

Escuela Técnica Superior de Ingeniería Instituto de Investigación Tecnológica (IIT)

Modelling Profit Maximisation in Deregulated Power Markets by Equilibrium Constraints

Mariano Ventosa Andrés Ramos Michel Rivier

13thPSCC

Trondheim, 29 June 1999

Outline

- Introduction
- Modelling Approaches
- Model Description:
 - K Model Overview
 - Scheme of a production cost model with Equilibrium Constraints
 - How the Equilibrium Constraints work
- Case Study
- Model Applications
- Conclusion

Modelling Approaches

- Other modelling approaches:
 - Based on the market equilibrium
 - ▲ Theoretical and practical advances
 - K However, with some limitations
- Our approach:
 - ► Detailed modelling operation of thermal, hydro and pumped units
 - Single shot optimisation procedure
 - Competitive behaviour of the market

- Traditional Production Cost Models:
 - Medium term operation planning studies
 - Minimum generation cost subject to operating constraints
- Two relevant characteristics of these models:
 - A detailed representation of the electric system operation
 - Their main decision variables are the generation output levels offered to the market

Model Overview (II): Equilibrium Constraints

 Equilibrium Constraints Profit reproduce the first order Market Equilibrium with Cost Minimization and Profit F C **Equilibrium Constraints** optimality conditions of the Profit _{C.M} firms' profit maximisation objective Market Equilibrium with **Cost Minimization** $Profit_{firm} = Price \cdot Power_{firm} - Cost_{firm}$ Power FC Power C.M. Output = Power

Instituto de Investigación Tecnológica

Modelling Profit Maximisation in Deregulated Power Markets by Equilibrium Constraints - 7

Scheme of the production cost model with Equilibrium Constraints

Objective Function

Instituto de Investigación Tecnológica

Modelling Profit Maximisation in Deregulated Power Markets by Equilibrium Constraints - 9

Operating Constraints

Market Constraints

How the Equilibrium Constraints Work

Modelling Profit Maximisation in Deregulated Power Markets by Equilibrium Constraints - 12

Case Study

- Our model has been applied to the Spanish power market: 73 thermal units and 30 equivalent hydro units.
- The size of the MIP is 25,000 continuous variables, 2,000 binary variables and 33,000 constraints.

