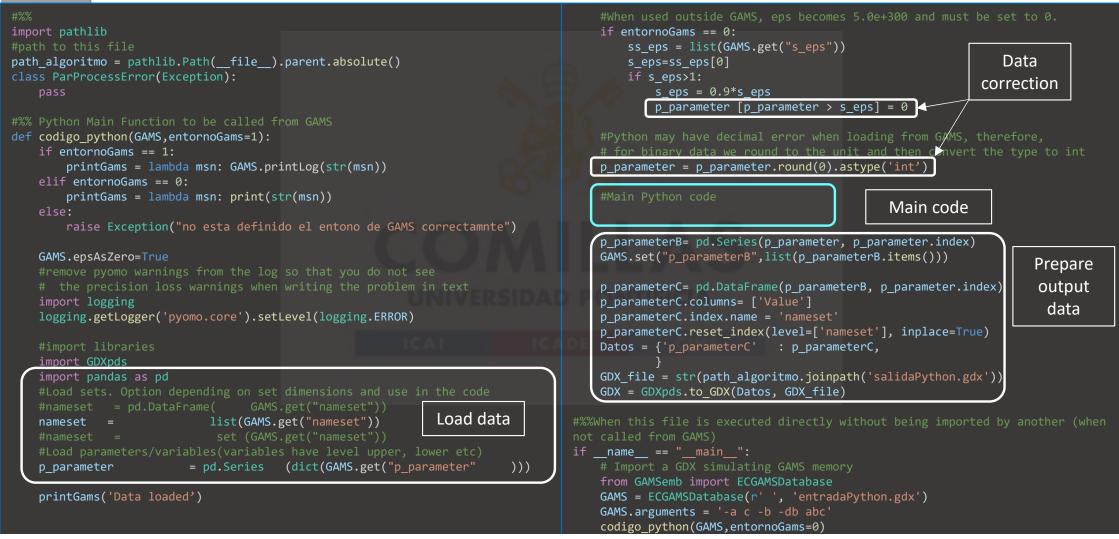
- 1. Programming Style
- 2. GAMS Code
- 3. Embedded Python
- 4. Connect
- 5. Performance Issues
- 6. Advanced Algorithms

Embedded Python

GAMS Embedded Code Facility: Python

- From GAMS, it is possible to execute external code in Python.
 - Can be useful to perform actions that GAMS cannot (print figures) or that are more complex (complex data processing with functions and loops)
 - Example: Print figures during an iterative process to keep track of it
- GAMS Studio is not an excellent debugging option for Python code. The proposed example provides a generic structure that allows the Python code to be executed during the GAMS execution. It also allows its standalone execution from a more convenient tool like VSCode.
 - GAMS execution from GAMS Studio: no additional concerns are needed, just to run the GAMS code
 - Standalone execution from VSCode: select as python interpreter the one included in the GAMS installation located in "GAMSdirectory"/GMSPython/python.exe
 - The example is prepared for a particular directory structure:

comillas.ed


🗁 pythonExample	Project main directory
🗕 🖻 mainGAMSfile.gms	GAMS source code
└─ 🗁 Python	Specific directory for python code and data
🗕 🛃 codigoPython.py	Python source code
entradaPython.gdx	Python input data for standalone execution
ILLAS La salidaPython.gdx	Python output data
AD PONTIFICIA	Good Optimization Modeling Practices with GAMS. May 2025

Python embedded code: GAMS code

Python embedded code: Python code

Python/Pyomo

Pyomo is a Python library that allows defining optimization models using an algebraic language like the one used by GAMS.

Pros:

- Open source
- Active development by a vast community
- Processing of data and results can benefit from Python libraries, graphical functions, etc.

Cons:

comillas.e

- GAMS has been developed for a longer time. Some options that are easy to use in GAMS are not so trivial with Pyomo (or may not exist yet)
- Worse documentation

A simple but detailed (following good practices) example that can be used as a base is available in the: https://gitlab001.iit.comillas.edu/pdeotaola/Ejemplo Optimizacion Python-Pyomo

- 1. Programming Style
- 2. GAMS Code
- 3. Embedded Python
- 4. Connect
- 5. Performance Issues
- 6. Advanced Algorithms

Connect (data input and output)

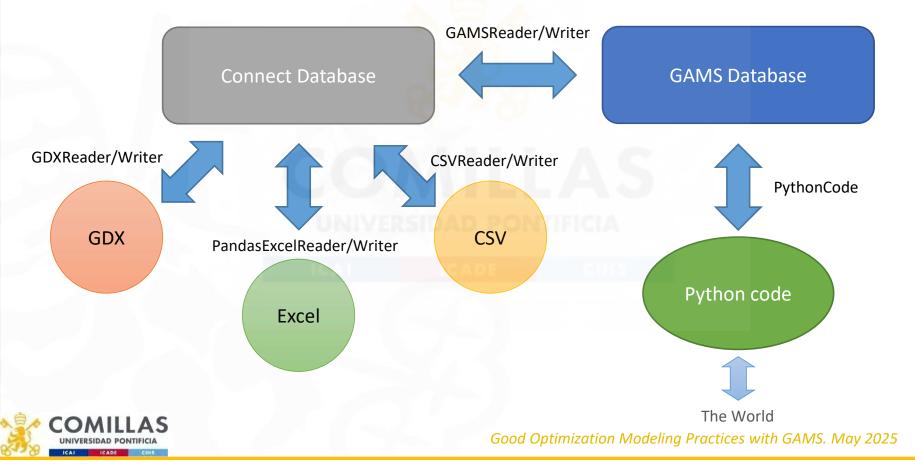
Connect

GAMS Connect allows reading and writing data directly from/to:

- Excel
- CSV
- GDX

It uses yaml for a user-friendly programming code

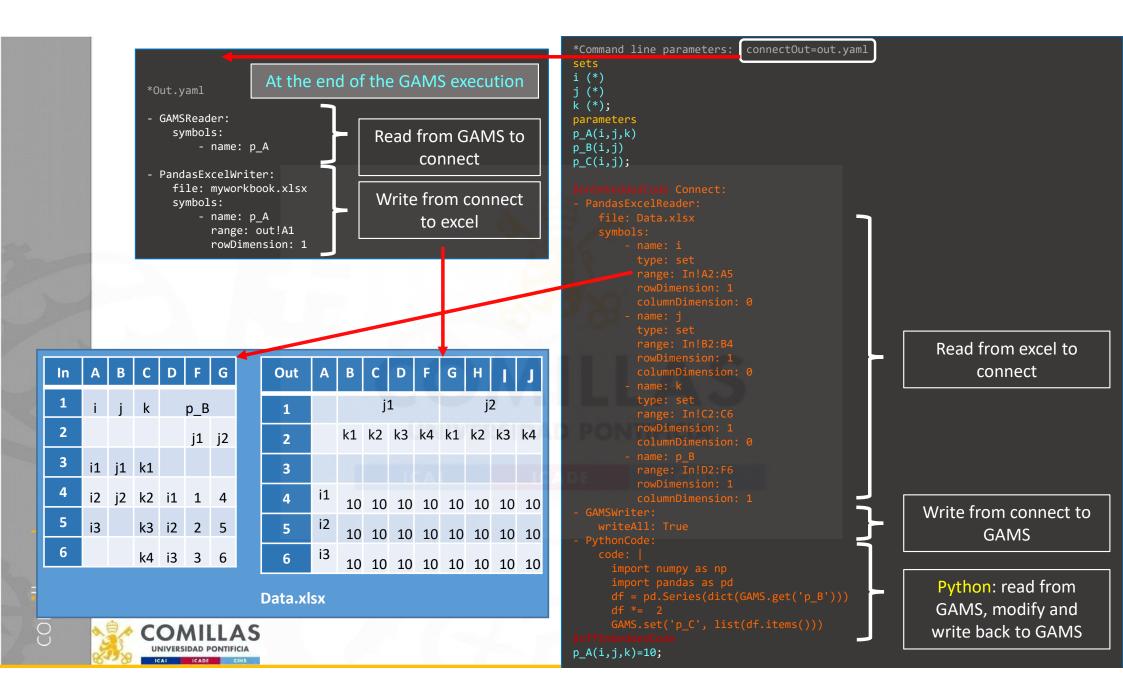
The code can be run with the **embedded code facility** or with a command line parameter:


- **ConnectIn='scriptfile'**: executes the instructions in 'file' at the beginning of the GAMS execution. As the sets and parameters are not defined, it can be used, for example, to build a single GDX from several input files that will be available for latter
- **ConnectOut ='scriptfile'**: executes the instructions in 'file' at the end of the GAMS execution. It can be used to store all the required data from the model

When using the embedded code facility is also possible to use python code.

https://www.GAMS.com/latest/docs/UG_GAMSCONNECT.html

Connect


comillas.ed


130

Connect

Connect agent	Description
<u>CSVReader</u>	Allows reading a symbol from a specified CSV file into the Connect database.
<u>CSVWriter</u>	Allows writing a symbol in the Connect database to a specified CSV file.
GAMSReader	Allows reading symbols from the GAMS database into the Connect database.
GAMSWriter	Allows writing symbols in the Connect database to the GAMS database.
<u>GDXReader</u>	Allows reading symbols from a specified GDX file into the Connect database.
<u>GDXWriter</u>	Allows writing symbols in the Connect database to a specified GDX file.
<u>Options</u>	Allows to set more general options that can affect the Connect database and other Connect agents.
PandasExcelReader	Allows reading symbols from a specified Excel file into the Connect database.
PandasExcelWriter	Allows writing symbols in the Connect database to a specified Excel file.
Projection	Allows index reordering and projection onto a reduced index space of a GAMS symbol.
PythonCode	Allows executing arbitrary Python code.
RawExcelReader	Allows reading unstructured data from a specified Excel file into the Connect database.

- 1. Programming Style
- 2. GAMS Code
- 3. Embedded Python
- 4. Connect
- 5. Performance Issues
- 6. Advanced Algorithms

Performance Issues

Finding and Fixing Execution Errors and Performance Problems

G A M S

- Resolving Execution Errors
- Small to Large: Aid in Development and Debugging
- Increasing Efficiency: Reducing GAMS Execution Time
- Increasing Efficiency: Reducing Memory Use

https://www.gams.com/latest/docs/UG_ExecErrPerformance.html

comillas.<mark>ed</mark>

Good Optimization Modeling Practices with GAMS. May 2025 141

Guidelines for Numerical Issues

I strongly recommend going through these web pages to improve the numerical properties of the optimization model.

- Avoid rounding of input
- Real numbers are not real
- Tolerances and user-scaling
 - Models at the edge of infeasibility
 - Gurobi tolerances and the limitations of double-precision arithmetic
 - · Why scaling and geometry is relevant
 - Recommended ranges for variables and constraints
 - Improving ranges for variables and constraints
 - Advanced user scaling
 - Avoid hiding large coefficients
 - Dealing with big-M constraints
- Does my model have numerical issues?
- Solver parameters to manage numerical issues
 - Presolve
 - Choosing the right algorithm
 - Making the algorithm less sensitive
- Instability and the geometry of optimization problems
 - The case of linear systems:
 - The geometry of linear optimization problems
 - Multiple optimal solutions
 - Dealing with epsilon-optimal solutions
 - Thin feasible regions
 - Optimizing over the circle:
 - Optimizing over thin regions:
 - Stability and convergence

https://www.gurobi.com/documentation/current/refman/guidelines_for_numerical_i.html

LP Performance issues and their suggested resolution

LP performance issue	 Suggested resolution Calculate and input model data in double precision Eliminate nearly-redundant rows and/or columns of <i>A a priori</i> Avoid mixtures of large and small numbers: (i) Be suspicious of κ between 10¹⁰ and 10¹⁴; (ii) Avoid data leading to κ greater than 10¹⁴ Use alternate scaling (in the model formulation or optimizer settings) Increase the Markowitz threshold Employ the numerical emphasis parameter (if available) 	
Numerical instability		
Lack of objective function improvement under degeneracy	 Try all other algorithms (and variants) Perturb data either a priori or using algorithmic settings 	
Primal degeneracy	Use either dual simplex or interior point on primal problem	
Dual degeneracy	• Employ either primal simplex or interior point on primal problem	
Both primal and dual degeneracy	• Execute interior point on primal or dual problem	
Excessive time per iteration	 Try all other algorithms (and variants) Use algorithmic settings to conserve memory or purchase more externally Try less expensive pricing settings if using simplex algorithms 	
Excessive simplex algorithm iterations	• Try Steepest edge or Devex variable selection	
Multiple bound shift removals or significant infeasibilities after removing shifts	Reduce feasibility and optimality tolerances	
Barrier algorithm iterations with little or no progress	Increase barrier convergence tolerance in order to initiate crossover earlier	
Too much time in crossover	• Reduce barrier convergence tolerance in order to provide a better starting point for crossover	

E. Klotz, A.M. Newman Practical guidelines for solving difficult linear programs Surveys in Operations Research and Management Science 18 (1-2), 1-17, Oct 2013 10.1016/j.sorms.2012.12.001 143

Good Optimization Modeling Practices with GAMS. May 2025

Preprocessing by Gurobi

--- StarNetLite TEPM Iceland.gms(15000) 986 Mb 1,167,736 rows 2,004,441 columns 8,140,314 non-zeroes 0 nl-code 0 nl-non-zeroes 7 discrete-columns 63,652 relaxed-columns WARNING --- StarNetLite TEPM Iceland.gms(15000) 984 Mb --- Executing GUROBI: elapsed 0:00:20.917 --- StarNetLite TEPM Iceland.gms(15000) 984 Mb 3 secs 24.6.1 r55820 Released Jan 18, 2016 WEI x86 64bit/MS Windows Gurobi link license. Gurobi library version 6.5.0 Reading parameter(s) from "C:\Users\aramos\Desktop\Aramos\TEPES\gurobi.opt" >> Method 2 >> IntFeasTol 1e-9 OptimalitvTol 1e-9 FeasibilityTol 1e-9 IIS 1 RINS 100 DisplayInterval 1 Finished reading from "C:\Users\aramos\Desktop\Aramos\TEPES\gurobi.opt" NumericFocus 1 Kappa 1 Starting Gurobi... MarkowitzTol 0.999 Optimize a model with 1167735 rows, 2004440 columns and 8140308 nonzeros >> UseBasis 0 Coefficient statistics: >> CrossOver 0 Matrix range [7e-09, 1e+03] >> Names 0 Objective range [1e+00, 1e+00] >> AggFill 0 Bounds range [4e-07, 5e+00] >> GomoryPasses 0 RHS range [1e-18, 1e+01] >> Heuristics 0.001 Presolve removed 257457 rows and 497937 columns (presolve time = 2s) ... >> MipFocus 3 Presolve removed 259520 rows and 500000 columns (presolve time = 2s) ... >> *PreDual 0 Presolve removed 470416 rows and 710896 columns (presolve time = 3s) ... *PrePasses 3 *PreSolve 2 Presolve removed 470616 rows and 711132 columns (presolve time = 4s) ... >> *PreSparsify 1 Presolve removed 470666 rows and 753485 columns (presolve time = 5s) ... Presolve removed 470705 rows and 753535 columns (presolve time = 6s) ... Presolve removed 470705 rows and 753535 columns Presolve time: 6 23s Presolved: 697030 rows, 1250905 columns, 5645696 nonzeros UNIVERSIDAD PONTIFICIA ICADE

40 % reduction in rows, 38 % in columns and 30 % in nonzeros

---***

Gurobi

>>

>>

>>

>>

>>

>>

>>

>>

144

Preprocessing by Gurobi

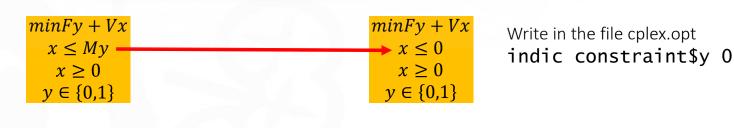
Case SEP2030

Read LP format model from file openTEPES_SEP2030sto.lp Reading time = 106.19 seconds
eTotalTCost: 2999548 rows, 3513436 columns, 11508142 nonzeros
Statistics for model eTotalTCost :
Linear constraint matrix : 2999548 Constrs, 3513436 Vars, 11508142 NZs
Variable types : 2858236 Continuous, 655200 Integer (655200 Binary)
Matrix coefficient range : [0.00092, 5000]
Objective coefficient range : [1, 1]
Variable bound range : [0.00120252, 4307.64]
RHS coefficient range : [0.00120223, 2765.6]
Presolve removed 445826 rows and 519558 columns (presolve time = 6s)
Presolve removed 728231 rows and 831354 columns (presolve time = 10s)
Presolve removed 927371 rows and 840000 columns (presolve time = 15s)
Presolve removed 932122 rows and 845683 columns (presolve time = 20s)
Presolve removed 941267 rows and 858479 columns (presolve time = 25s)
Presolve removed 952315 rows and 872117 columns (presolve time = 30s)
Presolve removed 969568 rows and 892522 columns (presolve time = 35s)
Presolve removed 974714 rows and 902410 columns (presolve time = 44s)
Presolve removed 974731 rows and 902410 columns (presolve time = 53s)
Presolve removed 974731 rows and 902410 columns
Presolve time: 53.20s
Statistics for model eTotalTCost_pre :
Linear constraint matrix : 2024817 Constrs, 2611026 Vars, 8347459 NZs
Variable types : 2392626 Continuous, 218400 Integer (218400 Binary)
Matrix coefficient range : [0.0319163, 5000]
Objective coefficient range : [0.00092, 2]
Variable bound range : [0.0002, 4307.64]
RHS coefficient range : [0.000141, 3281.46]

Case ES2030

eTotalTCost: 5162243 rows, 6832942 columns, 21554828 nonzeros Statistics for model eTotalTCost : Linear constraint matrix : 5162243 Constrs, 6832942 Vars, 21554828 NZs Matrix coefficient range : [0.000107523, 3554.92] Objective coefficient range : [1, 1] Variable bound range : [6.08628e-06, 4307.64] RHS coefficient range : [0.00483795, 2844.48] Presolve removed 547789 rows and 739037 columns (presolve time = 8s) ... Presolve removed 1386313 rows and 1577561 columns (presolve time = 10s) ... Presolve removed 1387761 rows and 1579009 columns (presolve time = 16s) ... Presolve removed 1389569 rows and 1611781 columns (presolve time = 20s) ... Presolve removed 1389569 rows and 1614605 columns Statistics for model eTotalTCost pre : Linear constraint matrix : 3772674 Constrs, 5218337 Vars, 15088689 NZs Matrix coefficient range : [0.0002813, 2488.05] Objective coefficient range : [0.000107523, 163.402] Variable bound range : [6.08628e-06, 4307.64] RHS coefficient range : [0.00258675, 2844.48]

Preprocessing by Gurobi Python shell


- Before and after presolve can help you in detecting improvements in the formulation
- Allows getting the optimization problem after the presolve
 - ModelName = read("OriginalProblem.lp")
 ModelNamePresolved = ModelName.presolve()
 ModelNamePresolved.write("PresolvedProblem.lp")
- Gurobi Model Analyzer (gurobi_modelanalyzer) allows to detect numerical problems

comillas.ed

Some tips for MIP

- Think about lazy constraints (only in GAMS/CPLEX/Gurobi)
- Avoid introducing symmetry (totally equal decision variables). GAMS/CPLEX has a symmetry-breaking cut parameter
 - Symmetry-breaking constraint $x_i \ge x_{i+1}$
- Avoid the use of big *M* parameters or put tight (lowest upper bound) values for the big *M*
- GAMS/CPLEX/Gurobi supports the use of an indicator constraint $x \le My$

comillas.e

STRONGER Reformulation in MIP problems

• Most MIP problems can be formulated in different ways

- In MIP problems, a good formulation is crucial to solve the model
- How good is a MIP formulation?
 - Integrality gap: the difference between the objective function of the MIP and LP relaxation solutions
- Given two equivalent MIP formulations, one is *stronger* (*tighter/better*) than the other if the feasible region of the linear relaxation is strictly contained in the feasible region of the other. The integrality gap is lower.

comillas.<mark>ed</mark>

E. Klotz, A.M. Newman *Practical guidelines for solving difficult mixed integer linear programs* Surveys in Operations Research and Management Science 18 (1-2), 18-32, Oct 2013 <u>10.1016/j.sorms.2012.12.001</u>

Good Optimization Modeling Practices with GAMS. May 2025 148

Warehouse location problem (no limits) (i)

• Choose where to locate warehouses among a set of locations and assign clients to the warehouses, minimizing the total cost. No limits mean that there is no limit on the number of clients assigned to a warehouse.

• Data

j locations

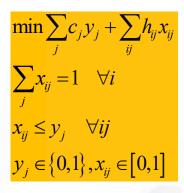
i clients

 c_i localization cost in j

 h_{ii} cost of satisfying the demand of client *i* from *j*

• Variables $y_j = \begin{cases} 1 \\ 0 \end{cases}$

warehouse located in *j* otherwise


 x_{ij} fraction of demand of client *i* met from *j*

comillas.<mark>ed</mark>t

Warehouse location problem (no limits) (ii)

Formulation #1

Number of constraints: I + IJ

Formulation #2

$$\min \sum_{j} c_{j} y_{j} + \sum_{ij} h_{ij} x_{ij}$$
$$\sum_{j} x_{ij} = 1 \quad \forall i$$
$$\sum_{i} x_{ij} \leq M y_{j} \quad \forall j$$
$$y_{j} \in \{0,1\}, x_{ij} \in [0,1]$$

Number of constraints: I + J

IIVERSIDAD PONTIFICIA

- Both formulations are MIP equivalent. However, formulation #1 is stronger
- Intuitively the fewer constraints the better. That's true in LP. However, in many MIP problems, the more constraints, the better.

Production problem with fixed and inventory costs (i)

• Data

comillas.<mark>ed</mark>u

- t time period
- c_t fixed cost, p_t variable cost, h_t inventory cost
- d_t demand
- Variables

 $y_t = \begin{cases} 1 \text{ to produce} \\ 0 \text{ not produce} \end{cases}$

- x_t amount produced
- s_t inventory at the end of the period
- Formulation #1

 $\min_{t} \sum_{t} (c_{t}y_{t} + p_{t}x_{t} + h_{t}s_{t})$ $s_{t-1} + x_{t} = d_{t} + s_{t} \quad \forall t$ $x_{t} \leq My_{t} \quad \forall t$ $s_{0} = s_{T} = 0$ $x_{t}, s_{t} \geq 0, y_{t} \in \{0,1\}$ Mumber of variables: 3T

Good Optimization Modeling Practices with GAMS. May 2025 **151**

Production problem with fixed and inventory costs (ii)

• Variables

 $y_t = \begin{cases} 1 \text{ to produce} \\ 0 \text{ not produce} \end{cases}$

 q_{it} quantity produced in period *i* to meet the demand in period $t \ge i$

• Formulation #2

 $\min \sum_{t=1}^{T} \sum_{i=1}^{t} (p_i + h_i + h_{i+1} + \dots + h_{t-1}) q_{it} + \sum_{t=1}^{T} c_t y_t$ $\sum_{i=1}^{t} q_{it} = d_t \quad \forall t$ $q_{it} \leq d_t y_i \quad \forall it$ $q_{it} \geq 0, y_t \in \{0,1\}$ Number of constraints: $T + T^2/2$ Number of variables: $T + T^2/2$

• Formulation #2 is better. However, it has a greater number of constraints and variables.

comillas.<mark>edu</mark>

Tight and compact unit commitment

- D.A. Tejada-Arango, S. Lumbreras, P. Sánchez-Martín, and A. Ramos <u>Which Unit-Commitment</u> <u>Formulation is Best? A Systematic Comparison</u> IEEE Transactions on Power Systems 35 (4): 2926-2936 Jul 2020 <u>10.1109/TPWRS.2019.2962024</u>
- G. Gentile, G. Morales-España and A. Ramos <u>A Tight MIP Formulation of the Unit Commitment</u> <u>Problem with Start-up and Shut-down Constraints</u> EURO Journal on Computational Optimization 5 (1), 177–201 March 2017 <u>10.1007/s13675-016-0066-y</u>
- G. Morales-España, C.M. Correa-Posada, A. Ramos <u>Tight and Compact MIP Formulation of</u> <u>Configuration-Based Combined-Cycle Units</u> IEEE Transactions on Power Systems 31 (2), 1350-1359, March 2016 <u>10.1109/TPWRS.2015.2425833</u>
- G. Morales-España, J.M. Latorre, and A. Ramos *Tight and Compact MILP Formulation for the Thermal Unit Commitment Problem* IEEE Transactions on Power Systems 28 (4): 4897–4908, Nov 2013 <u>10.1109/TPWRS.2012.2222938</u>
- G. Morales-España, J.M. Latorre, and A. Ramos *Tight and Compact MILP Formulation of Start-Up and Shut-Down Ramping in Unit Commitment* IEEE Transactions on Power Systems 28 (2): 1288-1296, May 2013 10.1109/TPWRS.2012.2222938

comillas.<mark>ed</mark>

Ramp constraints

$$P_{nt} - P_{n-1,t} \le rup_t$$
$$P_{n-1,t} - P_{nt} \le rdw_t$$

Classical

$$P_{nt} - P_{n-1,t} \leq rup_t UC_{nt}$$

$$P_{n-1,t} - P_{nt} \leq rdw_t (UC_{nt} + SD_{nt})$$

Tighter

 Ramp equations are considered in the periods only when the unit is connected

 P_{nt} : output above the minimum load rup_t : upwards ramp limit for generator t

 rdw_t : downwards ramp limit for generator t

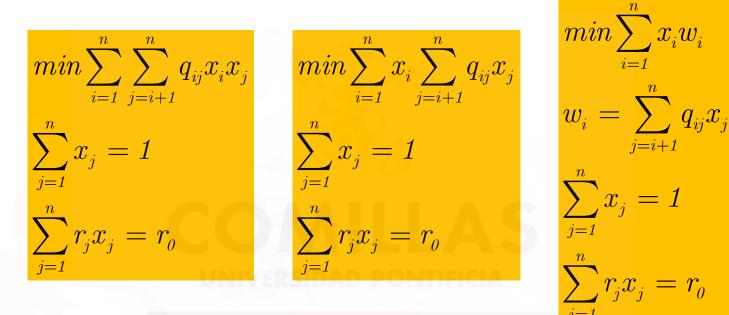
 UC_{nt} : 1 if generator t is connected in hour n, 0 otherwise

- SU_{nt} : 1 if generator t is started in hour n
- SD_{nt} : 1 if generator t is shutdown in hour n

Good Optimization Modeling Practices with GAMS. May 2025

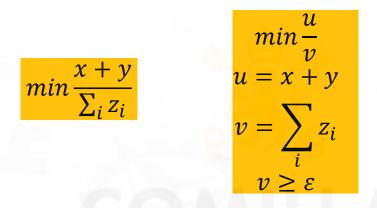
comillas.ed

Why the constraint is tighter?


Given that the constraint uses the output above the minimum load, it can only be applied when the unit is committed until the following period the unit was committed.

	n	1	2	3	4	5	6	7	8	9	10
	UC_n	0	0	0	0	1	1	1	1	0	0
	SU_n	0	0	0	0	1	0	0	0	0	0
	SD_n	0	0	0	0	0	0	0	0	1	0
RampUp	UC_n	0	0	0	0	1	1	1	1	0	0
RampDw	$UC_n + SD_n$	0	0	0	0	1	1	1	1	1	0

Reformulation of an NLP problem


comillas.ed

- Formulation #2 is better than the #1. The evaluation of the objective function in #1 requires $2n^2/2$ multiplications. In #2 only $n + n^2/2$
- Formulation #3 has essentially the same number of multiplications, but they appear in linear constraints. The number of constraints is bigger, but all of them are linear. Linear algebra is much more efficient. Formulation #3 is the most efficient

Good Optimization Modeling Practices with GAMS. May 2025

Reformulation of an NLP problem

- Formulation #1 has a lot of nonlinear variables, and it is not protected against division by zero
- Formulation #2 has only 2 nonlinear variables; the remaining ones appear in linear equations, and the denominator is lower bounded to avoid division by zero. The model is easier to solve and more robust

Product of two variables x_1x_2

$$x_1 x_2 = y_1^2 - y_2^2$$

Quadratic separable form

$$y_{1} = (x_{1} + x_{2})/2$$

$$y_{2} = (x_{1} - x_{2})/2$$

$$l_{1} \le x_{1} \le u_{1}$$

$$l_{2} \le x_{2} \le u_{2}$$

$$\frac{1}{2}(l_{1} + l_{2}) \le y_{1} \le \frac{1}{2}(u_{1} + u_{2})$$

$$\frac{1}{2}(l_{1} - u_{2}) \le y_{2} \le \frac{1}{2}(u_{1} - l_{2})$$

Bradley, Hax, and Magnanti Applied Mathematical Programming Addison-Wesley, 1977

Good Optimization Modeling Practices with GAMS. May 2025 **158**

Solving large-scale problems

- MIP
 - Solve with a sensible relative optimality tolerance
 - Provide an initial solution based on specific knowledge of the model or use the solution from a previous solve
- NLP
 - Introduce sensible bounds on variables AND
 - Provide a good enough starting point AND
 - Scale the problem

comillas.<mark>ed</mark>

MIP models. Gurobi parameters

- Most important parameters
 - Threads, MIPFocus
- Solution Improvement
 - ImproveStartTime, ImproveStartGap
- Termination
 - TimeLimit
 - MIPGap, MIPGapAbs
 - NodeLimit, IterationLimit, SolutionLimit
 - Cutoff
- Speeding Up The Root Relaxation
 - Method

- Numerical issues
 - Presolve, PrePasses, Aggregate, AggFill, PreSparsify, PreDual, PreDepRow
 - ✓ NumericFocus
- Heuristics
 - Heuristics, SubMIPNodes, MinRelNodes, PumpPasses, ZeroObjNodes
 - ✓ RINS 100
- Cutting Planes
 - ✓ Cuts, GomoryPasses, FlowCoverCuts, MIRCuts

https://www.gurobi.com/documentation/current/refman/mip_models.html

Good Optimization Modeling Practices with GAMS. May 2025

comillas.ed

161

CPLEX Performance Tuning for MIP

- Names no
- NodeFileInd 3
- □ NodeSel 0
- U VarSel 3
- □ StartAlg 4
- □ MemoryEmphasis 1
- WorkMem 1000
- MIPEmphasis 2
- MIPSearch 2
- SolveFinal 0
- Solution Polishing
- Solution pool
- □ FlowCovers
- FeasOptMode 2
- □ FeasOpt 1
- □ tuning cplex.opt
- RINSHeur 100
- FpHeur 2

- Pure branch and bound
- Cuts -1
- HeurFreq -1

Presolve

Prelnd, PrePass

Solution method of LP problem

- ✓ First iteration (interior point or simplex method)
- ✓ Successive iterations (primal or dual simplex)
- Priority for variable selection
 - \checkmark Select variables that impact the most in the o.f. (e.g.,
 - investment vs. operation variables)
- Initial cutoff or incumbent
 - \checkmark Initial valid bound of the o.f. estimated by the user

https://www.ibm.com/support/pages/cplex-performance-tuning-mixed-integer-programs *Good Optimization Modeling Practices with GAMS. May 2025* **163**

comillas.edu

How to Tune CPLEX Options for TIMES models

Erechaffen wissen – heute für morgen

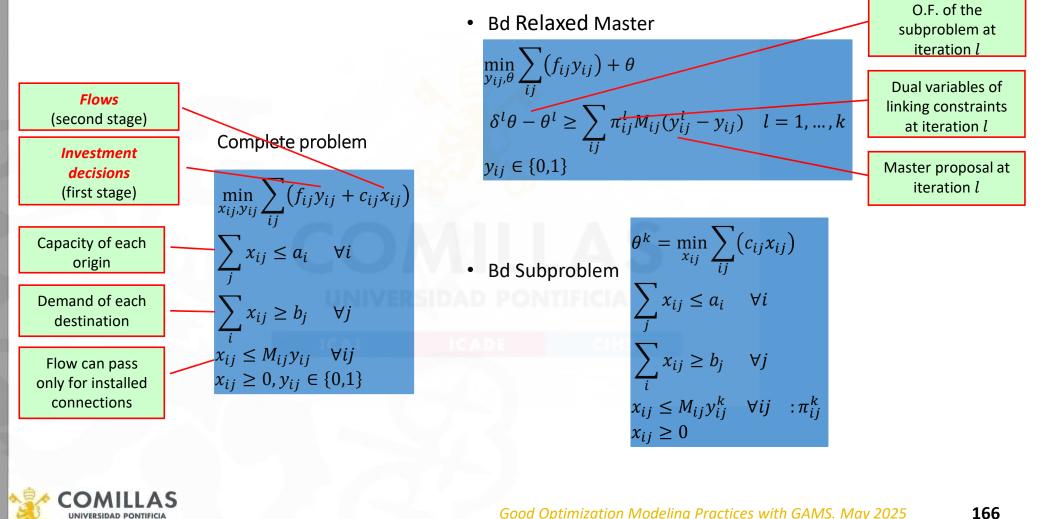
Evangelos Panos :: Energy Economics Group :: Paul Scherrer Institute

CPLEX\Barrier options for TIMES models

https://iea-etsap.org/webinar/CPLEX%20options%20for%20running%20TIMES%20models.pdf

Good Optimization Modeling Practices with GAMS. May 2025

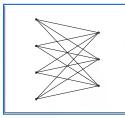
164



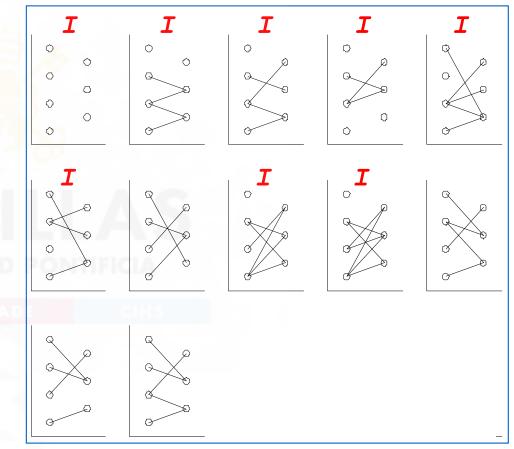
- 1. Programming Style
- 2. GAMS Code
- 3. Embedded Python
- 4. Connect
- 5. Performance Issues
- 6. Advanced Algorithms

Advanced Algorithms

Fixed-Charge Transportation Problem (FCTP

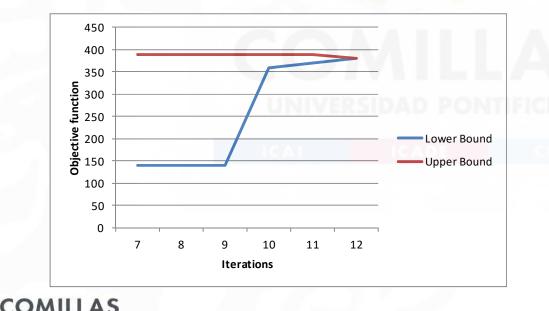


comillas


Fixed-Charge Transportation Problem. Bd Solution

• Possible arcs

comillas.ed


 Solutions along Benders decomposition iterations

Good Optimization Modeling Practices with GAMS. May 2025

Fixed-Charge Transportation Problem. Bd Convergence

Iteration	Lower Bound	Upper Bound
1 a 6	$-\infty$	∞
7	140	390
8	140	390
9	140	390
10	360	390
11	370	390
12	380	380

Good Optimization Modeling Practices with GAMS. May 2025 **168**

FCTP solved by Benders decomposition (i)

https://github.com/IIT-EnergySystemModels/Fixed-Charge-Transportation-Problem-Benders-Decomposition/blob/main/BendersDecomposition FCTP.gm

```
$Title Fixed-charge transportation problem (FCTP) solved by Benders decomposition
                           * relative optimality tolerance in solving MIP problems
                          option OptcR = 0
                           sets
                                                        / 11 * 120 /
                                       iterations
                             Т
                             LL(1)
                                       iterations subset
                                                        / i1 * i4 /
                                       origins
                             I
                             J
                                       destinations
                                                        / j1 * j3 /
                           * Begin problem data
                           parameters
                             A(i)
                                       product offer
                                       / i1 10, i2 30, i3 40, i4 20 /
                             B(j)
                                       product demand
                                       / j1 20, j2 50, j3 30 /
                           table C(i,j) per unit variable transportation cost
                             j1 j2 j3
i1 1 2 3
                             i2 3 2 1
                             i3 2 3 4
                             i4 4 3 2
                           table F(i,j) fixed transportation cost
                                 j1 j2 j3
                             i1 10 20 30
                             i2 20 30 40
                             i3 30 40 50
                             i4 40 50 60
                           * End problem data
                           abort $(sum[i, A(i)] < sum[j, B(j)]) 'Infeasible problem'</pre>
                           parameters
                             BdTol
                                          relative Benders tolerance / 1e-6 /
                             Z Lower
                                          lower bound
                                                            / -inf /
                             Z_Upper
                                          upper bound
                                                            / inf /
                             Y_L (l,i,j) first stage variables values
                                                                                   in iteration 1
                             PI L (1,i,j) dual variables of second stage constraints in iteration 1
                                         cut type (feasibility 0 optimality 1)
                             Delta(1)
                                                                                  in iteration 1
                             Z2_L (1)
                                          subproblem objective function value
                                                                                   in iteration 1
                           positive variable
                             X(i,j)
                                          arc flow
                          binary variable
                             Y(i,j)
                                          arc investment decision
                           variables
                             Z1
                                          first stage objective function
                             Z2
                                          second stage objective function
                                                                                                                                deling Practices with GAMS. May 2025
                             Theta
                                          recourse function
UNIVERSIDAD PONTIFICIA
```

169

ICAL

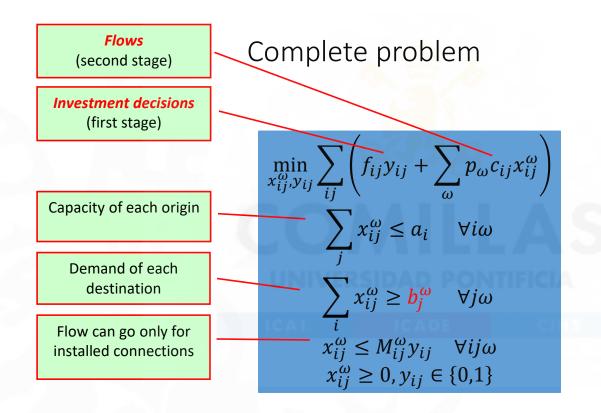
ICADE

FCTP solved by Benders decomposition (ii)

equationsEQ_Z1first stageobjective functionEQ_Z2second stageobjective functionEQ_OBJcomplete problem objective functionOffer(i)offer at originDemand(j)demand at destinationFlowLimit(i,j)arc flow limitBd_Cuts(l)Benders cuts ;				
EQ_Z1 Z1 =e= sum[(i,j), F(i,j)*Y(i,j)] + Theta ;				
EQ_Z2 Z2 =e= sum[(i,j), C(i,j)*X(i,j)];				
EQ_OBJ Z1 =e= sum[(i,j), F(i,j)*Y(i,j)] + sum[(i,j), C(i,j)*X(i,j)];				
Offer (i) sum[j, X(i,j)] =1= A(i) ;				
Demand (j) sum[i, X(i,j)] =g= B(j) ;				
<pre>FlowLimit(i,j) X(i,j) =l= min[A(i),B(j)] * Y(i,j) ;</pre>				
<pre>Bd_Cuts(ll) Delta(ll) * Theta =g= Z2_L(ll) - sum[(i,j), PI_L(ll,i,j) * min[A(i),B(j)] * (Y_L(ll,i,j) - Y(i,j))];</pre>				
<pre>model Master_Bd / EQ_Z1 Bd_Cuts / model Subproblem_Bd / EQ_Z2 Offer Demand FlowLimit / model Complete / EQ_OBJ Offer Demand FlowLimit /;</pre>				
X.up(i,j) = min[A(i),B(j)]				
 * to allow CPLEX correctly detect rays in an infeasible problem * only simplex method can be used and no preprocessing neither scaling options * optimality and feasibility tolerances are very small to avoid primal degeneration 				
<pre>file COPT / cplex.opt / put COPT putclose 'ScaInd -1' / 'LPMethod 1' / 'PreInd 0' / 'EpOpt 1e-9' / 'EpRHS 1e-9' / ;</pre>				
<pre>Subproblem_Bd.OptFile = 1 ;</pre>				

FCTP solved by Benders decomposition (iii)

```
* parameter initialization
LL
       (1) = no ;
Delta (1) = 0;
Z2_L (1) = 0;
PI_L(1,i,j) = 0;
Y_L(1,i,j) = 0;
\ast Benders algorithm iterations
Theta.fx = 0;
loop (l $(abs(1-Z_Lower/Z_Upper) > BdTol),
* solving master problem
   solve Master_Bd using MIP minimizing Z1 ;
* storing the master solution
   Y_L(1,i,j) = Y.l(i,j);
* fixing first-stage variables and solving subproblem
   Y.fx( i,j) = Y.l(i,j) ;
* solving subproblem
   solve Subproblem Bd using RMIP minimizing Z2 ;
* storing parameters to build a new Benders cut
   if (Subproblem Bd.ModelStat = 4,
      Delta(1) = 0 ;
      Z2_L (1) = Subproblem_Bd.SumInfes ;
   else
      updating lower and upper bound
      Z_Lower =
                            Z1.l ;
      Z_Upper = min(Z_Upper, Z1.1 - Theta.1 + Z2.1);
      Theta.lo = -inf ;
      Theta.up = inf;
      Delta(1) = 1;
      Z2_L (1) = Subproblem_Bd.ObjVal ;
   );
   PI_L(1,i,j) = FlowLimit.m(i,j) ;
   Y.lo( i,j) = 0 ;
   Y.up(i,j) = 1;
* increase the set of Benders cuts
  LL(1) = yes ;
);
solve Complete using MIP minimizing Z1
```


comillas.edu

CON

UNIVERSIDAD PONTIFICIA

Good Optimization Modeling Practices with GAMS. May 2025 **171**

Stochastic FCTP

comillas.<mark>ed</mark>

Good Optimization Modeling Practices with GAMS. May 2025 172

Deterministic & Stochastic FCTP

<pre>\$Title Deterministic fixed-charge transportation problem (DFCTP)</pre>	<pre>\$\$Title Stochastic fixed-charge transportation problem (SFCTP)</pre>		
<pre>* relative optimality tolerance in solving MIP problems option OptcR = 0</pre>	<pre>* relative optimality tolerance in solving MIP problems option OptcR = 0, Decimals = 6</pre>		
sets I origins / i1 * i4 / J destinations / j1 * j3 /	sets I origins / i1 * i4 / J destinations / j1 * j3 / S scenarios / s000 * s099 /		
parameters A(i) product offer / i1 20, i2 30, i3 40, i4 20 / B(j) product demand / j1 20, j2 50, j3 30 /	parametersA(i)product offer/ i1 20, i2 30, i3 40, i4 20 /B(j)product demand/ j1 21, j2 51, j3 31 /P(s)scenario probabilityBS(s, j)product demand stochastic ;		
	<pre>BS(s,j) = B(j) * [1+uniform(-0.05,0.05)]; P (s) = 1/card(s);</pre>		
<pre>table C(i,j) per unit variable transportation cost j1 j2 j3 i1 1 2 3 i2 3 2 1 i3 2 3 4</pre>	<pre>table C(i,j) per unit variable transportation cost</pre>		
<pre>i4 4 3 2 table F(i,j) fixed transportation cost</pre>	table F(i,j) fixed transportation cost j1 j2 j3 i1 10 20 30 i2 20 30 40 i3 30 40 50 i4 40 50 60;		
<pre>i4 40 50 60 abort \$(sum[i, A(i)] < sum[j, B(j)]) 'Infeasible problem' positive variable X(i,j) arc flow binary variable</pre>	<pre>loop (s, abort \$(sum[i, A(i)] < sum[j, BS(s,j)]) 'Infeasible problem') positive variable X(s,i,j) arc flow binary variable Y(i,j) arc investment decision variables</pre>		
Y(i,j) arc investment decision variables Z1 objective function	Z1 objective function		
equations EQ_OBJ complete problem objective function Offer (i) offer at origin Demand (j) demand at destination FlowLimit(i,i) arc flow limit :	<pre>EQ_0B3 complete problem objective function Offer (s,i) offer at origin Demand (s, j) demand at destination FlowLimit(s,i,j) arc flow limit; EQ_0BJ Z1 =e= sum[(i,j), F(i,j)*Y(i,j)] + sum[(s,i,j), P(s)*C(i,j)*X(s,i,j)];</pre>		
EQ_OBJ Z1 =e= sum[(i,j), F(i,j)*Y(i,j)] + sum[(i,j), C(i,j)*X(i,j)]; Offer (i) sum[j, X(i,j)] =l= A(i); Demand (j) sum[i, X(i,j)] =g= B(j); Instantiation (j) sum[i, X(i,j)] =g= B(j);	<pre>Offer (s,i) sum[j, X(s,i,j)] =l= A (i); Demand (s, j) sum[i, X(s,i,j)] =g= B5(s,j); FlowLimit(s,i,j) X(s,i,j) =l= 100 * Y(i,j);</pre>		
<pre>FlowLimit(i,j) X(i,j) =l= min[A(i),B(j)] * Y(i,j) ; model Complete</pre>	<pre>model Complete / EQ_OBJ Offer Demand FlowLimit / ; X.up(s,i,j) = 100 ;</pre>		
<pre>X.up(i,j) = min[A(i),B(j)]</pre>	<pre></pre>		
solve Complete using MIP minimizing Z1	<pre>file COPT / cplex.opt / ; put COPT putclose 'writelp FCTP_Sto.lp' / ;</pre>		
SIDAD PONTIFICIA	<pre>solve Complete using MIP minimizing Z1</pre>	025	173
ICADE CIHS	display Z1.1, Y.1		

Transportation Drablem Dandars Decomposition/blab/n

UN

Stochastic FCTP with EMP (Extended Mathematical Programming) (<u>https://www.GAMS.com/latest/docs/UG_EMP_SP.html</u>)

https://github.com/IIT-EnergySystemModels/Fixed-Charge-Transportation-Problem-Benders-Decomposition/blob/main/FCTP_EMP.gms

\$title Deterministic fixed-charge transportation problem (FCTP) * relative optimality tolerance in solving MIP problems option OptcR = 0, Decimals = 6 sets origins / i1 * i4 / Т Э destinations / j1 * j3 / ; parameters A(i) product offer / i1 20, i2 30, i3 40, i4 20 / B(j) product demand / j1 21, j2 51, j3 31 / ; table C(i,j) per unit variable transportation cost j1 j2 j3 i1 1 2 3 i2 3 2 1 i3 2 3 4 i4 4 3 2; table F(i,j) fixed transportation cost j1 j2 j3 i1 10 20 30 i2 20 30 40 i3 30 40 50 i4 40 50 60; positive variable X(i,j) arc flow binary variable arc investment decision Y(i,j) variables 71 objective function equations complete problem objective function EO OBJ (i) offer at origin 0ffer Demand (j) demand at destination FlowLimit(i,j) arc flow limit ; EO OBJ .. Z1 =e= sum[(i,j), F(i,j)*Y(i,j)] + sum[(i,j), C(i,j)*X(i,j)] ; Offer (i) .. sum[j, X(i,j)] =l= A(i) ; Demand (j) .. sum[i, X(i,j)] =g= B(j) ; FlowLimit(i,j) .. X(i,j) =l= 100 * Y(i,j) ; model Complete / all / ; X.up(i,j) = 100;

```
set S scenarios / s000 * s099 /
parameter
   BS(s, j) product demand
   YS(s,i,j) arc investment decision
   XS(s,i,j) arc flow
  P (s ) scenario probability;
BS(s,j) = B(j) * [1+uniform(-0.05,0.05)] ;
P(s) = 1/card(s);
* EMP annotations
file emp / '%emp.info%' / ; emp.pc=2 ; emp.pw=1020
* define probability and values of the stochastic parameter
put emp '* problem %GAMS.i%' / 'jrandvar '
loop (j,
  put B.tn(j) ' '
loop (s,
  put P(s)
   loop (j,
      put BS(s,j) /
* define stochastic parameter, variable and constraints of the second stage
putclose emp / 'stage 2 B X Offer Demand FlowLimit'
set dict / s . scenario . ''
     B . randvar . BS
          X . level . XS
          Y.level .YS/;
loop (s, abort $(sum[i, A(i)] < sum[j, BS(s,j)]) 'Infeasible problem');</pre>
file COPT / cplex.opt / ;
put COPT putclose 'writelp FCTP_EMP.lp' / 'names 1' / ;
file DOPT / de.opt / ;
put DOPT putclose 'subsolver CPLEX' / 'subsolveropt 1' / ;
Complete.OptFile = 1 ;
solve Complete minimizing Z1 using emp scenario dict
display Z1.1, YS
```

Good Optimization Modeling Practices with

It seems that the LP file created by the EMP has only 2 decimals

UNIVERSIDAD PONTIFICIA

Stochastic FCTP solved with Benders using EMP

https://github.com/IIT-EnergySystemModels/Fixed-Charge-Transportation-Problem-Benders-Decomposition/blob/main/FCTP_StoBd_EMP.gms_

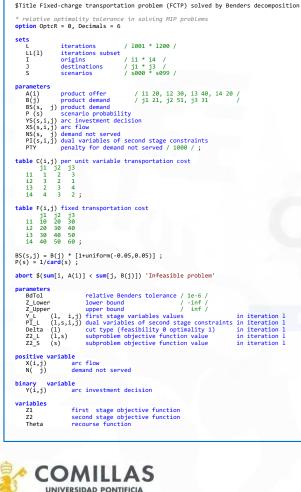
comillas.<mark>edu</mark>

Stochastic FCTP solved with Benders using Guss

https://github.com/IIT-EnergySystemModels/Fixed-Charge-Transportation-Problem-Benders-Decomposition/blob/main/FCTP_StoBd_Guss.gms

```
$Title Fixed-charge transportation problem (FCTP) solved by Benders decomposition
 * relative optimality tolerance in solving MIP problems
                                                                                                                                                                                                                                       * narameter initialization
option OptcR = 0, Decimals = 6
                                                                                                   equations
                                                                                                                                                                                                                                      ц́ (1)
                                                                                                                                                                                                                                                     = no :
                                                                                                                                          objective function
                                                                                                       E0 Z1
                                                                                                                       first stage
                                                                                                                                                                                                                                      Delta(1)
                                                                                                                                                                                                                                                     = 0 ;
sets
                                                                                                       EQ Z2
                                                                                                                       second stage
                                                                                                                                          objective function
                                  / 1001 * 1200 /
                                                                                                                                                                                                                                      Z2_L (1,s) = 0;
               iterations
                                                                                                       EQ_OBJ
                                                                                                                       complete problem objective function
                                                                                                                                                                                                                                      PI_L (1,s,i,j) = 0;
   LL(1)
              iterations subset
                                                                                                       Offer
                                                                                                                (i ) offer at origin
                                  / i1 * i4 /
              origins
                                                                                                                                                                                                                                      Y_L (1, i,j) = 0;
                                  / j1 * j3 /
/ s000 * s099 /
                                                                                                                ( j) demand at destination
               destinations
                                                                                                       Demand
   S
              scenarios
                                                                                                       FlowLimit(i,j) arc flow limit
                                                                                                                                                                                                                                      * Benders algorithm iterations
Theta.fx = 0;
                                                                                                       Bd Cuts
                                                                                                                  (1) Benders cuts ;
parameters
                                                                                                                                                                                                                                      loop (1 $(abs(1-Z_Lower/Z_Upper) > BdTol),
   A(i)
             product offer
                                     / i1 20, i2 30, i3 40, i4 20 /
                                                                                                                    .. Z1 =e= sum[(i,j), F(i,j)*Y(i,j)] + Theta ;
                                                                                                   E0 Z1
  B(j) product demand
BS(s, j) product demand
                                     / j1 21, j2 51, j3 31
                                                                                                   EQ_Z2
                                                                                                                    .. Z2 =e=
                                                                                                                                                             sum[(i,j), C(i,j)*X(i,j)] + sum[j, PTY*N(j)];
                                                                                                                                                                                                                                       * solving master problem
                                                                                                                    .. Z1 =e= sum[(i,j), F(i,j)*Y(i,j)] + sum[(i,j), C(i,j)*X(i,j)] + sum[j, PTY*N(j)];
                                                                                                   EQ_OBJ
                                                                                                                                                                                                                                         solve Master_Bd using MIP minimizing Z1 ;
   P (s)
              scenario probability
                                                                                                   Log Obj ... Sum[;, X(i,j)] = = = A(i);
Demand ( j) .. Sum[i, X(i,j)] = N(j) = g= B(j);
FlowLimit(i,j) ... X(i,j) = = 100 + Y(i,j);
Bd_Cuts(11) ... Delta(11) * Theta =g= sum[s, P(s) * (22_1(11,s) + sum[(i,j), (Y(i,j)-Y_L(11,i,j)) * 100 *
   YS(s,i,j) arc investment decision
XS(s,i,j) arc flow
                                                                                                                                                                                                                                         storing the master solution
   NS(s, j) demand not served
PI(s,i,j) dual variables of second stage constraints
   NS(s.
                                                                                                                                                                                                                                         Y_L(1,i,j) = Y.1(i,j);
                                                                                                   PI_L(11,s,i,j)])];
              penalty for demand not served / 1000 / ;
                                                                                                                                                                                                                                       * fixing first-stage variables and solving subproblem
                                                                                                                                                                                                                                         Y.fx( i,j) = Y.l(i,j) ;
table C(i,j) per unit variable transportation cost
                                                                                                   model Master_Bd / E0_Z1 Bd_Cuts / ;
model Subproblem_Bd / E0_Z2 Offer Demand FlowLimit / ;
       * initialization of the destination demand
   i1
i2
                                                                                                                       / EQ_OBJ Offer Demand FlowLimit / ;
                                                                                                   model Complete
                                                                                                                                                                                                                                         B(j) = BS('s000', j);
  i3 2 3 4
i4 4 3 2;
                                                                                                   X.up(i,j) = 100;
                                                                                                                                                                                                                                       * solving subproblem
                                                                                                                                                                                                                                         solve Subproblem_Bd minimizing Z2 using RMIP scenario scen_dem ;
table F(i,j) fixed transportation cost
                                                                                                   set
  j1 j2 j3
i1 10 20 30
                                                                                                       scen dem stochastic demand scenario dictionary
                                                                                                                                                                                                                                       * storing parameters to build a new Benders cut
                                                                                                                 . scenario . ''
                                                                                                                                                                                                                                         if (Subproblem_Bd.ModelStat = 4,
                                                                                                       S
   i2 20 30 40
                                                                                                                                                                                                                                             Delta(1) = 0;
   i3 30 40 50
                                                                                                       update the LHS with values of the RHS
                                                                                                                                                                                                                                             Z2_L (1,s) = Subproblem_Bd.SumInfes ;
   i4 40 50 60;
                                                                                                                  . param . BS
                                                                                                       в
                                                                                                                                                                                                                                         else
BS(s,j) = B(j) * [1+uniform(-0.05,0.05)];
P(s) = 1/card(s);
                                                                                                                                                                                                                                            updating Lower and upper bound
                                                                                                       store in the RHS with values of the LHS
                                                                                                                                                                                                                                             Z Lower =
                                                                                                                                                                                                                                                                     Z1.l ;
                                                                                                       х
                                                                                                                 . level . XS
                                                                                                                                                                                                                                             Z_Upper = min(Z_Upper, Z1.1 - Theta.1 + sum[s, P(s) * Z2S(s)]);
abort $(sum[i, A(i)] < sum[j, B(j)]) 'Infeasible problem'</pre>
                                                                                                                             . NS
                                                                                                       М
                                                                                                                  . level
                                                                                                                            . YS
                                                                                                                   level
                                                                                                                                                                                                                                             Theta lo = -inf :
parameters
                                                                                                       72
                                                                                                                   . level
                                                                                                                              . 725
                                                                                                                                                                                                                                             Theta.up = inf ;
   BdTo1
                      relative Benders tolerance / 1e-6 /
                                                                                                      FlowLimit . marginal . PI / ;
                      lower bound
                                                 / -inf /
/ inf /
   Z Lower
                                                                                                                                                                                                                                             Delta(1 ) = 1 ;
   Z_Upper
                      upper bound
          in upper bound (1, i,j) first stage variables values in iteration 1
(1, s,i,j) dual variables of second stage constraints in iteration 1
(1) cut type (feasibility 0 optimality 1) in iteration 1
(1,s) subproblem objective function value in iteration 1
                                                                                                   parameter
  Y_L
PI_L
                                                                                                                                                                                                                                             Z2_L (1,s) = Z2S(s) ;
                                                                      in iteration 1
                                                                                                                          scenario options / OptFile 2, LogOption 1, SkipBaseCase 1,
                                                                                                       scen_optn
                                                                                                                                                                                                                                         );
                                                                                                                                               UpdateType 1, RestartType 1, NoMatchLimit 999 /
   Delta
   Z2_L
                                                                                                                                                                                                                                         PI_L(1,s,i,j) = PI(s,i,j) ;
                      subproblem objective function value
   Z25
           (s)
                                                                      in iteration 1
                                                                                                   loop (s, abort $(sum[i, A(i)] < sum[j, BS(s,j)]) 'Infeasible problem' );</pre>
                                                                                                                                                                                                                                          Y.lo(
                                                                                                                                                                                                                                                  i,j) = 0 ;
positive variable
                                                                                                   * to allow CPLEX correctly detect rays in an infeasible problem
                                                                                                                                                                                                                                                   i,j) = 1 ;
                                                                                                                                                                                                                                          Y.up(
  X(i,j)
N( j)
                  arc flow
                                                                                                   * only simplex method can be used and no preprocessing neither scaling options
                 demand not served
                                                                                                   * optimality and feasibility tolerances are very small to avoid primal degeneration
                                                                                                                                                                                                                                       * increase the set of Benders cuts
                                                                                                                                                                                                                                         LL(1) = yes ;
binary
Y(i,j)
        variable
                                                                                                   file COPT / cplex.opt / :
                 arc investment decision
                                                                                                                                                                                                                                      );
                                                                                                   put COPT putclose 'ScaInd -1' / 'LPMethod 1' / 'PreInd 0' / 'EpOpt 1e-9' / 'EpRHS 1e-9' / ;
variables
                                                                                                                                                                                                                                      display Z_Lower, Z_Upper, Y.1
                                                                                                   Subproblem Bd.OptFile = 1 ;
   Z1
Z2
                  first stage objective function
                 second stage objective function 
recourse function
   Theta
```

Good Optimization Modeling Practices with GAMS. May 2025 **176**


comillas.<mark>edu</mark>

COM

UNIVERSIDAD PONTIFICIA

Stochastic FCTP solved with Benders using Guss&Grid Subproblem Bd.OptFile = 1 ; * parameter initialization LL (1) = no ;

https://github.com/IIT-EnergySystemModels/Fixed-Charge-Transportation-Problem-Benders-Decomposition/blob/main/FCTP_StoBd_GG.gms

ICAI ICADE CIHS

```
* Benders alaorithm iterations
equations
                                                                                                                            Theta.fx = 0:
   E0 Z1
                  first stage objective function
                                                                                                                            loop (1 $(abs(1-Z_Lower/Z_Upper) > BdTol),
                  second stage objective function
   EQ Z2
                  complete problem objective function
   EO OBJ
                                                                                                                            * solving master problem
   Offer
            (i ) offer at origin
                                                                                                                               solve Master_Bd using MIP minimizing Z1 ;
            ( j) demand at destination
   Demand
   FlowLimit(i,j) arc flow limit
                                                                                                                               storing the master solution
   Bd Cuts (1) Benders cuts :
                                                                                                                               Y_L(1,i,j) = Y.1(i,j);
                .. Z1 =e= sum[(i,j), F(i,j)*Y(i,j)] + Theta ;
EQ_Z1
                                                                                                                              fixing first-stage variables and solving subproblem
               .. Z2 =e= 
.. Z1 =e= sum[(i,j), F(i,j)*Y(i,j)] + sum[(i,j), C(i,j)*X(i,j)] + sum[(i,j), F(i,j)*Y(i,j)] + sum[(i,j), C(i,j)*X(i,j)] + sum[j, PTY*N(j)] ;
                                                      sum[(i,j), C(i,j)*X(i,j)] + sum[j, PTY*N(j)] ;
EQ_Z2
                                                                                                                               Y.fx(i,j) = Y.l(i,j);
EQ_OBJ

        EQ_005
        ... sum[j, X(i,j)]
        =1= A(i);

        Demand
        (j)... sum[j, X(i,j)] + N(j) =g= B(j);

                                                                                                                              initialization of the destination demand
                                                                                                                               B(j) = BS('s000', j);
FlowLimit(i,j) .. X(i,j) =1= 100 * Y(i,j);
Bd_cuts(11) . Delta(11) * Theta =g= sum[s, P(s) * (Z2_L(11,s) + sum[(i,j), (Y(i,j)-Y_L(11,i,j)) * 100 *
                                                                                                                            * solving subproblem
PI_L(11,s,i,j)])] ;
                                                                                                                               Subproblem Bd.SolveLink = %SolveLink.AsyncGrid% ;
model Master_Bd / E0_21 Bd_Cuts /;
model Subproblem_Bd / E0_22 Offer Demand FlowLimit /;
model Complete / E0_0BJ Offer Demand FlowLimit /;
                                                                                                                               Sendina Loop
                                                                                                                               loop (core,
                                                                                                                                  gs(s) = coresc(core,s)
                                                                                                                                   if (sum[gs(s), 1] > 0,
X.up(i,j) = 100 ;
                                                                                                                                     solve Subproblem_Bd minimizing Z2 using RMIP scenario
                                                                                                                            scen dem ;
set
                                                                                                                                     pGridHandle(core) = Subproblem_Bd.Handle ;
   gs(s) scenarios per GUSS run
                                                                                                                                  );
            solution headers / System.GUSSModelAttributes /
                                                                                                                               );
   scen_dem stochastic demand scenario dictionary /
                                                                                                                            * Recovering Loop
             . scenario . ''
                                                                                                                               repeat
   scen optn . opt
                          . st report o
                                                                                                                                  loop (core $HandleCollect(pGridHandle(core)),
                                                                                                                                     display $HandleDelete (pGridHandle(core)) 'Trouble
* update the LHS with values of the RHS
                                                                                                                            deleting handles'
   В
            . param . BS
                                                                                                                                     pGridHandle(core) = 0 ;
* store in the RHS with values of the LHS
                                                                                                                               until card(pGridHandle) = 0 or TimeElapsed > 1000 ;
  х
         . level . XS
                                                                                                                               Subproblem_Bd.SolveLink = %SolveLink.LoadLibrary%;
   N
             . level
                        . NS
             . level
                       . YS
                                                                                                                               storing parameters to build a new Benders cut
   Z2
             . level
                        . Z2_s
                                                                                                                               if (Subproblem_Bd.ModelStat = 4,
   FlowLimit . marginal . PI /
                                                                                                                                  Delta(1) = 0;
                                                                                                                                  Z2_L (1,s) = Subproblem_Bd.SumInfes ;
sets
                                                                                                                               else
* using four cores and assignment of scenarios to cores
                                                                                                                                  updating Lower and upper bound
                 grid jobs to run / core001*core004
   core
                                                                                                                                  Z Lower =
   coresc(core,s) cores to scenario / core001.(s000*s024)
                                                                                                                                  Z_Upper = min(Z_Upper, Z1.1 - Theta.1 + sum[s, P(s) *
                                        core002.(s025*s049)
                                                                                                                            Z2_s(s)]);
                                        core003.(s050*s074)
                                        core004.(s075*s099) /
                                                                                                                                  Theta.lo = -inf:
                                                                                                                                  Theta.up = inf;
parameter
    scen_optn
                      scenario options / OptFile 2, LogOption 1, SkipBaseCase 1,
                                                                                                                                  Delta(1 ) = 1 :
                                           UpdateType 1, RestartType 1, NoMatchLimit 999 /
                                                                                                                                 Z2_L (1,s) = Z2_S(s) ;
* st report o(s,sh) status report
                                                                                                                              );
   pGridHandle(core) grid handles ;
                                                                                                                               PI_L(l,s,i,j) = PI(s,i,j) ;
loop (s, abort $(sum[i, A(i)] < sum[j, BS(s,j)]) 'Infeasible problem' );</pre>
                                                                                                                               Y.lo( i,j) = 0;
* to allow CPLEX correctly detect rays in an infeasible problem
                                                                                                                               Y.up( i.i) = 1 :
* only simplex method can be used and no preprocessing neither scaling options
* optimality and feasibility tolerances are very small to avoid primal degeneration
                                                                                                                            * increase the set of Benders cuts
                                                                                                                              LL(1) = yes ;
file COPT / cplex.opt / ;
                                                                                                                            );
put COPT putclose 'ScaInd -1' / 'LPMethod 1' / 'PreInd 0' / 'EpOpt 1e-9' / 'EpRHS 1e-9' /;
                                                                                                                            display Z Lower, Z Upper, Y.1
```

Delta(1)

Z2_L (1,s)

= 0 :

Z1.1 ;

= 0; PI_L (l,s,i,j) = 0; Y_L (1, i,j) = 0;

comillas.edu

Transportation problem solved as MCP (KKT conditions)

sets

I origins / VIGO, ALGECIRAS / J destinations / MADRID, BARCELONA, VALENCIA /

parameters

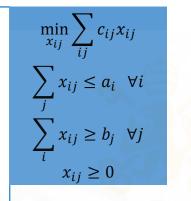
pA(i) origin capacity
 / VIGO 350
 ALGECIRAS 700 /

- table pC(i,j) per unit transportation costMADRID BARCELONA VALENCIAVIGO0.060.120.09ALGECIRAS0.050.150.11

variables

vX(i,j) units transported vCost transportation cost

positive variable vX


equations

eCost	transportation cost
	maximum capacity of each origin
eDemand (j)	demand supply at destination;

eCost .. sum[(i,j), pC(i,j) * vX(i,j)] =e= vCost ; eCapacity(i) .. sum[j , vX(i,j)] =l= pA(i) ; eDemand (j) .. sum[i , vX(i,j)] =g= pB(j) ;

model mTransport / all /
solve mTransport using LP minimizing vCost

$$=\sum_{ij}c_{ij}x_{ij}+\alpha_i\left(\sum_j x_{ij}-\alpha_i\right)+\beta_j\left(b_j-\sum_i x_{ij}\right)$$

$$\frac{\partial L}{\partial x_{ij}} \rightarrow \begin{cases} c_{ij} + \alpha_i \ge \beta_j & : x_{ij} \quad \forall ij \\ -\sum_j x_{ij} \ge -\alpha_i & : \alpha_i \quad \forall i \\ \sum_i x_{ij} \ge b_j & : \beta_j \quad \forall j \\ x_{ij}, \alpha_i, \beta_j \ge 0 \end{cases}$$

	<pre>sets I origins / VIGO, ALGECIRAS / J destinations / MADRID, BARCELONA, VALENCIA /</pre>
	<pre>parameters pA(i) origin capacity / VIGO 350 ALGECIRAS 700 /</pre>
	pB(j) destination demand / MADRID 400 BARCELONA 450 VALENCIA 150 /
(ii)	table pC(i,j) per unit transportation cost MADRID BARCELONA VALENCIAVIG00.060.120.09ALGECIRAS0.050.150.11
*) 	<pre>variables vX(i,j) units transported vA(i) Lagrange multiplier of capacity constraint vB(j) Lagrange multiplier of demand constraint</pre>
∀ij	positive variables vX, vA, vB
∀i	<pre>equations eProfit(i,j) marginal cost >= marginal profit eCapacity(i) maximum capacity of each origin eDemand (j) demand supply at destination;</pre>
∀j	<pre>eProfit(i,j) vA(i) + pC(i,j) =g= vB(j) ; eCapacity(i)sum[j, vX(i,j)] =g= -pA(i) ; eDemand (j) sum[i, vX(i,j)] =g= pB(j) ;</pre>
	<pre>model mTransport / eProfit.vX eCapacity.vA eDemand.vB / solve mTransport using MCP</pre>

Good Optimization Modeling Practices with GAMS. May 2025

Antonio Machado. Cantares

"Todo pasa y todo queda, pero lo nuestro es pasar, pasar haciendo caminos, caminos sobre el mar."

- MAR

"Everything passes and everything stays, but our fate is to pass, to pass making paths, paths on the sea."

"All things pass and stay forever, yet we pass eternally, drawing footpaths in our passing, footpaths on the restless sea."

Enjoy Formulating, writing and solving optimization models

Thank you for your attention

UNIVERSIDAD PONTIFICIA

Prof. Andres Ramos

https://www.iit.comillas.edu/aramos/

Andres.Ramos@comillas.edu

Pedro de Otaola

Pedro.Otaola@comillas.edu

Good Optimization Modeling Practices with GAMS. May 2025 188