

Modelos de planificación de la explotación de la generación eléctrica

Andrés Ramos

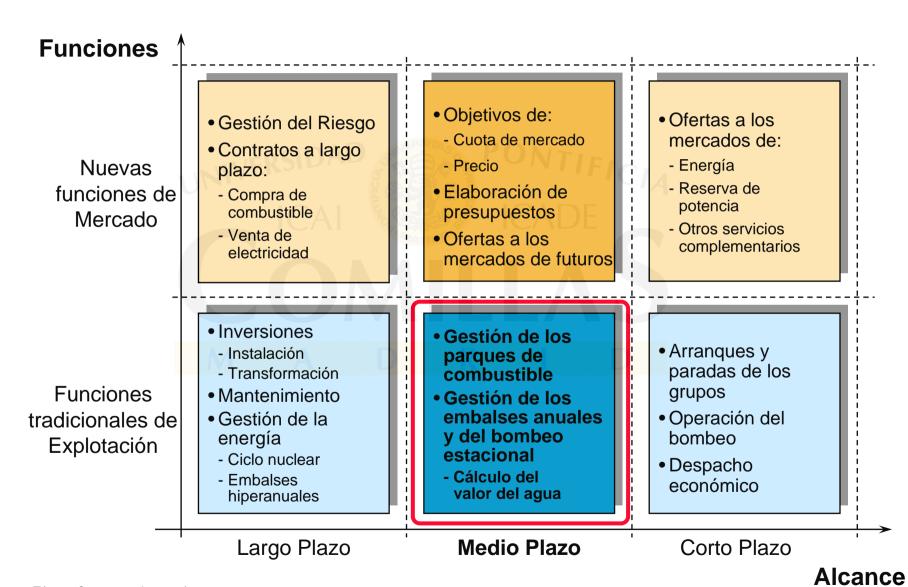
Universidad Pontificia Comillas, Madrid

22 de mayo de 2008

Objetivos del tema

☐ Entender:

- ✓ Qué es un modelo de planificación de la explotación de medio plazo
- ✓ Para qué se utilizan
- ✓ Ver cómo se formulan estos modelos como problemas de optimización lineal entera mixta (MIP)
- ✓ Qué resultados principales producen



Contenido

Planificación de la explotación de la generación a medio plazo.
☐ Caracterización del sistema.
□ Variables.
□ Restricciones. A CADE
☐ Función objetivo.
☐ Estructura del problema.
☐ Variables duales.
☐ Notación.
☐ Gestión del mantenimiento programado.

Funciones de planificación de la operación de la generación

Funciones de un modelo de planificación de la generación

☐ Planificación de la operación

- Mantenimiento preventivo programado de grupos térmicos y nucleares
- ✓ Gestión del ciclo de combustible nuclear, de los embalses anuales y del bombeo estacional y de la demanda interrumpible
- ✓ Análisis de cobertura de la demanda
- ✓ Previsión de compras/consumos de combustibles

☐ Planificación económica

✓ Previsión económica anual de precios del mercado e ingresos/costes de explotación

Planificación tradicional de la generación a medio plazo

- ☐ Datos conocidos con certeza:
 - ✓ Características técnicas de las centrales.
- □ Datos con incertidumbre:
 - ✓ Demanda de electricidad.
 - ✓ Producción de régimen especial.
 - ✓ Saldo neto de importaciones/exportaciones.

Determinan la demanda de generación de régimen ordinario

- ✓ Costes de combustible (e.g. precio del gas en contratos t-o-p).
- ✓ Aportaciones hidráulicas.
- ✓ Instalaciones de generación disponibles:
 - Fallos imprevistos.
 - Puesta en funcionamiento de nuevos grupos.
- ✓ Generación forzada por restricciones de red.

En este modelo se va a despreciar la incertidumbre asociada a los factores anteriores.

Enfoque determinista

Planificación tradicional de la generación a medio plazo

- ☐ Hipótesis de modelado:
 - ✓ No es necesario modelar la red de transporte en detalle:
 - Sólo forzamos la producción de ciertos grupos por restricciones de red.
 - ✓ No es necesario modelar la evolución cronológica del sistema hora a hora:
 - Utilizamos una representación basada en niveles de carga, que agrupan varias horas.
 - ✓ No es necesario considerar que un grupo térmico puede arrancar o parar en cualquier hora:
 - Suponemos que los **arranques y paradas** sólo pueden producirse en las transiciones de festivo a laborable y de laborable a festivo.
 - ✓ No es necesario representar en detalle las cuencas hidráulicas:
 - Utilizamos una central equivalente para cada cuenca hidráulica.

Modelo de planificación a medio plazo

Datos

Demanda de generación
Características técnicas de los grupos
Costes de combustible
Aportaciones hidráulicas
Generación disponible

Consignas y/o criterios

Explotación de coste mínimo Horas mínimas de GSLP Generación por restricciones de red

Modelo de planificación a medio plazo

Variables de decisión:

Producción y bombeo. Arranques y paradas.

Variables de estado:

Costes de operación. Reservas hidráulicas. Consumo de combustible.

Función objetivo:

Minimizar los costes variables de explotación.

Restricciones

Satisfacción de la demanda. Límites de generación. Otras: red, GSLP, etc.

Resultados Principales

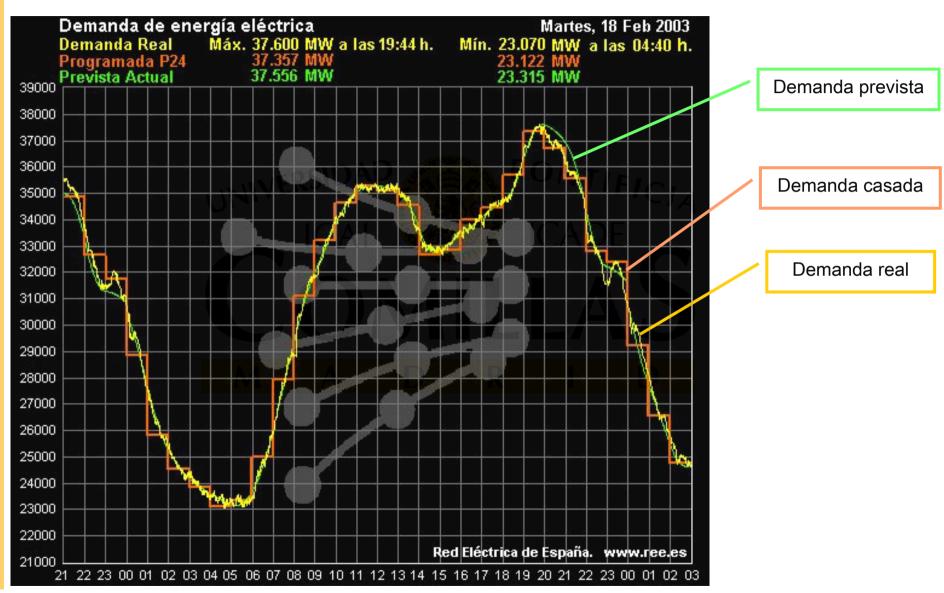
Producción esperada por grupos. Consignas para la gestión del agua en el corto plazo.

Otros Resultados

Previsión de coste de operación. Previsión de consumo de combustibles. Previsión de gestión de recursos hidráulicos.

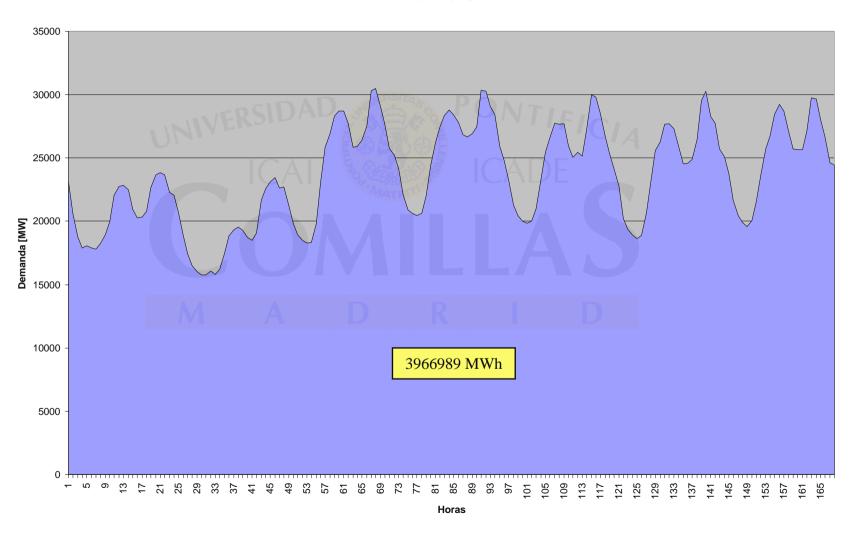
Contenido

□ Planificación de la explotación de la generación a medio plazo.
Caracterización del sistema. Variables
□ Variables.
□ Restricciones. CADE
☐ Función objetivo.
☐ Estructura del problema.
☐ Variables duales.
□ Notación.
☐ Gestión del mantenimiento programado.

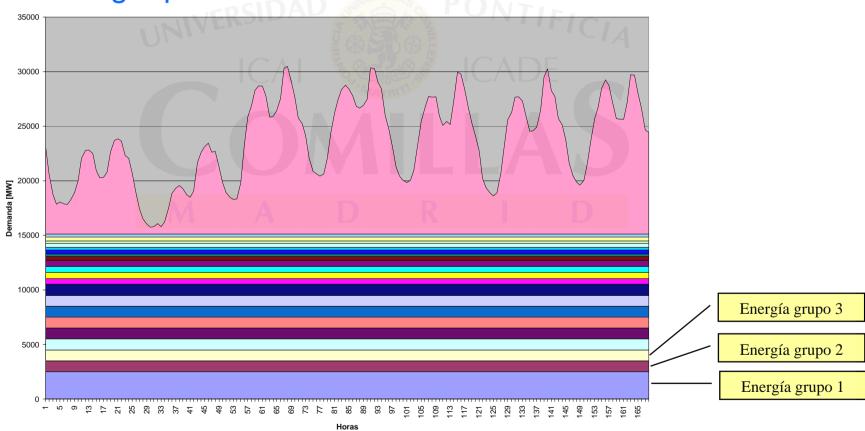


Caracterización del sistema

- ☐ División temporal
- □ Demanda
- ☐ Generación térmica
- ☐ Generación hidráulica y bombeo


Demanda diaria

Demanda semanal


Demanda 22-28 NOV

Despacho de los grupos térmicos

- □ Los grupos térmicos se despachan de abajo a arriba bajo la curva de carga
- Energía producida = área de la curva

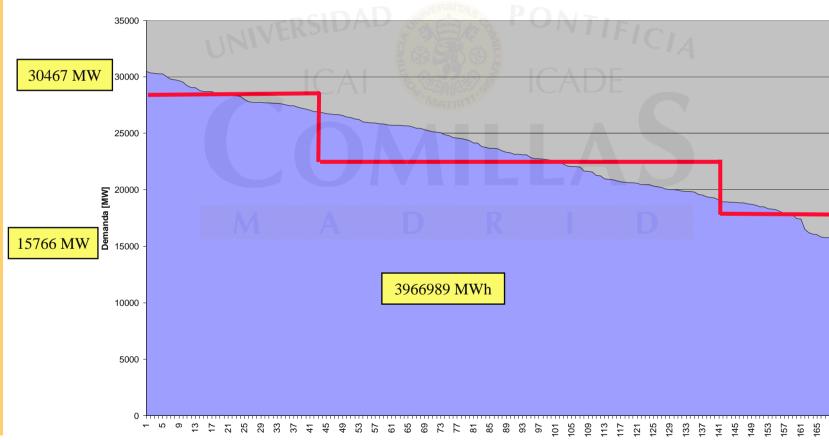
Planificación tradicional de la generación a medio plazo

- ☐ Horizonte:
 - ✓ Año 2008
- ☐ Alcance temporal
 - ✓ Medio plazo (un año).
- ☐ Estructura temporal:
 - ✓ Periodo p: 1 semana ó 1 mes.
 - ✓ Subperiodos s: días laborables y festivos.
 - ✓ Niveles de carga n: grupos de horas.

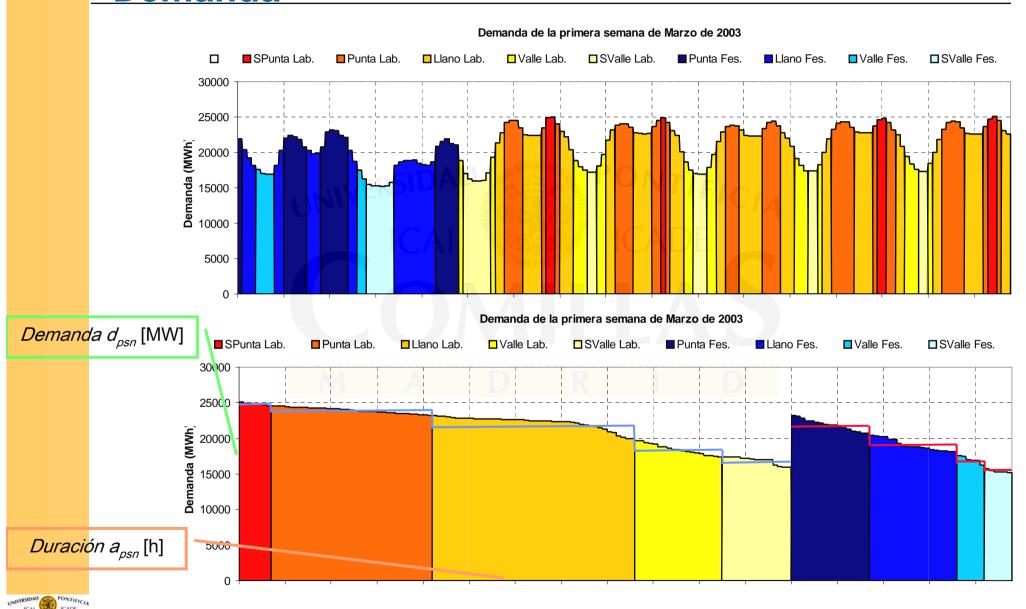
p, s y n son **índices** que utilizaremos en nuestro modelo

Datos de entrada al modelo: Demanda

☐ Clasificación de la demanda:


- ✓ Dentro de cada periodo p:
 - Los días se clasifican en laborables o festivos.
- ✓ Dentro de cada subperiodo s (laborable o festivo):
 - Las horas se clasifican en niveles de carga.
 - e.g. cinco niveles para el subperiodo laborable y cuatro para el subperiodo festivo.
- ✓ Dentro de cada nivel n las horas se agregan y se representan mediante la demanda media. Se supone constante en todas las horas.

Monótona decreciente


- ✓ Ordenación decreciente de los 168 valores de demanda
- ✓ Área = energía total semanal

Monótona decreciente semana 22-28 NOV

Datos de entrada al modelo: Demanda

☐ Grupos térmicos: modelado básico

- ✓ Para referirnos a cada grupo térmico usaremos el índice t
- ✓ Potencia bruta máxima y mínima del grupo $t: \overline{q}_t, \underline{q}_t$ [MW]
- ✓ Curva de consumo de combustible (aproximación lineal):

Término fijo: eta_t [te/h] Término lineal: $lpha_t$ [te/MWh]

1 Termia equivale a 1 millón de calorías.

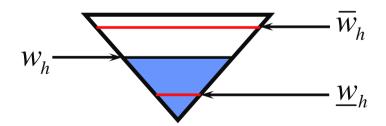
Potencia bruta producida por el grupo t [MW]

☐ Grupos térmicos: modelado básico

- ✓ Consumo de combustible para arranque en frío: γ_t [te]
- ✓ Factor de conversión de potencia bruta a potencia neta debido a consumos propios o de servicios auxiliares: k_t [%] ó [p.u.]

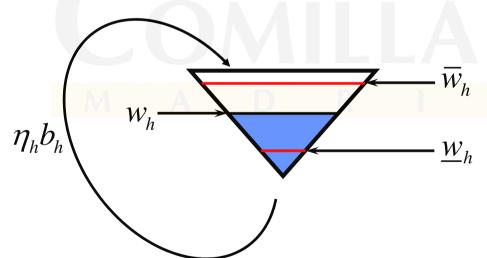
Potencia neta grupo t = Potencia bruta grupo $t \cdot k_t$

☐ Grupos térmicos: modelado básico


✓ Órdenes de magnitud:

Tecnología	Consumo de combustible Término lineal Término fijo Arranque frío Pmáx F					Factor consumo SSAA
	[te/MWh]	[te/h]	[te] 🔥 🗀	[MW]	[MW]	[%]
Lignito pardo	3000	15000	2000000	350	230	93.5
Lignito negro	2600	3000	2000000	350	210	95
Hulla y antracita	2300	35000	1400000	350	220	93
Carbón importación	2200	60000	1900000	550	180	97
Fuel-oil	2100	90000	1100000	540	140	95.5
Gas	2000	80000	700000	380	140	95
CCGTs	1300	90000	1100000	400	200	98

☐ Grupos hidráulicos: modelado básico


- ✓ Representamos cada cuenca hidráulica por medio de una central equivalente, incluyendo un embalse equivalente.
- ✓ Para referirnos a cada central equivalente usaremos el índice h
- ✓ Potencia bruta máxima y mínima de la central $h: \overline{q}_h, \underline{q}_h$ [MW]
- ✓ El nivel de reserva del embalse se contabiliza en energía
 - Nivel de reserva máxima y mínima: $\overline{w}_h, \underline{w}_h$ [MWh]
- \checkmark Factor de conversión de potencia bruta a potencia neta: k_h

☐ Grupos hidráulicos: modelado básico

- ✓ En algunas cuencas existen centrales de bombeo.
- ✓ Para tenerlo en cuenta añadimos a nuestro modelo de central equivalente la siguiente información:
 - Potencia de bombeo máxima y mínima de la central $h:\overline{b}_h,\underline{b}_h$ [MWh]
 - Rendimiento del ciclo turbinación bombeo: η_h [p.u.] (~0.7 p.u.)

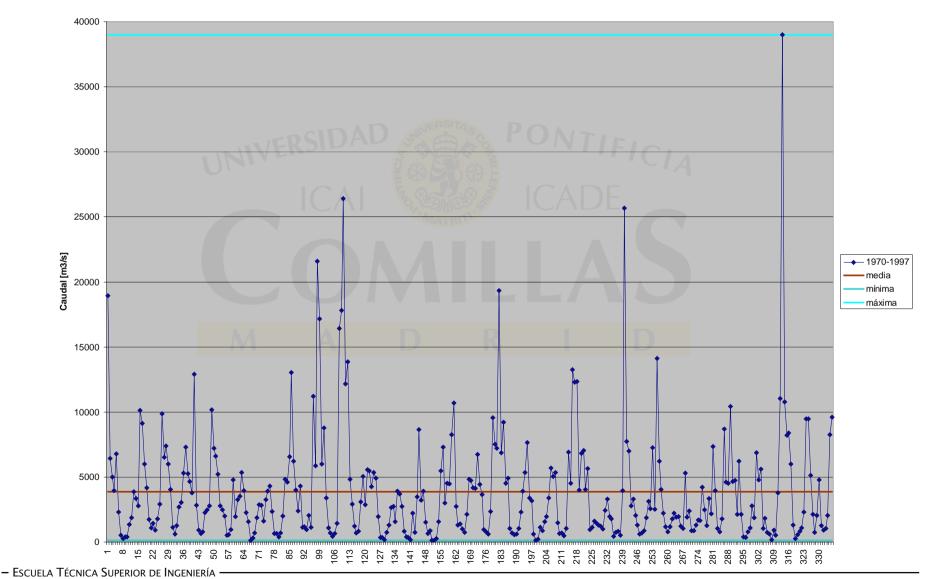
Un rendimiento de 0.7 p.u. significa que de la energía consumida en bombear un cierto volumen de agua sólo se logra extraer un 70% al turbinar dicho volumen.

Datos de entrada al modelo: Costes de operación

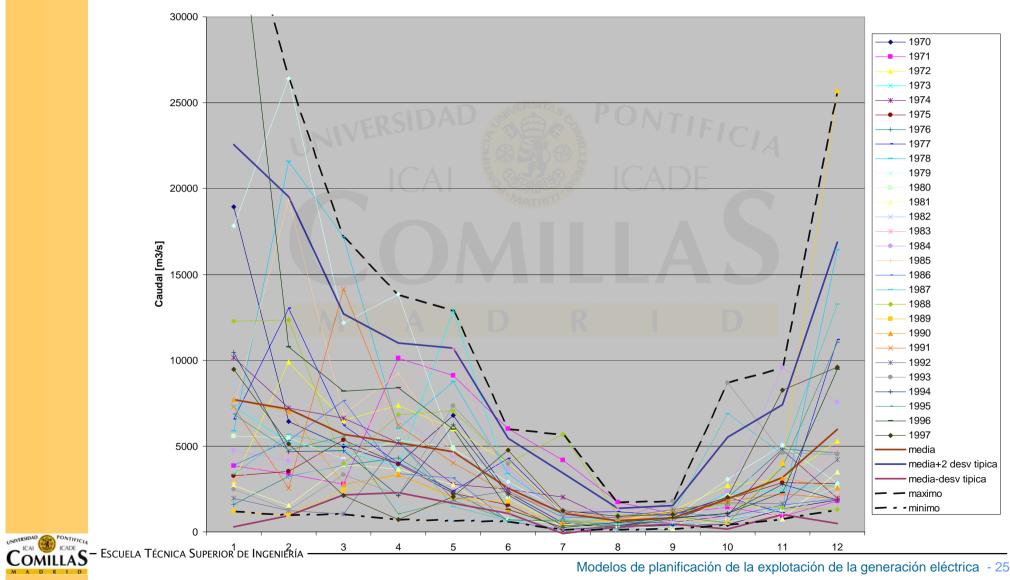
- ☐ Grupos térmicos:
 - ✓ El consumo de combustible implica un coste:
 - Coste del combustible consumido por el grupo t: f_t [\in /te]

	Coste de	Coste m	edio de produ	Coste de		
Tecnología	combustible	A mínimo técnico	(Pmax+Pmin)/2	A plena carga	arranque en frío	
	[€ kte]	€MWh	€MWh	∉ MWh	€	
Lignito pardo	8	24.52	24.41	24.34	16000	
Lignito negro	8.5	22.22	22.19	22.17	17000	
Hulla y antracita	8	19.67	19.38	19.20	11200	
Carbón importación	7	17.73	16.55	16.16	13300	
Fuel-oil	20	54.86	47.29	45.33	22000	
Gas	20	51.43	46.15	44.21	14000	
CCGTs	18	31.50	28.80	27 .45	16200	

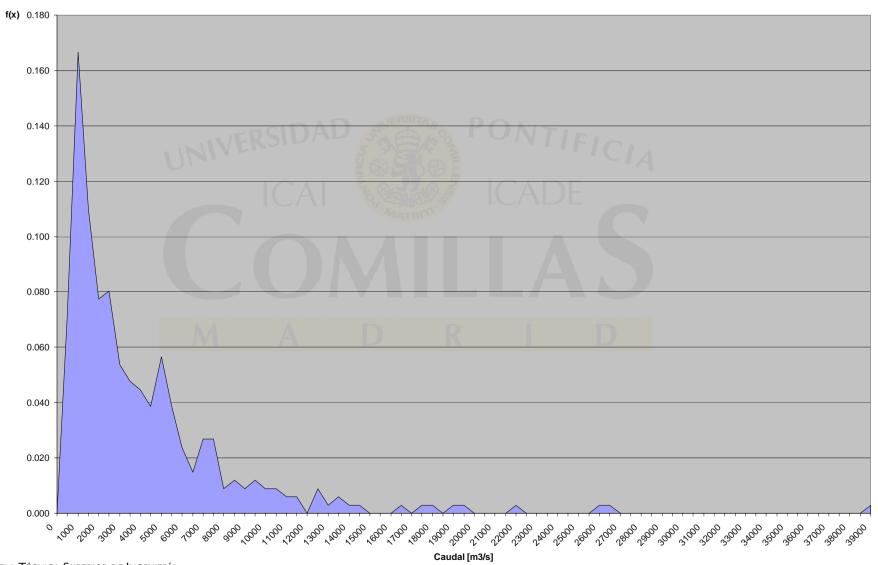
- ✓ La operación de los grupos implica un coste variable de operación y mantenimiento:
 - Suponemos este coste proporcional a la energía producida.
 - Coste de operación y mantenimiento del grupo t: O_t [€/MWh]
- ☐ Grupos hidráulicos: los suponemos sin coste.


Datos de entrada al modelo: Aportaciones hidráulicas

■ Modelado de las aportaciones:


- ✓ Consideramos unas aportaciones naturales para cada central equivalente h en cada periodo p: i_{ph} [MWh]
- ✓ En principio no tenemos en cuenta la incertidumbre de las aportaciones, pero:
 - Es posible plantear distintos escenarios de aportaciones (año húmedo, medio o seco) utilizando información histórica.
 - Esta incertidumbre es muy relevante en el caso español.
- ✓ Se denominan centrales de bombeo puro a aquellas que sólo pueden producir la energía que previamente han bombeado.
- \checkmark En nuestro modelo, una central h de bombeo puro se caracteriza simplemente porque $i_{ph}=0$

Aportaciones hidráulicas mensuales (i)



Aportaciones hidráulicas mensuales (ii)

Función de densidad f(x) aportaciones hidráulicas

Datos de entrada al modelo: Generación disponible

- □ Todos los grupos son susceptibles de quedar indisponibles por algún tipo de fallo.
- ☐ En un enfoque determinista de medio plazo como el nuestro:
 - ✓ El posible fallo de un grupo t se trata reduciendo su potencia máxima de acuerdo con su tasa de disponibilidad equivalente: g_t [p.u.]

Datos de entrada al modelo: Consignas especiales

- ☐ En el mercado español existen dos aspectos que conviene tener en cuenta en modelos de medio plazo:
 - ✓ Para cobrar el pago por garantía de potencia un grupo debe funcionar un número mínimo de horas equivalentes a plena carga: e [h]

Actualmente el número mínimo de horas equivalentes a plena carga para el cobro de la garantía de potencia es de 480 h

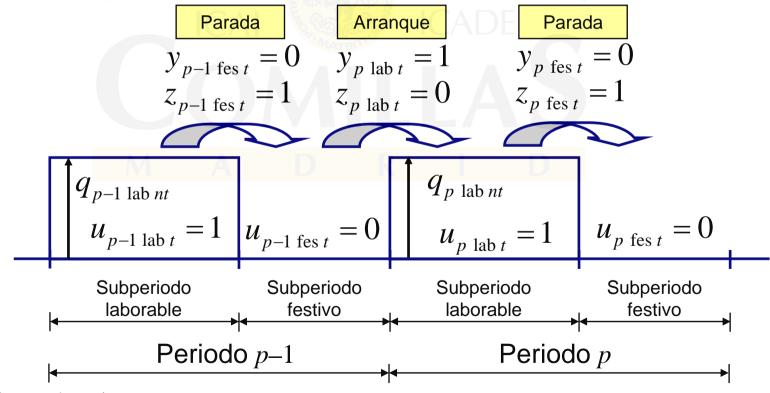
- ✓ Hay grupos que, a pesar de ser caros en comparación con el resto, en determinados momentos del año deben funcionar por restricciones de red:
 - Potencia neta mínima del grupo t en el nivel n del subperiodo s y del periodo p por restricciones de red: $\underline{q}_{psnt}^{red}$ [MW]

Contenido

☐ Planificación de la explotación de la generación a medio plazo.
☐ Caracterización del sistema. Variables
Variables.
□ Restricciones. CADE
☐ Función objetivo.
☐ Estructura del problema.
☐ Variables duales.
□ Notación.
☐ Gestión del mantenimiento programado.

Variables del modelo: Variables de decisión

- ☐ Producciones de los grupos:
 - ✓ **Potencia neta** del grupo térmico t en el nivel n del subperiodo s y del periodo p: q_{psnt} [MW].
 - ✓ Potencia neta de la central equivalente h en el nivel n del subperiodo s y del periodo p: q_{psnh} [MW].
- ☐ Bombeo:
 - ✓ Consumo de bombeo de la central equivalente h en el nivel n del subperiodo s y del periodo p: b_{psnh} [MW].
- ☐ Acoplamiento de los grupos térmicos:
 - ✓ **Decisión de arranque** del grupo térmico t al comienzo del subperiodo s en el periodo p: y_{pst} [0/1].
 - ✓ **Decisión de parada** del grupo térmico t al comienzo del subperiodo s en el del periodo p: z_{pst} [0/1].


Arranque: $y_{pst} = 1$

Parada: $z_{pst} = 1$

Variables del modelo: Variables de estado

- ☐ Acoplamiento de los grupos térmicos:
 - ✓ **Decisión de acoplamiento** del grupo térmico t durante el subperiodo s del periodo p: u_{pst} [0/1].
 - ✓ Depende de las decisiones de arranque y parada:

Variables del modelo: Variables de estado

- ☐ Acoplamiento de los grupos térmicos:
 - ✓ La relación entre las variables de acoplamiento y las de arranque y parada viene dada por:
 - Para cambios dentro de un mismo periodo:

$$u_{p \text{ fes } t} - u_{p \text{ lab } t} = y_{p \text{ fes } t} - z_{p \text{ fes } t}$$

$$y_{p \text{ fes } t} = 0$$

$$y_{p \text{ fes } t} = 1$$

$$u_{p \text{ lab } t} = 1$$

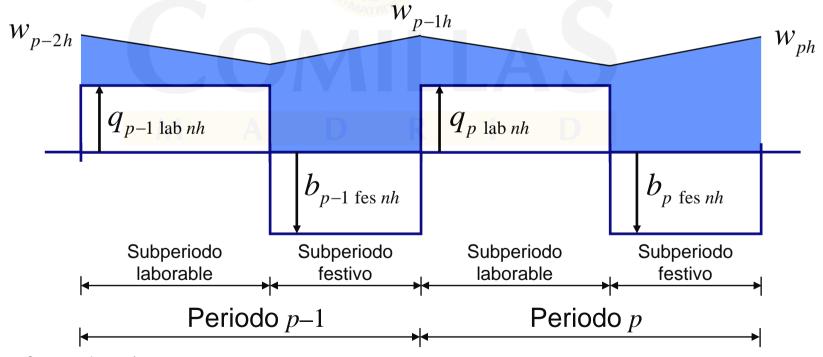
$$u_{p \text{ fes } t} = 0$$
Parada
$$u_{p \text{ fes } t} = 0$$

• Para cambios en la transición entre periodos:

$$u_{p \text{ lab } t} - u_{p-1 \text{ fes } t} = y_{p \text{ lab } t} - z_{p \text{ lab } t}$$

$$u_{p \text{ lab } t} = 1$$

$$u_{p \text{ lab } t} = 1$$


$$u_{p \text{ lab } t} = 1$$
Arranque

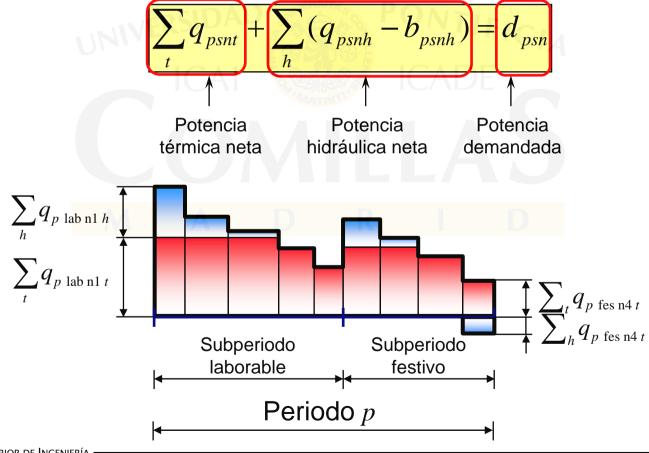
Variables del modelo: Variables de estado

☐ Reservas hidráulicas:

- ✓ Reserva almacenada en el embalse de la central h al final del periodo p: W_{ph} [MWh].
- ✓ Depende de las aportaciones y de las decisiones de producción y bombeo

Número de variables

Producción de cada grupo térmico $q_{\it psnt}$	PSNT
Acoplamiento grupo térmico $\{0,1\}$ u_{pst}	PST
Arranque, parada grupo térmico $\{0,1\}$ $y_{pst}z_{pst}$	2PST
Producción de cada grup <mark>o hidrául</mark> ico q_{psnh}	PSNH
Bombeo de cada grupo h <mark>idráulico</mark> b_{psnh}	PSNH
Nivel de reserva grupo hidráulico w_{ph}	PH
CUMILLAD	

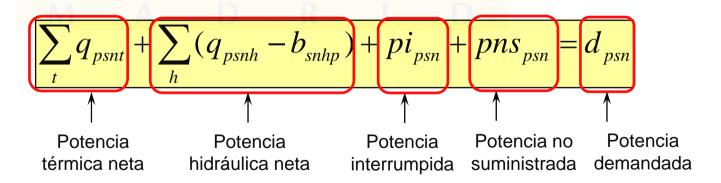

Contenido

□ Planificación de la explotación de la generación a medio plazo.
piazo.
☐ Caracterización del sistema.
□ Variables.
> Restricciones. All CADE
☐ Función objetivo.
☐ Estructura del problema.
☐ Variables duales.
□ Notación.
☐ Gestión del mantenimiento programado.

Restricciones: Satisfacción de la demanda

☐ En cada nivel es necesario que la **producción neta** de electricidad sea igual a la **demanda**:

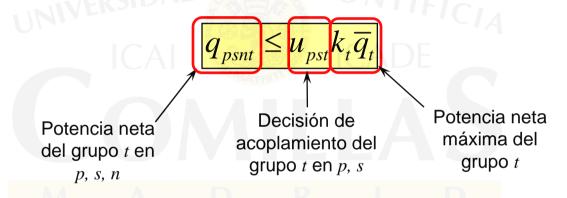
Variables: Potencia no suministrada o interrumpida


■ Dos posibilidades de "generación" adicionales

✓ Potencia interrumpida (pi_{psn})

Algunos consumidores tienen contratos con tarifas más bajas pero su suministro puede ser interrumpido con preaviso. En la función objetivo se incorpora el coste asociado a esta interrupción.

✓ Potencia no suministrada (pnspsn)

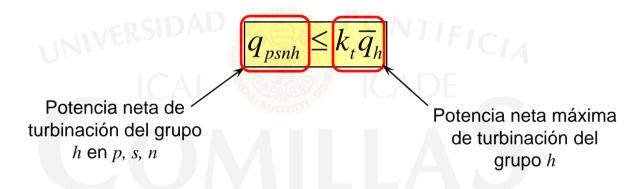

Cuando no hay generación suficiente se corta el suministro. Esto tiene un coste o penalización elevada.

□ Potencia bruta máxima:

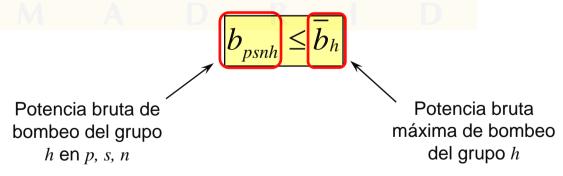
✓ Para un grupo térmico t depende de si el grupo está acoplado o no:

✓ Si el grupo está acoplado, u_{pst} =1

$$q_{psnt} \leq k_{t} \overline{q}_{t}$$

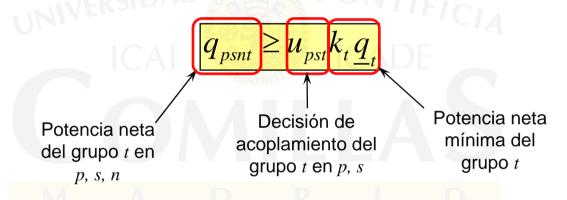

✓ Si el grupo no está acoplado, u_{pst} =0

$$q_{\textit{psnt}} \leq 0$$



☐ Potencia bruta máxima:

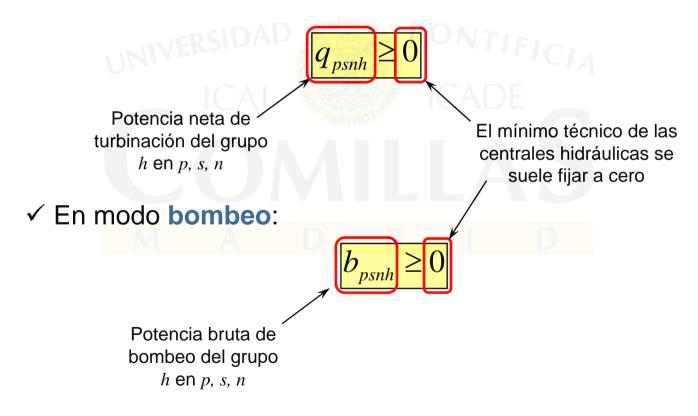
✓ Para una central hidráulica h en modo turbinación:


✓ En modo bombeo:

☐ Mínimo técnico:

✓ Para un grupo térmico t depende de si el grupo está acoplado o no:

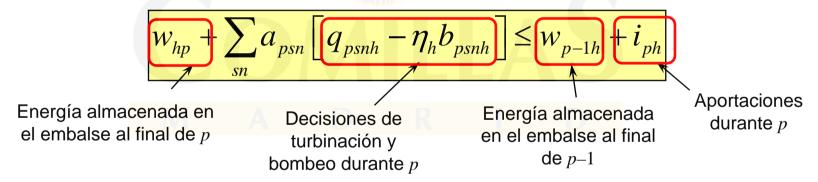
✓ Si el grupo está acoplado, u_{pst} =1


$$q_{psnt} \ge k_t \underline{q}_t$$

✓ Si el grupo no está acoplado, u_{pst} =0

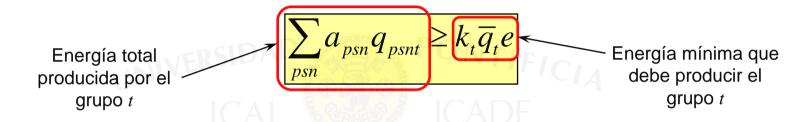
$$q_{psnt} \ge 0$$

☐ Mínimo técnico:


✓ Para una central hidráulica h en modo turbinación:

☐ Gestión de los embalses:

- ✓ La **energía almacenada** en el embalse *h* al final del periodo *p* depende de:
 - Las decisiones de turbinación y bombeo en dicho periodo
 - Las aportaciones en dicho periodo


✓ La energía almacenada en los embalses debe respetar unos límites:

$$\underline{w_h} \le w_{ph} \le \overline{w_h}$$



Restricciones: Restricciones especiales

☐ Horas mínimas para el cobro de la GSLP:

☐ Grupo térmico que debe entrar por restricciones de red:

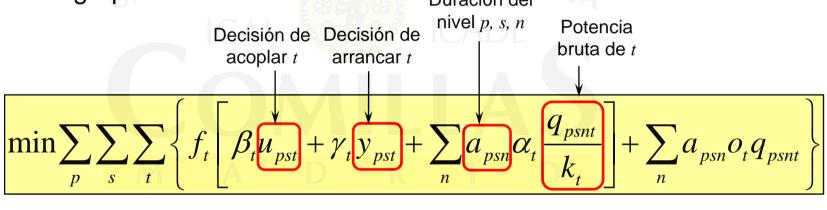
Número de restricciones interperiodo

Gestión reservas hidráulicas	PH
Horas mínimas para cobrar GSLP	Т

Número de restricciones intraperiodo

Equilibrio generación-demanda	PSN
Arranque, parada grupos térmicos	PST
Operación grupos térmicos	2PSNT
Operación grupos hidráu <mark>licos</mark>	2PSNH
Operación por restricciones de red	PSNT

Contenido


☐ Planificación de la explotación de la generación a medio
plazo.
☐ Caracterización del sistema.
□ Variables.
□ Restricciones. CADE
Función objetivo.
☐ Estructura del problema.
☐ Variables duales.
□ Notación.
☐ Gestión del mantenimiento programado.

Función objetivo

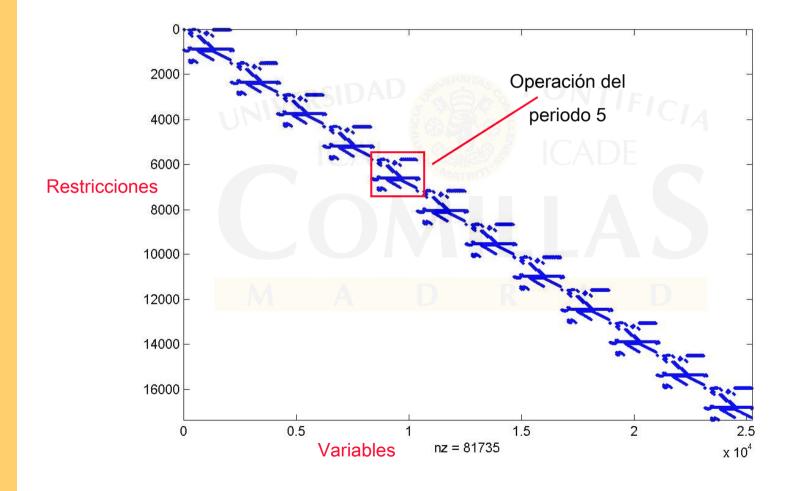
- □ El objetivo es determinar el presupuesto que minimiza el coste variable de explotación del equipo generador:
 - ✓ Estamos considerando únicamente los costes de explotación de los grupos térmicos.

 Duración del

Consumo de combustible de t en p, s

Coste de combustible de t en p, s

Coste de operación y mantenimiento de *t*



Contenido

☐ Planificación de la explotación de la generación a me
plazo.
☐ Caracterización del sistema. ☐ Variables
□ Variables.
□ Restricciones. CADE
☐ Función objetivo.
Estructura del problema.
☐ Variables duales.
□ Notación.
☐ Gestión del mantenimiento programado.

Estructura de la matriz de restricciones

Contenido

☐ Planificación de la explotación de la generación a medi
plazo.
☐ Caracterización del sistema. ☐ Variables
□ Variables.
□ Restricciones.
☐ Función objetivo.
☐ Estructura del problema.
Variables duales.
□ Notación.
☐ Gestión del mantenimiento programado.

Variables duales

□ Cada restricción tiene asociada una variable dual:

✓ Restricción de demanda

Variable dual

$$\sum_{t} q_{psnt} + \sum_{h} (q_{psnh} - b_{psnh}) = d_{psn}$$

$$\mu_{psn}^d$$

✓ Restricción de gestión de embalse

Variable dual

$$\left[w_{hp} + \sum_{sn} a_{psn} \left[q_{psnh} - \eta_h b_{psnh}\right] \le w_{p-1h} + i_{ph}\right]$$

$$\mu_{ph}^{w}$$

✓ Las variables duales expresan cuánto varía la función objetivo al aumentar en una unidad el lado derecho de la restricción.

Variables duales: Coste marginal del sistema

 $\checkmark \mu_{psn}^d$ expresa cuánto varía el coste de explotación si aumenta en un MW la **potencia demandada** en el nivel p, s, n

$$\sum_{t} q_{psnt} + \sum_{h} q_{psnh} - b_{psnh} = d_{psn}$$
Potencia
demandada en el
nivel p, s, n

- ✓ Nos interesa más saber cuánto varía el coste de explotación si aumenta en un MWh la energía demandada en el nivel p, s, n
- ✓ Para que la variable dual nos dé este valor, es necesario expresar la restricción de la siguiente manera:

Duración del nivel
$$p$$
, s , n

$$= a_{psn} \left[\sum_{t} q_{psnt} + \sum_{h} q_{psnh} - b_{psnh} \right] = a_{psn} d_{psn}$$
Energía demandada en el nivel p , s , n

 $\checkmark \mu_{psn}^d$ es entonces el coste marginal del sistema en p, s, n

Variables duales: Valor del agua

 $\checkmark \mu_{ph}^{w}$ expresa cuánto varía el coste de explotación si aumentan en un MWh las **aportaciones** de h en el periodo p

$$w_{hp} + \sum_{sn} a_{psn} \left[q_{psnh} - \eta_h b_{psnh} \right] \le w_{p-1h} + i_{ph}$$
 Aportaciones en el periodo p

- ✓ A pesar de que el agua no supone un coste, su uso en un cierto periodo hace que no esté disponible para otros periodos.
- ✓ Disponer de un MWh de agua más en un cierto periodo permite reducir los costes de consumo de combustible.
- ✓ El valor que toma la variable dual μ_{ph}^{w} se suele denominar valor del agua almacenada en el embalse de la central h en el periodo p.
- ✓ El valor del agua es una consigna muy interesante para gestionar los recursos hidráulicos en el corto plazo.

Contenido

☐ Planificación de la explotación de la generación a medio
plazo.
☐ Caracterización del sistema.
□ Variables.
□ Restricciones. CADE
☐ Función objetivo.
☐ Estructura del problema.
☐ Variables duales.
Notación.
☐ Gestión del mantenimiento programado.

Notación

☐ Índices:

```
p periodo
```

subperiodo

n nivel

t grupo térmico

h grupo hidráulico o de bombeo

☐ Datos generales del modelo:

 d_{psn} demanda en el nivel p, s, n [MW]

 a_{psn} duración del nivel p, s, n [h]

e horas mínimas equivalentes de funcionamiento a

plena carga para el cobro de la garantía de potencia[h]

Notación

☐ Datos del grupo térmico t:

 $\overline{q}_t, \underline{q}_t$ potencia bruta máxima y mínima [MW] término lineal de la curva de consumo [te/MWh] β_t término fijo de la curva de consumo [te/h] γ_t consumo de arranque [te] k_t factor de conversión de potencia bruta a neta [p.u.] f_t coste unitario de combustible [ϵ /kte] f_t coste de operación y mantenimiento [ϵ /MWh]

☐ Datos de la central hidráulica *h*:

$\overline{q}_{\scriptscriptstyle h}, \underline{q}_{\scriptscriptstyle h}$	potencia bruta máxima y mínima en turbinación [MW]
$\overline{b}_{\!\scriptscriptstyle h},\!\underline{b}_{\scriptscriptstyle h}$	potencia bruta máxima y mínima en bombeo [MW]
$\overline{\overline{W}}_h, \underline{W}_h$	nivel máximo y mínimo de llenado del embalse [MWh]
η_h	rendimiento del ciclo turbinación/bombeo [p.u.]
i_{ph}	aportaciones naturales en el periodo p [MWh]
k_h	factor de conversión de potencia bruta a neta [p.u.]

Notación

☐ Variables del grupo térmico t:

 q_{psnt} potencia en el nivel p, s, n [MW]

 u_{pst} decisión de acoplamiento en el subperiodo p, s

 y_{pst} decisión de arranque en el subperiodo p, s

 z_{pst} decisión de parada en el subperiodo p, s

☐ Variables de la central hidráulica h:

 q_{psnh} potencia de turbinación en el nivel p, s, n [MW]

 b_{psnh} potencia de bombeo en el nivel p, s, n [MW]

 w_{ph} energía en el embalse al final del periodo p [MWh]

□ Variables duales:

 μ_{psn}^d coste marginal del sistema en el nivel $p, s, n \in MW$

 μ_{ph}^{w} valor del agua de la central h en el periodo p [\in /MWh]

Contenido

Planificación de la explotación de la generación a medio plazo.
Caracterización del sistema.
Variables.
Restricciones.
Función objetivo.
Estructura del problema.
Variables duales.
Notación.

Gestión del mantenimiento programado.

Otra función de planificación de medio plazo

- Programación del mantenimiento preventivo de los grupos térmicos
 - ✓ Modelo matemático con formulación similar al anterior.
 - ✓ Cambio en la función objetivo: medida de fiabilidad del sistema

Datos:

Gestión del mantenimiento programado

- Número de periodos en mantenimiento M_t
- lacksquare Demanda máxima por periodo \overline{d}_p
- \blacksquare Máximo número de grupos de una misma central en mantenimiento simultáneo g_c
- ☐ Máxima potencia en mantenimiento simultáneo en el sistema *m*

Variables: Gestión del mantenimiento programado

lacksquare Indisponibilidad del grupo t por mantenimiento programado en el periodo p i_{pt}

Restricciones: Gestión del mantenimiento programado

☐ Diferencia entre márgenes de reserva consecutivos

$$mr_{p} - mr_{p+1} + h_{p}^{+} - h_{p}^{-} = 0 \quad \forall p$$
 $mr_{p} = \frac{\sum_{t} \overline{q}_{t} (1 - i_{pt})}{\overline{d}}$

$$mr_p = \frac{\sum_{t} \overline{q}_t (1 - i_{pt})}{\overline{d}_p}$$

■ Duración del mantenimiento de cada grupo

$$\sum_{p} i_{pt} = M_{t} \quad \forall t$$

☐ Máximo número de grupos de una misma central en mantenimiento simultáneo

$$\sum_{t \in c} i_{pt} \le g_c \quad \forall pc$$

☐ Máxima potencia en mantenimiento simultáneo

$$\sum_{t} \overline{q}_{t} i_{pt} \leq m \quad \forall p$$

Función objetivo

☐ Función objetivo: Suma de diferencias entre márgenes de reserva consecutivos

$$\frac{\sum_{p}(h_{p}^{+}+h_{p}^{-})}{|CA|}$$

$$|CA|$$

Modelos de planificación de la explotación de la generación eléctrica

Andrés Ramos

Universidad Pontificia Comillas, Madrid

22 de mayo de 2008

