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Motivation

• Evaluation of the impact of renewables at different time 
scales on the system operation

• See some applications of complex models
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ROM (Reliability and Operation Model for Renewable Energy 
Sources) (https://pascua.iit.comillas.edu/aramos/ROM.htm)

• Determine the technical and economic impact of 
intermittent generation (IG) and other types of emerging 
technologies (active DR, EVs, CSP, CAES) into the 
medium-term system operation including reliability 
assessment.

• The model paradigm based on a daily sequence of 
planning and simulation is similar to an open-loop 
feedback control used in control theory.
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General overview
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Time division
• Scope

• 1 year
• Period

• 1 day (consecutive chronological operation)
• Subperiod

• 1 hour
Day 1 Day 365

Hour 1 Hour 24

… …
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Model overview. Yearly simulation
• Stochasticity taken into account by yearly 

scenarios obtained by Monte Carlo simulation
• Relevant uncertainty: demand, wind/solar 

generation, hydro inflows
• Random variables considered independent

• Rare events (such as several low wind days) may involve a 
large number of scenarios (variance reduction techniques may 
be needed)
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Model overview. Seasonal operation
• Decisions above daily scope as the weekly scheduling 

of storage hydro and pumped storage hydro plants 
are done internally in the model by heuristic criteria.

• Hydro scheduling given by a high level hydrothermal 
coordination model

• Pumped storage hydro scheduling:
• Weekly pumped hydro scheduling

La Muela de 
Cortes
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Model overview. Daily DETERMINISTIC operation planning

• Daily operation model repeated 365 days
• This system modeling in two phases reproduces the 

usual decision mechanism of the system operator.
• First, deterministic optimization of operation decisions

• Daily network constrained unit commitment and economic dispatch

• Then, simulation of unknown events
• Load forecast errors
• Hourly simulation of unit failures
• Adapt and correct previous decisions to real IG (forecast error)
• Deployment of corrective actions used in a predefined sequence (increase hydro production, 

use operating reserve, demand response, EV, etc.)

• Connection between consecutive days
• Commitment status of thermal units
• Hydro reservoir levels
• Other state variables
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• Different wind prediction errors considered:
– 1st stage decision: Daily Unit Commitment of inflexible units
– 2nd stage decision: Economic dispatch, Unit Output, Energy Not Served

Model overview. Daily STOCHASTIC operation planning

1h 24
h

Deterministic approach

1h 24h

Stochastic approach

UC
Decisions

Operation
Decisions

• K. Dietrich, J.M. Latorre, L. Olmos, A. Ramos, I.J. Pérez-Arriaga Stochastic Unit Commitment Considering Uncertain Wind Production in an 
Isolated System ENERDAY 4th Conference on Energy Economics and Technology Dresden, Germany April 2009

• K. Dietrich, J.M. Latorre, L. Olmos, A. Ramos Stochastic Unit Commitment Considering Uncertain Wind Production in an Isolated System
International Workshop on Large-Scale Integration of Wind Power into Power Systems Bremen, Germany October 2009
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Daily operation planning

• Objective function: cost minimization
• Thermal variable costs:

• Fuel Cost
• O&M Cost
• CO2 Cost
• Startup costs

• Unscheduled hydro variable costs

• Penalty by deficit of up or down operating reserve

• Cost of Energy Not Served
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Daily operation planning

• Constraints (I)

• System:
• Generation-load hourly balance at every node
• Up and down hourly operating reserve
• Second Kirchhoff’s circuit law (DC load flow)
• Maximum flow through the lines of the network
• Ohmic losses modeled with a piecewise linear approximation or proportional to the flow

• Thermal units:
• Startup, shutdown and commitment of thermal units
• Bound on thermal power operating reserve + thermal power output (minimum load)
• Up and down thermal unit ramps
• Exponential thermal startup costs
• Minimum up-time and down-time of thermal units
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Daily operation planning

• Constraints (II)

• Hydro and pumped hydro units:
• Bound on pumped storage hydro up and down operating reserve
• Water inventory in hydro storage reservoirs and pumped storage hydro reservoirs
• Bound on hydro power output
• Daily hydro output target

• Electric Vehicles (EV):
• Charge and discharge
• Inventory of state of charge (SOC) of the battery

• Concentrated Solar Power (CSP) with storage capability
• Generic Virtual Power Plant (VPP)
• Price-Based Demand Response (DR)
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Daily operation planning
• Positive variables

• Flow through the lines of the network
• Voltage angle of each node of the network
• Up or down operating reserve of thermal unit and thermal unit output
• Storage hydro and pumped storage hydro unit output
• Unscheduled hydro output
• Hydro spillage or IG surplus (curtailment)
• Up or down operating reserve of pumped storage hydro unit
• Up or down operating reserve of EV
• Deficit of operating reserve
• Energy Not Served
• Pumped storage hydro energy target

• Binary variables
• Commitment, startup and shutdown of thermal units
• Indicator of pumping or turbining of pumped storage hydro units
• Indicator of up or down operating reserve of pumped storage hydro units
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Demand and reserve
• Balancing operating reserves depend on each 

scenario and hour
• Up:

• % of peak load + intermittent generation forecast error + largest 
thermal unit

• Down:
• % of peak load

• Use of demand response actions
• Demand as a function of the price. Demand elasticity
• Demand shifting
• Peak clipping



17Case Examples: Impact of renewables. February 2018

Thermal units
• Minimum and maximum output
• Up and down ramp rates

• Planned outage rate (maintenance distributed randomly)
• Forced outage rate

• Fixed and variable heat rates and fuel price
• Emission rate and CO2 price
• Operation and maintenance costs
• (Exponential) Start-up costs
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Network
• Transmission modeled with a linearized power flow with or 

without ohmic losses

• Ohmic losses modeled with a piecewise linear approximation
• Representative distribution network with quadratic losses 

𝑖𝑗

𝑏𝑎𝑠𝑒 𝑖𝑗
𝑖 𝑗  

𝑖, 𝑗 Nodes 
𝐹𝑖𝑗  Flow through the line 𝑖 − 𝑗  

𝑆𝑏𝑎𝑠𝑒  Base power of the system 
𝑋𝑖𝑗  Reactance of the line 𝑖 − 𝑗 
𝜃𝑖  Voltage angle of node 𝑖 
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Wind generation
• Output forecast at midday for every day to be used by 

the day-ahead unit commitment 
• It is subtracted from demand

• Forecast errors of previous forecast to be used in the 
simulation process:

• 5 hours in advance:
10% error 

• 24 hours in advance:
15% error

Source: REE
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EV data
• Mobility patterns

• Daily distance
• SOC at the beginning of the day
• Usage for every hour
• Connection percentage for every hour

• EV fleets (type of uses)
• Number of EV
• Mobility patterns used

• Battery characteristics
• Maximum and minimum SOC
• Efficiencies (GTB, BTW, BTG)
• Maximum charging and discharging rates
• Maximum power output

Mitsubishi i 
Miev EV

BMW 
Mini E



26Case Examples: Impact of renewables. February 2018

EV modeling characteristics. Smart 
charge/discharge decided by the model
• Provide energy services (allow charge and discharge (V2G) 

activities)
• Battery energy inventory

• SOC at an hour + charge – discharge – transportation use = SOC at next hour

• Provision of battery energy for operating reserve
• The (up and down) operating reserve offered implies to keep some 

energy at the battery
• Use incompatibility

• At any hour EV must be charging or discharging
• Maximum charge bounded by the remaining battery energy 

times the percentage of connected EV
• Bounds on the up and down operating reserve
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Local storage based on lithium-ion batteries

• 80 MWh of State of Charge



29Case Examples: Impact of renewables. February 2018

Model overview. Daily simulation. Real-time operation

• Daily operation model repeated 365 days
• This system modeling in two phases reproduces the 

usual decision mechanism of the system operator.
• First, deterministic optimization of operation decisions

• Daily unit commitment and economic dispatch

• Then, simulation of unknown events
• Load forecast errors
• Hourly simulation of unit failures
• Adapt and correct previous decisions to real IG (forecast error)
• Deployment of corrective actions used in a predefined sequence (increase hydro production, use 

operating reserve, demand response, EV, etc.)

• Connection between consecutive days
• Commitment status of thermal units
• Hydro reservoir levels
• Other state variables
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Daily simulation. Real-time operation

• Deployment of corrective actions
• Commitment or decommitment of thermal units by increasing 

variable costs at minimum load at 24 h taking into consideration 
the IG forecast error corresponding to 24 h

• Suppress energy not served if IG error goes in the correct 
direction

• Use of storage hydro operating reserve
• Use of pumped storage hydro operating reserve
• Use of thermal unit operating reserve
• Commitment of quick-start thermal units in real time
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Basic results
• Operation

• Output of different technologies (thermal, hydro, pumped hydro)
• Fuel consumption
• Primary energy (wind or hydro) surplus

• Emissions
• Carbon, NOx emissions

• System reliability (adequacy measures)
• EENS (Expected Energy Not Served)
• LOLP (Loss of Load Probability)
• LOLE (Loss of Load Expectation)
• XLOL (eXpected Loss Of Load)

• System Marginal Costs
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Case studies
• TWENTIES. Transmission system operation with large penetration of Wind and other 

renewable Electricity sources in Networks by means of innovative Tools and Integrated 
Energy Solutions. Economic impact analysis of the demonstrations in task-forces TF1 
and TF3. Deliverable D15.1

• SUSPLAN. Planning for Sustainability.
• MERGE. Mobile Energy Resources in Grids of Electricity Assessing Impacts from EV 

Presence. Deliverable D3.2
• CENIT-VERDE. Consorcio Estratégico Nacional en Investigación Técnica.

Vehículo Eléctrico. Respuesta a la Dependencia Energética.
Vehículo Ecológico. Realidad para la Disminución de Emisiones.
Vehículo Español. Receta para la Dinamización del Empleo.

• Grid Integration of Compressed Air Energy Storage systems (CAES)
• Beyond2020. Design and impact of a harmonised policy for renewable electricity in 

Europe
• Market4RES. Post 2020 framework in a liberalised electricity market with large share 

of Renewable Energy Sources
• Distributed energy systems modeling analysis in the MIT Utility Of the Future study
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How Electric Cars Could Make or Break the Power 
Grid

https://www.youtube.com/watch?v=KEWzy7kHarM



38Case Examples: Impact of renewables. February 2018

Objectives
• Analyze the impact of massive integration of RES and EV in the medium and long-term 

operation of an electric system

• Identify and evaluate possible operation actions or regulatory measures to allow increasing 
the amount of RES without compromising the security of supply

• Estimate the maximum amount of IG incorporated into the system for a certain adequacy 
criterion (LOLP, LOLE, ENS)

• Analyze the impact of EV in the operation of the system and additional integration of WP
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Systems modeled with ROM

Mainland Spain
Portugal
Iberian Peninsula

• Greece

 Canary Islands 
(with the 
electric 
network)
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EV Charging Strategies
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Impact of smartly charged EVs on energy 
produced by different technologies

5 % share
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Impact on energy production by technology of the dumb 
and multi-tariff charging strategies with respect to values 
for the smart charge one, for 1.7 million EVs
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Average cost of electric energy produced for each 
charging profile
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Trade-off between EV and WP
• Keeping constant 

EENS

• Keeping constant 
operation cost
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Annual RES curtailment for different number of EVs and 
different strategies
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Profile of RES curtailment for weekends and weekdays, and the 
three charging strategies, in the base case
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RES curtailment on weekdays for the three charging 
strategies
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RES curtailment for the reference case and the demand-
efficiency case

Demand-efficiency case decreases by 6.5 % the demand
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Iso-RES curtailment curve
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Demand Response (DR)

• B. Dupont, K. Dietrich, C. De Jonghe, A. Ramos, R. Belmans Impact of residential demand response on power system operation: a Belgian case study Applied Energy 
122: 1-10, June 2014 10.1016/j.apenergy.2014.02.022

• K. Dietrich, J.M. Latorre, L. Olmos, A. Ramos The Role of Flexible Demands in Smart Energy Systems in the book V. Papp, M. Carvalho and P. 
Pardalos (eds.) Optimization and Security Challenges in Smart Power Grids. Springer 2013 ISBN 9783642381331

• K. Dietrich, J.M. Latorre, L. Olmos, A. Ramos Demand Response in an Isolated System with high Wind Integration IEEE Transactions on Power Systems 27 (1): 20-29 
Feb 2012 10.1109/TPWRS.2011.2159252
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• K. Dietrich, J.M. Latorre, L. Olmos, A. Ramos Adequate Regulation Reserve Levels in Systems with large wind integration using Demand Response 11th IAEE European 
Conference Vilnius, Lithuania August 2010

• DR driven by electricity price with 
direct load control
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