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Learning objectives

• To understand
– What is a medium-term hydrothermal coordination model

• Purpose
• How to use
• How an optimization model is used to support hydropower plant 

operation

– How stochasticity is modeled
• Scenario tree
• Effect of uncertainties in hydro scheduling decisions

– What techniques are used for solving the stochastic problem
• Stochastic optimization
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Generation planning functions

Functions

Scope

Traditional 
regulated 
operation 
functions

New 
liberalized 

market 
functions

Short termMedium termLong term

•Fuel management
•Annual reservoir 

and seasonal 
pumped storage 
hydro 
management
- Water value 
assessment

• Capacity 
investments
- Installation
- Repowering

• Maintenance
• Energy 
management
- Nuclear cycle
- Multiannual 
reservoirs

• Startup and shut-
down of thermal 
units

• Pumped storage 
hydro operation

• Economic dispatch

• Strategic bidding:
- Energy

- Power reserve

- Other ancillary 
services

• Objectives:
- Market share

- Price

• Budget planning 

• Future derivatives 
market bids

• Capacity 
investments

• Risk management 

• Long term contracts:
- Fuel acquisition

- Electricity selling



Medium Term Stochastic Hydrothermal Coordination Model 8

Hydro-power in Portugal

A huge hydroelectric power plant 250 km southeast of Lisbon in Portugal uses 
Alstom technology to combine and store wind and hydro energies. This plant has a 
capacity of 260 MW and supplies energy to 175,000 households. The reduction in 
CO2 emissions is the equivalent of removing 185,000 cars from the road.
The biggest upper reservoir in Europe is 85 km long with a surface of 250 square 
kilometers.
During the day water falls into the lower reservoir, moving the turbines and 
producing electricity. But at night – when energy consumption falls – the turbine 
uses wind energy to pump water back into the upper reservoir so the cycle can 
continue the next day without significant water loss.

Alqueva
reservoir

http://www.youtube.com/watch?v=82efZBKBXSg
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Hydrothermal operation

• Strong interaction between hydro and thermal plants. Must be 
scheduled simultaneously

• Possibility of storing water with time dependencies to represent 
water volume regulations

• Long-term storage capability allows better use of the water and, 
therefore, causes more extended optimization periods

• Existence of cascading and water dependencies between them
• Pumped-storage hydro plants introduce additional operational 

complexity
• The operational cost of hydro plants is negligible
• Hydro generation is very flexible but uncertain

– Affordable way of storing energy at large scale
– Inflows can have significant uncertainty
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Opportunities for optimal decision making

• Optimization of hydro generation results in the replacement of 
expensive thermal generation

• Optimization of pumped-storage hydro plants’ operation is based on 
pumping at cheap hours and turbining at the high-price ones

• High penetration of intermittent generation will stress the electric 
system operation. Storage hydro and pumped storage hydro plants 
are going to play a much more important role due to their flexibility 
and complementary use with intermittent generation

• Besides, under a deregulated framework, electric companies 
manage their generation resources and need detailed operation 
planning tools
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Uses of hydro scheduling models

• Determine the operation of complex basins

• Determine re-powering alternatives

• Determine the power capacity of new hydro investments

• Determine the risk (amount) of spillage

• Determine firm energy generation

• Determine the firm capacity
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Medium term optimization model. Characteristics

• Hydroelectric vs. hydrothermal models
– A hydroelectric model deals only with hydro plants
– A hydrothermal model manages both hydro and thermal plants simultaneously

• Thermal units are considered individually. So rich marginal cost 
information for guiding hydro scheduling

• No aggregation or disaggregation process for hydro input and 
output is needed

• It isn’t easy to obtain meaningful results for each hydro plant 
because:
– It requires a considerable amount of data and
– The complexity of hydro subsystems
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Hydroelectric Dam

Source: http://etrical.wordpress.com/power-generation/
Ricobayo hydroelectric power plant
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Variety of Spanish hydro subsystem

• Hydro reservoir volumes: 0.15 - 2433 hm3

• Hydro plant capacity:          1.5 - 934 MW
– 375 units non UGH (small hydro)
– 855 units UGH (large hydro), with 80 units > 50 MW

Almendra reservoir (2433 hm3) (April-2024)
https://youtu.be/5UA2DmJ6Zl0?si=-y7acE7tbeRqWVc7

Almendra reservoir (Nov-2017)
https://www.lasexta.com/noticias/sociedad/las-desoladoras-imagenes-
aereas-del-embalse-de-la-almendra-en-salamanca-totalmente-
seco_201711235a1728080cf2f56e3eb493b2.html
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Hydro subsystem modeling difficulties

 Topological complexities in waterways
• Nonlinearities in the production function. Head dependency: 

energy production depends on the water reserve at the 
reservoir and on the water inflows
– Important when changes in reservoir levels are significant for the 

time scope of the model

 Stochasticity in natural hydro inflows
• Complex operation constraints by other uses of water 

(irrigation, minimum and maximum river flow, minimum and 
maximum reservoir levels, sporting activities)
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Source: Iberdrola
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Source: Iberdrola
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Source: Iberdrola
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Alto Tâmega hydroelectric complex
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La Muela-Cortes hydroelectric complex (> 2000 MW)

La Muela upper reservoir

Pumped storage hydro La Muela
1722 MW

Hydro plant Cortes II
290 MW

Cortes reservoir
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Year Hydro energy Index % of being
TWh  exceeded

1990 20.3 0.98 98%
1991 24.4 0.98 49%
1992 18.5 0.74 83%
1993 21.8 0.88 64%
1994 23.9 0.96 52%
1995 21.4 0.86 66%
1996 39.1 1.57 5%
1997 35.4 1.42 10%
1998 26.7 1.07 37%
1999 20.4 0.82 72%
2000 26.6 1.07 38%
2001 32.2 1.29 17%
2002 21.6 0.87 65%
2003 34.8 1.40 11%
2004 23.0 0.92 58%
2005 13.7 0.55 97%
2006 24.4 0.98 49%
2007 18.8 0.75 81%
2008 19.6 0.78 77%
2009 23.0 0.92 57%
2010 38.2 1.53 6%
2011 27.7 0.95 55%
2012 18.0 0.61 97%
2013 41.0 1.41 9%
2014 40.3 1.35 15%
2015 25.1 0.82 79%
2016 34.7 1.12 37%
2017 16.0 0.53 99%
2018 37.4 1.28 17%
2019 26.0 0.88 64%
2020 30.6 1.03 44%
2021 26.9 0.91 60%
2022 19.5 0.67 89%
2023 26.5 0.92 54%

Stochastic hydro inflows

• Natural hydro inflows (clearly the most critical annual 
factor in the Spanish electric system)

• Changes in reservoir volumes are significant because 
of:

– stochasticity in hydro inflows
– chronological pattern of inflows and
– capacity of the reservoir with respect to the inflows

Source: REE
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Spanish historical reservoir levels
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How uncertain are hydro inflows in Brazil?
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Spot prices strongly driven by hydrology

Source: L. Barroso. PSR
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How uncertain are hydro inflows in Colombia?
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Stochastic hydro inflows

• Several measurement points in main different river basins
• Partial spatial correlation among them
• Positive temporal correlation in each one

https://www.esios.ree.es/en/interesting-maps/hydraulic-installations-map
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Water inflows have decreased in Iberian rivers in the last 60 
years

J. Lorenzo-Lacruz, S.M. Vicente-Serrano, J.I. López-Moreno, E. Morán-Tejeda, J. Zabalza. Recent trends 
in Iberian streamflows (1945–2005). Journal of Hydrology. Vol 414–415, Jan 2012, pp. 463-475
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Decision under uncertainty

• DETERMINISTIC optimization
– Best decision when the future parameters are 

known with certainty (it can be the mean/mode 
values)

• Simulation. Scenario analysis
– What could happen if …?

• STOCHASTIC optimization
– Best decision when the future parameters are 

modeled as stochastic variables with known 
distributions

• Discrete
• Historical
• Continuous simulation
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Alternatives for modeling the uncertainty

• Wait and see, or scenario analysis, or what-if analysis, or 
sensitivity analysis
– Decisions are taken once revealed the uncertainty
– The problem is solved independently for each scenario
– The scenario with mean value of the parameters is just a special case
– A priori, decisions will be different for each deterministic scenario 

(anticipative, clairvoyant, not implementable)
– Solution of a scenario can be infeasible in the others

• Here and now (stochastic) decisions
– Decisions must be taken before revealing uncertainty
– Non-anticipative decisions (only the available information so far can 

be used, no future information)
– The only relevant decisions are those of the first stage, given that 

they are the only ones to be taken immediately
– Stochastic solution considers the stochasticity distribution
– It allows the inclusion of risk-averse attitudes, penalizing worst-cases
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Example: Hydrothermal Scheduling Problem

• Scenario analysis (deterministic)
– Run the model supposing that the natural inflows will be the same as 

any of the previous historical inflows (i.e., the year 2015 or 2020, etc.) 
for the time scope

– Run the model supposing that the natural inflows for each period will 
be precisely the mean of the historical values (i.e., average year) for 
the time scope

• Stochastic optimization
– Run the model considering that the distribution of future natural 

inflows will be the same as it has been in the past
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• Determine the optimal operation of a hydro system subject to 
uncertainty in future hydro inflows

• Taking optimal decisions in different stages in the presence of 
random parameters with known distributions

• A decision tree represents uncertainty

Stochastic hydro scheduling

Aldeadávilla
hydro plant

High outflows (Spring 2010)

Minimum outflow
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Optimization-simulation combination
• Use the model in an open-loop control mechanism with a 

rolling horizon
1. First, planning by stochastic optimization
2. Second, simulation of the random parameters

• Repeat the process

1. Stochastic optimization
– Determines optimal scheduling policies considering the uncertainty 

in a simplified way

2. Simulation (out-of-sample) (cross-validation)
– Evaluates possible future outcomes of random parameters given 

the optimal policies obtained previously

• Focus on STOCHASTIC OPTIMIZATION MODELS
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How to use of a medium term stochastic hydrothermal 
coordination model

• Run in a rolling mode (i.e., the model is run each week with a 
time scope of several months up to one year)

• Only decisions for the closest period are of interest (i.e., the 
next week). The remaining decisions are ignored
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Probability tree or scenario tree

• Represents the evolution in the realization of uncertainty 
along time, different values of the random parameters along 
the time.

• Scenario: any path from the root to the leaves
• The scenarios that share information up to a certain time 

period share the same decisions in the tree (implementable 
decisions)

• The probability tree represents the dynamics of the random 
parameters and the non-anticipativity of the decisions and, 
therefore, is implicit in the constraint matrix
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Scenario tree example

wet

wet

wet

dry

dry

dry

Period 1 Period 2

Inflow: 25 m3/s 
Prob: 0.55

Inflow: 35 m3/s 
Prob: 0.60

Inflow: 20 m3/s 
Prob: 0.35

Inflow: 10 m3/s 
Prob: 0.65

Inflow: 20 m3/s 
Prob: 0.45

Inflow: 25 m3/s 
Prob: 0.40

A decision is made 
in each node, and 
stochastic 
parameters are 
revealed 
afterward.
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Scenario tree for 6 months

M 1 M 2 M 3 M 4 M 5 M 6

sc 1

sc 2

sc 3

sc 4

Single
decision

Double
decision

depending on
the scenario

Four
decisions

depending on
the scenario
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Scenario tree trade-off

• Big scenario tree and
simplified electric system operation problem

– Where do we branch the tree?

• Small scenario tree and
realistic electric system operation problem
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Where is it important to branch the tree?

• Where there is a huge variety of stochastic values
– Winter and spring in hydro inflows

• Short-term future will affect more than long-term future
– If the scope of the model is from January to December, branching in 

winter and spring will be more relevant than branching in autumn
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Scenario tree generation (ii)

• There is no established method to obtain a unique scenario 
tree

• A multivariate scenario tree is obtained by the neural gas 
clustering technique that simultaneously considers the main 
stochastic series and their spatial and temporal dependencies.

• Contamination: very extreme scenarios can be artificially 
introduced with a very low probability

• Number of scenarios generated enough for yearly operation 
planning
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Scenario tree generation. Clustering in two dimensions

Centroids have the minimum distance to their corresponding points

Their probability is proportional to the number of points represented by the 
centroid

Inflow 1 [m3/s]

Inflow 2 [m3/s]

5025

25

45

Centroid
Historical 
inflows
Historical 
density 
function
Discrete 
density 
function
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Natural hydro inflows (V)

Historical data series of hydro inflows in one reservoir
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Natural hydro inflows (VI)

Initial scenario tree (15 scenarios) for hydro inflows in one 
reservoir
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Natural hydro inflows (VII)

0 4 8 12 16 20 24 28 32 36 40 44 48
Etapa

1 5 9 13 17 21 25 29 33 37 41 45 49
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Etapa

Aportaciones [m3/s]

Reduced scenario tree (8 scenarios) for hydro inflows in one 
reservoir
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Historical hydro inflows and scenario trees in Iceland
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Prototype. Mathematical formulation
• Objective function

– Minimize the total expected variable costs plus penalties for energy and 
power not served

• Variables
– BINARY: Commitment, startup, and shutdown of thermal units
– Thermal, storage hydro, and pumped-storage hydro output
– Reservoir levels

• Operation constraints
– Inter-period

• Storage hydro and pumped-storage hydro scheduling
Water balance with stochastic inflows

– Intra-period
• Load balance and operating reserve
• Detailed hydro basin modeling
• Thermal, storage hydro, and pumped-storage hydro operation constraints

• Mixed integer linear programming (MIP)
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Indices

• Time scope
– 1 year

• Period
– 1 month

• Subperiod
– weekdays and weekends

• Load level
– peak, shoulder, and off-peak

Period
Subperiod
Load level

p
s
n

Period
Subperiod
Load level

p
s
n
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Demand (5 weekdays)

Chronological Load Curve (5 Working Days)
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Demand

• Monthly demand with several load levels
– Peak, shoulder, and off-peak for weekdays and weekends

• All the weekdays of the same month are similar (same for weekends)
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Technical characteristics of thermal units (𝑡)

• Maximum and minimum output
• Fuel cost
• Slope and intercept of the heat rate straight line
• Operation and maintenance (O&M) variable cost

– No load cost = fuel cost x heat rate intercept
– Variable cost = fuel cost x heat rate slope + O&M cost

• Cold startup and shutdown cost
• Up and down ramps

Max and min output [ ] ,
No load cost [€/ ]
Variable cost [€/ ]
Startup cost [€]
Shutdown cost [€]

t t

t

t

t

t

MW P P
h CF
MWh CV

CSU
CSD

Max and min output [ ] ,
No load cost [€/ ]
Variable cost [€/ ]
Startup cost [€]
Shutdown cost [€]

t t

t

t

t

t

MW P P
h CF
MWh CV

CSU
CSD

Ramp up [ / ]
Ramp down [ / ]

t

t

MW h RU
MW h RD

Ramp up [ / ]
Ramp down [ / ]

t

t

MW h RU
MW h RD

𝑃௧𝑃௧𝑃௧𝑃௧

𝐶𝐹௧𝐶𝐹௧

𝐶𝑉௧𝐶𝑉௧

€/ℎ€/ℎ

𝑀𝑊𝑀𝑊
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Technical characteristics of hydro plants (ℎ)

• Maximum and minimum output
• Production function (efficiency for conversion of water release 

in m3/s to electric power MW)
• Round-trip efficiency of pumped storage hydro plants

– Only this ratio of the energy consumed to pump the water is recovered 
by turbining it

3

Max and min output [ ] ,
Production function [ / ]
Efficiency [ . .]

h h

h

h

MW P P
kWh m C
pu 

3

Max and min output [ ] ,
Production function [ / ]
Efficiency [ . .]

h h

h

h

MW P P
kWh m C
pu 
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Technical characteristics of hydro reservoirs (𝑟)

• Maximum and minimum water reserve
• Initial water reserve

– Final reserve = initial reserve

• Natural hydro inflows

3

3

3

Max and min water reserve [ ] ,
Initial and final water 
Stochastic natural hydro

rese
 inf

rve [ ]
low [ /s ]

r r

r

pr

hm R R
hm R
m s I 



3

3

3

Max and min water reserve [ ] ,
Initial and final water 
Stochastic natural hydro

rese
 inf

rve [ ]
low [ /s ]

r r

r

pr

hm R R
hm R
m s I 


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Scenario tree example

A decision is made 
in each node, and 
stochastic 
parameters are 
revealed afterward.

wet

wet

wet

dry

dry

dry

Period 1 Period 2

Inflow: 25 m3/s 
Prob: 0.55

Inflow: 35 m3/s 
Prob: 0.60

Inflow: 20 m3/s 
Prob: 0.35

Inflow: 10 m3/s 
Prob: 0.65

Inflow: 20 m3/s 
Prob: 0.45

Inflow: 25 m3/s 
Prob: 0.40
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Scenario tree. Ancestor and descendant

𝜔ᇱ ∈ 𝑎(𝜔) (𝑝02, 𝑠𝑐03) ∈ 𝑎 (𝑝03, 𝑠𝑐03)𝜔ᇱ ∈ 𝑎(𝜔) (𝑝02, 𝑠𝑐03) ∈ 𝑎 (𝑝03, 𝑠𝑐03)

Scenario 1
Scenario 1

Scenario 3

Scenario 4

Scenario 3

Scenario 2(𝑝02, 𝑠𝑐01)(𝑝02, 𝑠𝑐01)

(𝑝02, 𝑠𝑐03)(𝑝02, 𝑠𝑐03)

(𝑝03, 𝑠𝑐04)(𝑝03, 𝑠𝑐04)

(𝑝03, 𝑠𝑐03)(𝑝03, 𝑠𝑐03)

(𝑝03, 𝑠𝑐01)(𝑝03, 𝑠𝑐01)

(𝑝01, 𝑠𝑐01)(𝑝01, 𝑠𝑐01)

(𝑝03, 𝑠𝑐02)(𝑝03, 𝑠𝑐02)

3[ / ]
Scenar
Stochastic

io probabi
 infl

lity [
ows

. .]
pr

p

m s I
p u P





3[ / ]
Scenar
Stochastic

io probabi
 infl

lity [
ows

. .]
pr

p

m s I
p u P





Tree data

Tree relations

Scenario
Period
Scenario tree ( , )

p
p





Scenario
Period
Scenario tree ( , )

p
p





Tree structure



Medium Term Stochastic Hydrothermal Coordination Model 105

Hydro topology

r1 r2

r3

h1 h2

h3
           Hydro plant upstream of reservoir ( ) ( , ) ( 1, 3)
Pumped hydro plant upstream of reservoir ( ) ( , ) ( 3, 2)
Reservoir upstream of            hydro plant ( ) ( , ) ( 2, 2)
Reserv

h up r hur h r h r
h up r hpr h r h r
h dw r ruh r h r h





oir upstream of pumped hydro plant ( ) ( , ) ( 3, 3)
Reservoir upstream of reservoir ( ) ( , ) ( 1, 3)

h dw r rph r h r h
r up r rur r r r r

 

           Hydro plant upstream of reservoir ( ) ( , ) ( 1, 3)
Pumped hydro plant upstream of reservoir ( ) ( , ) ( 3, 2)
Reservoir upstream of            hydro plant ( ) ( , ) ( 2, 2)
Reserv

h up r hur h r h r
h up r hpr h r h r
h dw r ruh r h r h





oir upstream of pumped hydro plant ( ) ( , ) ( 3, 3)
Reservoir upstream of reservoir ( ) ( , ) ( 1, 3)

h dw r rph r h r h
r up r rur r r r r

 

Only one spillage per 
reservoir can be considered

Written in
Math

Written in
GAMS

Example
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Other system parameters

• Energy not served cost
• Operating power reserve not served cost
• Operating power reserve

1

Energy not served cost [€ / ]
Operating power reserve not served cost [€ / ]
Operating reserve [ ] ps

MWh CV
MW CV

MW O




1

Energy not served cost [€ / ]
Operating power reserve not served cost [€ / ]
Operating reserve [ ] ps

MWh CV
MW CV

MW O



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Variables

• Commitment, startup, and shutdown of thermal units (BINARY)

• Production of thermal units and hydro plants

• Consumption of pumped storage hydro plants

• Reservoir levels (at the end of the period)

• Energy and power not served

Production of a thermal or hydro unit [ ] ,psnt psnhMW p p Production of a thermal or hydro unit [ ] ,psnt psnhMW p p 

 Commitment, startup and shutdown ,0 1 ,, pst pst pstuc su sd   Commitment, startup and shutdown ,0 1 ,, pst pst pstuc su sd  

Consumption of a hydro plant [ ] psnhMW cConsumption of a hydro plant [ ] psnhMW c

Energy and power not served [ ] ,psn psMW ens pns Energy and power not served [ ] ,psn psMW ens pns 

3Reservoir level [ ] prhm r 3Reservoir level [ ] prhm r 
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Constraints: Operating power reserve

Committed output of thermal units
+ Maximum output of hydro plants
+ Power not served
≥ Demand
+ Operating reserve                for peak load level, subperiod, period, and scenario [MW]

Committed output of thermal units
+ Maximum output of hydro plants
+ Power not served
≥ Demand
+ Operating reserve                for peak load level, subperiod, period, and scenario [MW]

෍ 𝑃ሜ௧𝑢𝑐௣௦௧
ఠ

௧

+ ෍ 𝑃ሜ௛

௛

+ 𝑝𝑛𝑠௣௦
ఠ ≥ 𝐷௣௦ଵ + 𝑂௣௦ଵ ∀𝜔𝑝𝑠෍ 𝑃ሜ௧𝑢𝑐௣௦௧

ఠ

௧

+ ෍ 𝑃ሜ௛

௛

+ 𝑝𝑛𝑠௣௦
ఠ ≥ 𝐷௣௦ଵ + 𝑂௣௦ଵ ∀𝜔𝑝𝑠



Medium Term Stochastic Hydrothermal Coordination Model 109

Constraints: Generation and load balance

Generation of thermal units
+ Generation of storage hydro plants
– Consumption of pumped storage hydro plants
+ Energy not served
= Demand                  for each load level, subperiod, period, and scenario [MW]

Generation of thermal units
+ Generation of storage hydro plants
– Consumption of pumped storage hydro plants
+ Energy not served
= Demand                  for each load level, subperiod, period, and scenario [MW]

෍ 𝑝௣௦௡௧
ఠ

௧

+ ෍ 𝑝௣௦௡௛
ఠ

௛

− ෍ 𝑐௣௦௡௛
ఠ

௛

+ 𝑒𝑛𝑠௣௦௡
ఠ = 𝐷௣௦௡ ∀𝜔𝑝𝑠𝑛෍ 𝑝௣௦௡௧

ఠ

௧

+ ෍ 𝑝௣௦௡௛
ఠ

௛

− ෍ 𝑐௣௦௡௛
ఠ

௛

+ 𝑒𝑛𝑠௣௦௡
ఠ = 𝐷௣௦௡ ∀𝜔𝑝𝑠𝑛
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• All the weekdays of the same month are similar (same for weekends)
• Commitment decision of a thermal unit

Constraints: Commitment, startup, and shutdown

Weekdays Weekdays WeekdaysWeekend Weekend
s s+1 s s+1 s

Period p-1 Period p Period p+1

1

0
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• Startup of thermal units can only be made in the transition between consecutive 
weekend and weekdays

• Shutdown only in the opposite transition

Constraints: Commitment, startup, and shutdown

Commitment of a thermal unit in a weekend
– Commitment of a thermal unit in the previous weekday
= Startup of a thermal unit in this weekend 
– Shutdown of a thermal unit in this weekend       [p.u.]

Commitment of a thermal unit in a weekend
– Commitment of a thermal unit in the previous weekday
= Startup of a thermal unit in this weekend 
– Shutdown of a thermal unit in this weekend       [p.u.]

𝑢𝑐௣௦௧
ఠ − 𝑢𝑐௣ିଵ௦ା

ఠᇲ
= 𝑠𝑢௣௦௧

ఠ − 𝑠𝑑௣௦௧
ఠ ∀𝜔𝑝𝑠𝑡 𝜔ᇱ ∈ 𝑎(𝜔)𝑢𝑐௣௦௧

ఠ − 𝑢𝑐௣ିଵ௦ା
ఠᇲ

= 𝑠𝑢௣௦௧
ఠ − 𝑠𝑑௣௦௧

ఠ ∀𝜔𝑝𝑠𝑡 𝜔ᇱ ∈ 𝑎(𝜔)

Commitment of a thermal unit in a weekday
– Commitment of a thermal unit in the weekend of previous period
= Startup of a thermal unit in this weekday 
– Startup of a thermal unit in this weekday          [p.u.]

Commitment of a thermal unit in a weekday
– Commitment of a thermal unit in the weekend of previous period
= Startup of a thermal unit in this weekday 
– Startup of a thermal unit in this weekday          [p.u.]

𝑢𝑐௣௦ାଵ
ఠ − 𝑢𝑐௣௦௧

ఠ = 𝑠𝑢௣௦ାଵ௧
ఠ − 𝑠𝑑௣௦ାଵ௧

ఠ ∀𝜔𝑝𝑠𝑡𝑢𝑐௣௦ାଵ
ఠ − 𝑢𝑐௣௦௧

ఠ = 𝑠𝑢௣௦ାଵ௧
ఠ − 𝑠𝑑௣௦ାଵ௧

ఠ ∀𝜔𝑝𝑠𝑡
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Constraints: Commitment and production

Production of a thermal unit
≤ Commitment of a thermal unit x the maximum output 

reduced by availability rate [MW]

Production of a thermal unit
≤ Commitment of a thermal unit x the maximum output 

reduced by availability rate [MW]

𝑢𝑐௣௦௧
ఠ 𝑃̱௧(1 − 𝑄௧) ≤ 𝑝௣௦௡௧

ఠ ≤ 𝑢𝑐௣௦௧
ఠ 𝑃ሜ௧(1 − 𝑄௧) ∀𝜔𝑝𝑠𝑛𝑡𝑢𝑐௣௦௧

ఠ 𝑃̱௧(1 − 𝑄௧) ≤ 𝑝௣௦௡௧
ఠ ≤ 𝑢𝑐௣௦௧

ఠ 𝑃ሜ௧(1 − 𝑄௧) ∀𝜔𝑝𝑠𝑛𝑡

Production of a thermal unit
≥ Commitment of a thermal unit x the minimum output 

reduced by availability rate [MW]

Production of a thermal unit
≥ Commitment of a thermal unit x the minimum output 

reduced by availability rate [MW]

• If the thermal unit is committed (𝑢𝑐௣௦௧
ఠ = 1) it can produce

between its minimum and maximum output
• If the thermal unit is not committed (𝑢𝑐௣௦௧

ఠ = 0) it can’t produce
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Constraints: Water balance for each reservoir
Reservoir volume at the beginning of the period

– Reservoir volume at the end of the period
+ Natural hydro inflows
– Spills from this reservoir
+ Spills from upstream reservoirs
+ Turbined water from upstream storage hydro plants
– Turbined and pumped water from this reservoir
+ Pumped water from upstream pumped hydro plants = 0 for each reservoir,

period, and scenario 
[hm3]

Reservoir volume at the beginning of the period
– Reservoir volume at the end of the period
+ Natural hydro inflows
– Spills from this reservoir
+ Spills from upstream reservoirs
+ Turbined water from upstream storage hydro plants
– Turbined and pumped water from this reservoir
+ Pumped water from upstream pumped hydro plants = 0 for each reservoir,

period, and scenario 
[hm3]

𝑟௣ିଵ௥
ఠᇲ

− 𝑟௣௥
ఠ + 𝐼௣௥

ఠ − 𝑠௣௥
ఠ + ෍ 𝑠௣௥ᇲ

ఠ

௥ᇲ∈௨௣(௥)

+ ෍ 𝑑௣௦௡𝑝௣௦௡௛
ఠ /𝐶௛

௦௡
௛∈௨௣(௥)

− ෍ 𝑑௣௦௡𝑝௣௦௡௛
ఠ /𝐶௛

௦௡
௛∈ௗ௪(௥)

+ ෍ 𝑑௣௦௡𝑐௣௦௡௛
ఠ 𝜂௛/𝐶௛

௦௡
௛∈௨௣(௥)

− ෍ 𝑑௣௦௡𝑐௣௦௡௛
ఠ 𝜂௛/𝐶௛

௦௡
௛∈ௗ௪(௥)

= 0  ∀𝜔𝑝𝑟 𝜔ᇱ ∈ 𝑎(𝜔)

𝑟௣ିଵ௥
ఠᇲ

− 𝑟௣௥
ఠ + 𝐼௣௥

ఠ − 𝑠௣௥
ఠ + ෍ 𝑠௣௥ᇲ

ఠ

௥ᇲ∈௨௣(௥)

+ ෍ 𝑑௣௦௡𝑝௣௦௡௛
ఠ /𝐶௛

௦௡
௛∈௨௣(௥)

− ෍ 𝑑௣௦௡𝑝௣௦௡௛
ఠ /𝐶௛

௦௡
௛∈ௗ௪(௥)

+ ෍ 𝑑௣௦௡𝑐௣௦௡௛
ఠ 𝜂௛/𝐶௛

௦௡
௛∈௨௣(௥)

− ෍ 𝑑௣௦௡𝑐௣௦௡௛
ఠ 𝜂௛/𝐶௛

௦௡
௛∈ௗ௪(௥)

= 0  ∀𝜔𝑝𝑟 𝜔ᇱ ∈ 𝑎(𝜔)
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Constraints: Operation limits

Reservoir volumes between limits for each hydro reservoir [hm3]Reservoir volumes between limits for each hydro reservoir [hm3]

Power output between limits for each unit [MW]Power output between limits for each unit [MW]

𝑅̱௥ ≤ 𝑟௣௥
ఠ ≤ 𝑅ሜ௥ ∀𝜔𝑝𝑟

𝑅଴௥ = 𝑅௉௥
ఠ = 𝑅௥

ᇱ ∀𝜔𝑟

𝑅̱௥ ≤ 𝑟௣௥
ఠ ≤ 𝑅ሜ௥ ∀𝜔𝑝𝑟

𝑅଴௥ = 𝑅௉௥
ఠ = 𝑅௥

ᇱ ∀𝜔𝑟

0 ≤ 𝑝௣௦௡௧
ఠ ≤ 𝑃ሜ௧(1 − 𝑄௧) ∀𝜔𝑝𝑠𝑛𝑡

0 ≤ 𝑝௣௦௡௛
ఠ , 𝑐௣௦௡௛

ఠ ≤ 𝑃ሜ௛ ∀𝜔𝑝𝑠𝑛ℎ

0 ≤ 𝑝௣௦௡௧
ఠ ≤ 𝑃ሜ௧(1 − 𝑄௧) ∀𝜔𝑝𝑠𝑛𝑡

0 ≤ 𝑝௣௦௡௛
ఠ , 𝑐௣௦௡௛

ఠ ≤ 𝑃ሜ௛ ∀𝜔𝑝𝑠𝑛ℎ

Commitment, startup, and shutdown for each unit [p.u.]Commitment, startup, and shutdown for each unit [p.u.]

𝑢𝑐௣௦௧
ఠ , 𝑠𝑢௣௦௧

ఠ , 𝑠𝑑௣௦௧
ఠ ∈ 0,1 ∀𝜔𝑝𝑠𝑡𝑢𝑐௣௦௧

ఠ , 𝑠𝑢௣௦௧
ఠ , 𝑠𝑑௣௦௧

ఠ ∈ 0,1 ∀𝜔𝑝𝑠𝑡
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Multiobjective function

• Minimize
– Expected thermal variable costs [€]

– Expected penalties introduced in the objective function for energy and 
power not served [€]

෍ 𝑃௣
ఠ𝑆𝑈௧𝑠𝑢௣௦௧

ఠ

ఠ௣௦௧

+ ෍ 𝑃௣
ఠ𝑆𝐷௧𝑠𝑑௣௦௧

ఠ

ఠ௣௦௧

+ ෍ 𝑃௣
ఠ𝑑௣௦௡𝐶𝐹௧𝑢𝑐௣௦௧

ఠ

ఠ௣௦௡௧

+

෍ 𝑃௣
ఠ𝑑௣௦௡𝐶𝑉௧𝑃௣௦௡௧

ఠ

ఠ௣௦௡௧

෍ 𝑃௣
ఠ𝑆𝑈௧𝑠𝑢௣௦௧

ఠ

ఠ௣௦௧

+ ෍ 𝑃௣
ఠ𝑆𝐷௧𝑠𝑑௣௦௧

ఠ

ఠ௣௦௧

+ ෍ 𝑃௣
ఠ𝑑௣௦௡𝐶𝐹௧𝑢𝑐௣௦௧

ఠ

ఠ௣௦௡௧

+

෍ 𝑃௣
ఠ𝑑௣௦௡𝐶𝑉௧𝑃௣௦௡௧

ఠ

ఠ௣௦௡௧

෍ 𝑃௣
ఠ𝑑௣௦௡𝐶𝑉ᇱ𝑒𝑛𝑠௣௦௡

ఠ

ఠ௣௦௡

+ ෍ 𝑃௣
ఠ𝐶𝑉ᇳ𝑝𝑛𝑠௣௦

ఠ

ఠ௣௦

෍ 𝑃௣
ఠ𝑑௣௦௡𝐶𝑉ᇱ𝑒𝑛𝑠௣௦௡

ఠ

ఠ௣௦௡

+ ෍ 𝑃௣
ఠ𝐶𝑉ᇳ𝑝𝑛𝑠௣௦

ఠ

ఠ௣௦
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Short Run Marginal Cost (SRMC)

• Dual variable of generation and load balance [€/MW]
– Change in the objective function due to a marginal increment in the demand 

when binary variables (commitment, startup, and shutdown) are fixed 

• Short Run Marginal Cost = dual variable / load level duration / 
scenario probability. Expressed in [€/MWh]

෍ 𝑝௣௦௡௧
ఠ

௧

+ ෍ 𝑝௣௦௡௛
ఠ

௛

− ෍ 𝑐௣௦௡௛
ఠ

௛

+ 𝑒𝑛𝑠௣௦௡
ఠ = 𝐷௣௦௡ : 𝜎௣௦௡

ఠ  ∀𝜔𝑝𝑠𝑛෍ 𝑝௣௦௡௧
ఠ

௧

+ ෍ 𝑝௣௦௡௛
ఠ

௛

− ෍ 𝑐௣௦௡௛
ఠ

௛

+ 𝑒𝑛𝑠௣௦௡
ఠ = 𝐷௣௦௡ : 𝜎௣௦௡

ఠ  ∀𝜔𝑝𝑠𝑛

𝑆𝑅𝑀𝐶௣௦௡
ఠ = 𝜎௣௦௡

ఠ /𝑑௣௦௡/𝑃௣
ఠ ∀𝜔𝑝𝑠𝑛𝑆𝑅𝑀𝐶௣௦௡

ఠ = 𝜎௣௦௡
ఠ /𝑑௣௦௡/𝑃௣

ఠ ∀𝜔𝑝𝑠𝑛
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Water value

• Dual variable of water balance for each reservoir [€/hm3]
– Change in the objective function due to a marginal increment in the reservoir 

inflow

• Turbining water has no variable cost. However, an additional hm3

turbined allows to substitute energy produced by thermal units with 
the corresponding variable cost (this is called water value)

𝑟௣ିଵ௥
ఠᇲ

− 𝑟௣௥
ఠ + 𝐼௣௥

ఠ − 𝑠௣௥
ఠ + ෍ 𝑠௣௥ᇲ

ఠ

௥ᇲ∈௨௣(௥)

+ ෍ 𝑑௣௦௡𝑝௣௦௡௛
ఠ /𝐶௛

௦௡
௛∈௨௣(௥)

− ෍ 𝑑௣௦௡𝑝௣௦௡௛
ఠ /𝐶௛

௦௡
௛∈ௗ௪(௥)

+ ෍ 𝑑௣௦௡𝑐௣௦௡௛
ఠ 𝜂௛/𝐶௛
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StarGenLite_SHTCM Medium Term Stochastic Hydrothermal Coordination Model
(https://pascua.iit.comillas.edu/aramos/StarGenLite_SHTCM.zip)

• Files
– Microsoft Excel interface for input data and output results 

StarGenLite_SHTCM.xlsm
– GAMS file StarGenLite_SHTCM.gms

• How to run it from Windows
– Save the Excel workbook if data have changed
– Run the model
– The model creates

• tmp_StarGenLite_SHTCM.xlsx with the output results
• tmp_StarGenLite_SHTCM.gdx with the output results
• StarGenLite_SHTCM.lst as the listing file of the GAMS execution

– Load the results into the Excel interface

Run

Load results
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StarGenLite_SHTCM Medium Term Stochastic Hydrothermal Coordination Model
(https://pascua.iit.comillas.edu/aramos/StarGenLite_SHTCM.zip)

• Files
– Text files for input data
– GAMS file StarGenLite_SHTCM.gms

• How to run it from MacOS
– Run the model from GAMS Studio with these parameters

• u1=StarGenLite_SHTCM u2=1 u3=1

– The model creates
• tmp_StarGenLite_SHTCM.gdx with the output results
• StarGenLite_SHTCM.lst as the listing file of the GAMS execution
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Menu
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Input Data. Indices (i)
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Input Data. Indices (ii)
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Input Data. Cost of energy and power not served
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Input Data. Demand, operating reserve and duration
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Input Data. Hydro and thermal parameters
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Scenario tree

(𝑝03, 𝑠𝑐03)(𝑝03, 𝑠𝑐03)

(𝑝01, 𝑠𝑐01)(𝑝01, 𝑠𝑐01)

Scenario 1

Scenario 3

(𝑝02, 𝑠𝑐01)(𝑝02, 𝑠𝑐01)

(𝑝03, 𝑠𝑐01)(𝑝03, 𝑠𝑐01)

(𝑝02, 𝑠𝑐03)(𝑝02, 𝑠𝑐03)

(𝑝04, 𝑠𝑐03)(𝑝04, 𝑠𝑐03)

(𝑝04, 𝑠𝑐01)(𝑝04, 𝑠𝑐01)

(𝑝05, 𝑠𝑐03)(𝑝05, 𝑠𝑐03)

(𝑝05, 𝑠𝑐01)(𝑝05, 𝑠𝑐01)

(𝑝06, 𝑠𝑐03)(𝑝06, 𝑠𝑐03)

(𝑝06, 𝑠𝑐01)(𝑝06, 𝑠𝑐01)

Scenario 2

(𝑝03, 𝑠𝑐02)(𝑝03, 𝑠𝑐02)

(𝑝02, 𝑠𝑐02)(𝑝02, 𝑠𝑐02) (𝑝04, 𝑠𝑐02)(𝑝04, 𝑠𝑐02)

(𝑝05, 𝑠𝑐02)(𝑝05, 𝑠𝑐02)

(𝑝06, 𝑠𝑐02)(𝑝06, 𝑠𝑐02)
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Input Data. Inflows and scenario tree

Ancestor scenario
-1 means root node

First period where this 
scenario branches
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StarGenLite_SHTCM (i)
$Title StarGen Lite Medium Term Stochastic Hydrothermal Coordination Model (SHTCM)

$OnText

Developed by

Andrés Ramos
Instituto de Investigacion Tecnologica
Escuela Tecnica Superior de Ingenieria - ICAI
UNIVERSIDAD PONTIFICIA COMILLAS
Alberto Aguilera 23
28015 Madrid, Spain
Andres.Ramos@comillas.edu
https://pascua.iit.comillas.edu/aramos/Ramos_CV.htm

October 23, 2017

$OffText

$OnEmpty OnMulti OffListing

* options to skip or not the Excel input/output
* if you want to skip it put these values to 1
* in such a case input files must be already in the directory created by any other means
* output file will be the tmp.gdx that can be exported to Excel manually
$ifthen.OptSkipExcelInput %gams.user2% == ""
$  setglobal OptSkipExcelInput 0
$else.OptSkipExcelInput
$  setglobal OptSkipExcelInput %gams.user2%
$endif.OptSkipExcelInput

$ifthen.OptSkipExcelOutput %gams.user3% == ""
$  setglobal OptSkipExcelOutput 0
$else.OptSkipExcelOutput
$  setglobal OptSkipExcelOutput %gams.user3%
$endif.OptSkipExcelOutput

* solve the optimization problems until optimality
option OptcR = 0

Model name

Authorship and version

Allow declaration of
empty sets and multiple

declaration. Suppress
listing

Obtain the optimal solution



Medium Term Stochastic Hydrothermal Coordination Model 131

StarGenLite_SHTCM (ii)
* definitions

sets
p                        period

   p1(p)          first     period
   pn(p)          last      period
   s                     subperiod
   s1(s)          first  subperiod
   n                    load level
   n1(n)          first load level
   sc             scenario
   sca  (sc     ) scenario
   scp  (sc,p   ) tree defined as scenario and period
   scscp(sc,p,sc) ancestor        sc2    of node (sc1 p)
   scsch(sc,sc,p) descendant     (sc2 p) of node  sc1
   scscr(sc,p,sc) representative  sc2    of node (sc1 p)
   spsn(sc,p,s,n) active load levels for each scenario
   psn (   p,s,n) active load levels

   g              generating unit
   t (g)          thermal    unit
   h (g)          hydro      plant
   r                         reservoir
   rs(r)          storage    reservoir
   ruh(r,g)              reservoir   upstream of        hydro plant
   rph(r,g)              reservoir   upstream of pumped hydro plant
   hur(g,r)              hydro plant upstream of reservoir
   hpr(g,r)       pumped hydro plant upstream of reservoir
   rur(r,r)              reservoir 1 upstream of reservoir 2

alias (sc,scc,sccc), (r,rr)

Set definition
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StarGenLite_SHTCM (iii)
parameters

pDemand (     p,s,n) hourly load                    [GW]
   pOperReserve(     p,s,n) hourly operating reserve       [GW]
   pDuration   (     p,s,n) duration                       [h]
   pCommitt    (sc,g,p,s  ) commitment of the unit         [0-1]
   pProduct    (sc,g,p,s,n) production of the unit         [GW]
   pEnergy     (sc,g,p,s,n) energy     of the unit         [GWh]
   pReserve    (sc,r,p    ) reservoir level                [hm3]
   pSRMC       (sc,  p,s,n) short run marginal cost        [M€ per GWh]
   pWValue     (sc,r,p    ) water value                    [M€ per hm3]

   pEFOR        (g)         EFOR                           [p.u.]
   pMaxProd     (g)         maximum output                 [GW]
   pMinProd     (g)         minimum output                 [GW]
   pMaxCons     (g)         maximum consumption            [GW]
   pSlopeVarCost(g)         slope     variable cost        [M€ per GWh]
   pInterVarCost(g)         intercept variable cost        [M€ per   h]
   pStartupCost (g)         startup            cost        [M€]
   pMaxReserve  (r)         maximum reserve                [km3]
   pMinReserve  (r)         minimum reserve                [km3]
   pIniReserve  (r)         initial reserve                [km3]
   pProdFunct   (g)         production function            [GWh per km3]
   pEffic       (g)         pumping efficiency             [p.u.]
   pInflows     (r,sc,p)    inflows                        [km3]
   pInflOrg     (r,sc,p)    inflows original               [km3]
   pENSCost                 energy non-served cost         [M€ per GWh]
   pPNSCost                 power  non-served cost         [M€ per GW ]

   pProbsc        (sc,p)    probability of a given node

   lag(p)                   backward counting of period
   scaux                    scenario number

Parameter
definition
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StarGenLite_SHTCM (iv)
variables

vTotalVCost total system variable cost     [M€]

binary   variables
   vCommitt  (sc,p,s,  g)   commitment of the unit         [0-1]
   vStartup  (sc,p,s,  g)   startup     of the unit        [0-1]
   vShutdown (sc,p,s,  g)   shutdown    of the unit        [0-1]

positive variables
   vProduct  (sc,p,s,n,g)   production  of the unit        [GW]
   vConsump  (sc,p,s,n,g)   consumption of the unit        [GW]
   vENS      (sc,p,s,n  )   energy non served              [GW]
   vPNS      (sc,p,s    )   power  non served              [GW]
   vWtReserve(sc,p,    r)   water reserve at end of period [km3]
   vSpillage (sc,p,    r)   spillage                       [km3]

equations
   eTotalVCost              total system variable cost     [M€]
   eOpReserve(sc,p,s,n  )   operating reserve              [GW]
   eBalance  (sc,p,s,n  )   load generation balance        [GW]
   eMaxOutput(sc,p,s,n,g)   max output of a committed unit [GW]
   eMinOutput(sc,p,s,n,g)   min output of a committed unit [GW]
   eProdctPer(sc,p,s,n,g)   unit production in same period [GW]
   eStrtUpPer(sc,p,s,  g)   unit startup    in same period
   eStrtUpNxt(sc,p,s,  g)   unit startup    in next period
   eWtReserve(sc,p,    r)   water reserve                  [km3] ;

Variables

Equation
definition
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StarGenLite_SHTCM (v)

* mathematical formulation

eTotalVCost .. vTotalVCost =e= sum[(spsn(sc,p ,s,n)  ), pProbSc(sc,p)*pDuration(p,s,n)*pENSCost *vENS (sc,p,s,n )] +
sum[(scp (sc,p),s     ), pProbSc(sc,p)                 *pPNSCost *vPNS (sc,p,s )] +
sum[(scp (sc,p),s,   t), pProbSc(sc,p)                 *pStartupCost (t)*vStartup(sc,p,s,  t)] +
sum[(spsn(sc,p ,s,n),t), pProbSc(sc,p)*pDuration(p,s,n)*pInterVarCost(t)*vCommitt(sc,p,s,  t)] +
sum[(spsn(sc,p ,s,n),t), pProbSc(sc,p)*pDuration(p,s,n)*pSlopeVarCost(t)*vProduct(sc,p,s,n,t)] ;

eOpReserve(spsn(sc,p,s,n1(n))) .. sum[t, pMaxProd(t)*vCommitt(sc,p,s,  t)] + sum[h, pMaxProd(         h)] + vPNS(sc,p,s ) =g= pDemand(p,s,n) + pOperReserve(p,s,n) ;
eBalance (spsn(sc,p,s,   n )) .. sum[g,             vProduct(sc,p,s,n,g)] - sum[h, vConsump(sc,p,s,n,h)] + vENS(sc,p,s,n) =e= pDemand(p,s,n)                       ;

eMaxOutput(spsn(sc,p,s,n),t) $pMaxProd(t) .. vProduct(sc,p,s,n,t) / pMaxProd(t) =l= vCommitt(sc,p,s,t) ;
eMinOutput(spsn(sc,p,s,n),t) $pMinProd(t) .. vProduct(sc,p,s,n,t) / pMinProd(t) =g= vCommitt(sc,p,s,t) ;

eProdctPer(spsn(sc,p,s1(s),n),g) .. vProduct(sc,p,s+1,n,g) =l= vProduct(sc,p,s,n,g) ;

eStrtUpPer(scp(sc,p),s1(s),t) $[card(s) > 1              ] .. vCommitt(sc,p,s+1,t) =e=                      vCommitt(sc ,p  ,s  ,t)  + vStartup(sc,p,s+1,t) -
vShutdown(sc,p,s+1,t) ;
eStrtUpNxt(scp(sc,p),s1(s),t) $[card(s) > 1 and not p1(p)] .. vCommitt(sc,p,s ,t) =e= sum[scscp(sc,p,scc), vCommitt(scc,p-1,s+1,t)] + vStartup(sc,p,s ,t) - vShutdown(sc,p,s
,t) ;

eWtReserve(scp(sc,p),  r) .. sum[scscp(sc,p,scc), vWtReserve(scc,p-1,r)] + pIniReserve(r) $p1(p) - vWtReserve(sc,p,r) +
pInflows(r,sc,p) - vSpillage(sc,p,r) + sum[rur(rr,r), vSpillage(sc,p,rr)]  +
sum{(s,n), pDuration(p,s,n)*sum[hur(h,r), vProduct(sc,p,s,n,h)/pProdFunct(h)]} -
sum{(s,n), pDuration(p,s,n)*sum[ruh(r,h), vProduct(sc,p,s,n,h)/pProdFunct(h)]} +
sum{(s,n), pDuration(p,s,n)*sum[hpr(h,r), vConsump(sc,p,s,n,h)/pProdFunct(h)*pEffic(h)]} -
sum{(s,n), pDuration(p,s,n)*sum[rph(r,h), vConsump(sc,p,s,n,h)/pProdFunct(h)*pEffic(h)]} =e= 0 ;

model mSHTCM / all / ;
mSHTCM.SolPrint = 1 ; mSHTCM.HoldFixed = 1 ;

Mathematical
formulation of

equations

Model includes
all the equationsReduced solution output Eliminate fixed variables
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StarGenLite_SHTCM (vi)
* read input data from Excel and include into the model

file TMP / tmp_%gams.user1%.txt /
$OnEcho > tmp_%gams.user1%.txt

r1=    indices
o1=tmp_indices.txt
r2=    param
o2=tmp_param.txt
r3=    demand
o3=tmp_demand.txt
r4=    oprres
o4=tmp_oprres.txt
r5=    duration
o5=tmp_duration.txt
r6=    thermalgen
o6=tmp_thermalgen.txt
r7=    hydrogen
o7=tmp_hydrogen.txt
r8=    reservoir
o8=tmp_reservoir.txt
r9=    inflows
o9=tmp_inflows.txt
r10=    tree
o10=tmp_tree.txt

$OffEcho
* Mac OS X and Linux users must comment the following call and copy and paste the named ranges of the Excel interface into the txt files
$ifthen.OptSkipExcelInput '%OptSkipExcelInput%' == '0'
$call xls2gms m i="%gams.user1%.xlsm" @"tmp_%gams.user1%.txt"
$else.OptSkipExcelInput
$  log Excel input skipped
$endif.OptSkipExcelInput

sets
$include tmp_indices.txt
;
$include tmp_param.txt
table pDemand(p,s,n)
$include tmp_demand.txt
table pOperReserve(p,s,n)
$include tmp_oprres.txt
table pDuration(p,s,n)
$include tmp_duration.txt
table pThermalGen(g,*)
$include tmp_thermalgen.txt
table pHydroGen(g,*)
$include tmp_hydrogen.txt
table pReservoir(r,*)
$include tmp_reservoir.txt
table pInflows(r,sc,p)
$include tmp_inflows.txt
table pScnTree(sc,*)
$include tmp_tree.txt
;

* Mac OS X and Linux users must comment the following execute
execute 'del tmp_"%gams.user1%".txt tmp_indices.txt tmp_param.txt tmp_demand.txt tmp_oprres.txt tmp_duration.txt tmp_thermalgen.txt tmp_hydrogen.txt tmp_reservoir.txt tmp_inflows.txt 
tmp_tree.txt' ;

Read input from Excel
named ranges and
write into text files

Input from text files
into GAMS

Delete read text files
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StarGenLite_SHTCM (vii)
* determine the first and last period and the first subperiod

p1(p)      $[ord(p) =       1] = yes ;
s1(s)      $[ord(s) =       1] = yes ;
n1(n)      $[ord(n) =       1] = yes ;
pn(p)      $[ord(p) = card(p)] = yes ;
psn(p,s,n) $pDuration(p,s,n)   = yes ;
lag(p) = card(p) - 2*ord(p) + 1 ;

* assignment of thermal units, storage hydro and pumped storage hydro plants

t (g) $[pThermalGen(g,'MaxProd' ) and pThermalGen(g,'FuelCost')] = yes ;
h (g) $[pHydroGen (g,'MaxProd' )                              ] = yes ;
rs(r) $[pReservoir (r,'MaxReserve') > 0                          ] = yes ;

First period, first subperiod
first load level, …

Defining thermal and hydro
units and reservoirs
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StarGenLite_SHTCM (viii)
* scaling of parameters

pDemand (p,s,n) = pDemand (p,s,n)           * 1e-3 ;
pOperReserve(p,s,n) = pOperReserve(p,s,n)           * 1e-3 ;
pENSCost = pENSCost * 1e-3 ;
pPNSCost = pPNSCost * 1e-3 ;

pEFOR (t)    = pThermalGen(t,'EFOR' ) ;
pMaxProd (t)    = pThermalGen(t,'MaxProd' ) * 1e-3 * [1-pEFOR(t)] ;
pMinProd (t)    = pThermalGen(t,'MinProd' ) * 1e-3 * [1-pEFOR(t)] ;
pSlopeVarCost(t)    = pThermalGen(t,'OMVarCost' ) * 1e-3 +

pThermalGen(t,'SlopeVarCost') * 1e-3 * pThermalGen(t,'FuelCost') ;
pInterVarCost(t)    = pThermalGen(t,'InterVarCost') * 1e-6 * pThermalGen(t,'FuelCost') ;
pStartupCost (t)    = pThermalGen(t,'StartupCost' ) * 1e-6 * pThermalGen(t,'FuelCost') ;

pMaxProd (h)    = pHydroGen (h,'MaxProd' ) * 1e-3 ;
pMinProd (h)    = pHydroGen (h,'MinProd' ) * 1e-3 ;
pMaxCons (h)    = pHydroGen (h,'MaxCons' ) * 1e-3 ;
pProdFunct (h)    = pHydroGen (h,'ProdFunct' ) * 1e+3 ;
pEffic (h)    = pHydroGen (h,'Efficiency' )        ;
pMaxReserve (r)    = pReservoir (r,'MaxReserve' ) * 1e-3 ;
pMinReserve (r)    = pReservoir (r,'MinReserve' ) * 1e-3 ;
pIniReserve (r)    = pReservoir (r,'IniReserve' ) * 1e-3 ;

pInflows(r,sc,p)    = pInflows (r,sc,p ) * 1e-6 * 3.6*sum[(s,n), pDuration(p,s,n)] ;
pInflOrg(r,sc,p)    = pInflows (r,sc,p )                                           ;

* if the production function of a hydro plant is 0, it is changed to 1 and scaled to 1000
* if the efficiency          of a hydro plant is 0, it is changed to 1

pProdFunct(h) $[pProdFunct(h) = 0] = 1e3 ;
pEffic (h) $[pEffic (h) = 0] =   1 ;

Parameter scaling
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StarGenLite_SHTCM (ix)
* bounds on variables

vProduct.up (sc,p,s,n,g)    = pMaxProd(g)    ;
vConsump.up (sc,p,s,n,h)    = pMaxCons(h)    ;

vENS.up (sc,p,s,n )    = pDemand(p,s,n) ;

vWtReserve.up(sc,p,r)        = pMaxReserve(r) ;
vWtReserve.lo(sc,p,r)        = pMinReserve(r) ;
vWtReserve.fx(sc,p,r) $pn(p) = pIniReserve(r) ;

Bounds on variables
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StarGenLite_SHTCM (x)
* define the nodes of the scenario tree and determine ancestor sc2 of node (sc1 p) and descendant (sc2 p) of node sc1

scp (    sc,p ) $[ord(p) >= pScnTree(sc,'FirstPeriod')                                       ] = yes ;
scscp(scp(sc,p),scc) $[ord(p) >  pScnTree(sc,'FirstPeriod') and ord(scc) = ord(sc)                ] = yes ;
scscp(scp(sc,p),scc) $[ord(p)  = pScnTree(sc,'FirstPeriod') and ord(scc) = pScnTree(sc,'Ancestor')] = yes ;
scsch(sc,scp(scc,p)) $scscp(scc,p,sc)                                                               = yes ;

pProbSc(sc,pn(p)) = pScnTree(sc,'Prob')/sum[scc, pScnTree(scc,'Prob')] ;
loop (p $[not p1(p)],

pProbSc(scp(sc,p+lag(p))) = sum[scsch(sc,scc,p+(lag(p)+1)), pProbSc(scc,p+(lag(p)+1))] ;
) ;

* delete branches with probability 0 and define the active load levels

scp (    sc,p ) $[pProbSc(sc,p) = 0                        ] =  no ;
scscp(    sc,p ,scc) $[pProbSc(sc,p) = 0 or pProbSc(scc,p-1) = 0] =  no ;
scsch(sc,scc,p )                                              = yes $scscp(scc,p,sc) ;
spsn (scp(sc,p),s,n) $psn (p,s,n)                            = yes ;

* determine the representative sc2 of node (sc1 p) for non-existing scenarios in the tree

loop (sc $sum[p, pProbSc(sc,p)],
scaux = ord(sc) ;
loop (p,

scscr(sc,p+lag(p),scc) $[ord(scc) = scaux] = yes ;
SCA(scc)               $[ord(scc) = scaux] = yes ;
scaux = sum[scscp(sca,p+lag(p),scc), ord(scc)] ;
SCA(scc)                                   =  no ;

) ;
) ;
SCA(sc) $sum[p, pProbSc(sc,p)] = yes ;

Building the scenario tree
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StarGenLite_SHTCM (xi)
* solve stochastic hydrothermal coordination model

solve mSHTCM using MIP minimizing vTotalVCost ;

* scaling of the results

pCommitt(sca,t,    p,s ) = sum[scscr(sca,p,scc)                , vCommitt.l (scc,p,s,  t)                                                 ]     + eps ;
pProduct(sca,g,psn(p,s,n)) = sum[scscr(sca,p,scc)                , vProduct.l (scc,p,s,n,g)                                                 ]*1e3 + eps ;
pEnergy (sca,g,psn(p,s,n)) = sum[scscr(sca,p,scc)                , vProduct.l (scc,p,s,n,g)                *pDuration(p,s,n)                ]*1e3 + eps ;
pReserve(sca,rs(r),p     ) = sum[scscr(sca,p,scc)                , vWtReserve.l(scc,p,    r)                                                 ]*1e3 + eps ;
pWValue (sca,rs(r),p     ) = sum[scscr(sca,p,scc) $pProbSc(scc,p), eWtReserve.m(scc,p,    r)/sum[psn(p,s,n), pDuration(p,s,n)]/pProbSc(scc,p)]*1e3 + eps ;
pSRMC (sca,  psn(p,s,n)) = sum[scscr(sca,p,scc) $pProbSc(scc,p), eBalance.m (scc,p,s,n )                /pDuration(p,s,n) /pProbSc(scc,p)]*1e3 + eps ;

* data output to xls file

put TMP putclose 'par=pProduct rdim=2 rng=Output!a1' / 'par=pEnergy rdim=2 rng=Energy!a1' / 'par=pReserve rdim=2 rng=WtrReserve!a1' / 'par=pWValue rdim=2 
rng=WtrValue!a1' / 'par=pSRMC rdim=1 rng=SRMC!a1' / 'par=pCommitt rdim=2 rng=UC!a1' /

'text="Scen"         rng=Output!a1' / 'text="Scen"        rng=Energy!a1' / 'text="Scen"         rng=WtrReserve!a1' / 'text="Scen"        
rng=WtrValue!a1' / 'text="Scen"      rng=SRMC!a1' / 'text="Scen"         rng=UC!a1' /

'text="Unit"         rng=Output!b1' / 'text="Unit"        rng=Energy!b1' / 'text="Reservoir"    rng=WtrReserve!b1' / 'text="Reservoir"   
rng=WtrValue!b1' /                                  'text="Unit"         rng=UC!b1' /
execute_unload 'tmp_%gams.user1%.gdx' pProduct pEnergy pReserve pWValue pSRMC pCommitt
*$ifthen.OptSkipExcelOutput '%OptSkipExcelOutput%' == '0'
execute 'gdxxrw tmp_"%gams.user1%".gdx SQ=n EpsOut=0 O=tmp_"%gams.user1%".xlsx @tmp_"%gams.user1%".txt'
execute 'del    tmp_"%gams.user1%".gdx '
*$else.OptSkipExcelOutput
*$  log Excel output skipped
*$endif.OptSkipExcelOutput
execute 'del                                                                    tmp_"%gams.user1%".txt'

$OnListing

Solve the optimization
problem

Scaling the results

Write output to Excel
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Medium term optimization model. Results

• Operation planning
– Unit (thermal, storage hydro, and pumped-storage hydro) operation
– Reservoir management
– Targets for short-term models (water balance)

• Economic planning
– System marginal costs
– Targets for short-term models (water value)
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Output Data. Thermal unit commitment

0

5

10

15

20

25

30

W
ee

kD
ay

W
ee

kE
nd

W
ee

kD
ay

W
ee

kE
nd

W
ee

kD
ay

W
ee

kE
nd

W
ee

kD
ay

W
ee

kE
nd

W
ee

kD
ay

W
ee

kE
nd

W
ee

kD
ay

W
ee

kE
nd

W
ee

kD
ay

W
ee

kE
nd

W
ee

kD
ay

W
ee

kE
nd

W
ee

kD
ay

W
ee

kE
nd

W
ee

kD
ay

W
ee

kE
nd

W
ee

kD
ay

W
ee

kE
nd

W
ee

kD
ay

W
ee

kE
nd

p01 p01 p02 p02 p03 p03 p04 p04 p05 p05 p06 p06 p07 p07 p08 p08 p09 p09 p10 p10 p11 p11 p12 p12

Co
m

m
ite

d 
th

er
m

al
 u

ni
ts

sc03 FuelOilGas
sc03 OCGT_3
sc03 OCGT_2
sc03 OCGT_1
sc03 CCGT_4
sc03 CCGT_3
sc03 CCGT_2
sc03 CCGT_1
sc03 ImportedCoal_Bituminous
sc03 ImportedCoal_SubBituminous
sc03 BrownLignite
sc03 DomesticCoal_Anthracite
sc03 Nuclear
sc02 FuelOilGas
sc02 OCGT_3
sc02 OCGT_2
sc02 OCGT_1
sc02 CCGT_4
sc02 CCGT_3
sc02 CCGT_2
sc02 CCGT_1
sc02 ImportedCoal_Bituminous
sc02 ImportedCoal_SubBituminous
sc02 BrownLignite
sc02 DomesticCoal_Anthracite
sc02 Nuclear
sc01 FuelOilGas
sc01 OCGT_3
sc01 OCGT_2
sc01 OCGT_1
sc01 CCGT_4
sc01 CCGT_3
sc01 CCGT_2
sc01 CCGT_1
sc01 ImportedCoal_Bituminous
sc01 ImportedCoal_SubBituminous
sc01 BrownLignite
sc01 DomesticCoal_Anthracite
sc01 Nuclear



Medium Term Stochastic Hydrothermal Coordination Model 143

Output Data. Production
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Output Data. Energy
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Reservoir level at the end of each period 
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Water value
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Output Data. Short Run Marginal Cost (SRMC)

If the SHTCM model is solved with binary UC decisions, no marginal impact of those decisions is considered
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Stochastic measures

• Expected value with perfect information (𝐸𝑉𝑊𝑃𝐼) o Wait and See (𝑊𝑆)
– Weighted mean of the objective function of each scenario knowing what is going 

to happen (for minimization problems always ≤ the objective function for the 
stochastic problem)

• Value of the stochastic solution (𝑉𝑆𝑆)
– Difference between the objective function of the expected value for the mean 

value solution of the stochastic parameters 𝐸𝐸𝑉 and that of the stochastic 
problem 𝑅𝑃

• Expected value of perfect information (𝐸𝑉𝑃𝐼) or mean regret
– Weighted average of the difference between the stochastic solution for each 

scenario and the perfect information solution in this scenario (always positive for 
minimization)

– How much are you willing to pay to have perfect information?

𝐸𝑉𝑃𝐼 =  𝑅𝑃 − 𝑊𝑆
𝑉𝑆𝑆 =  𝐸𝐸𝑉 − 𝑅𝑃

𝑊𝑆 ≤ 𝑅𝑃 ≤ 𝐸𝐸𝑉 𝐸𝑉𝑃𝐼 ≥ 0 𝑉𝑆𝑆 ≥  0

Fortune-teller
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Stochastic measures

sc01 sc02 sc03 Expected Stochastic
Generation RunOfRiver in p01 MWh 107136 107136 107136 107136 107136
Generation StorageHydro_Basin1 in p01 MWh 79200 67356 82629 79200 78741
Generation StorageHydro_Basin2 in p01 MWh 37466 17600 44903 37466 12602
Generation StorageHydro_Basin3 in p01 MWh 124281 86400 148800 118110 92787
Reserve StorageHydro_Basin1 end p01 hm3 328 368 317 328 330
Reserve StorageHydro_Basin2 end p01 hm3 452 518 427 452 535
Reserve StorageHydro_Basin3 end p01 hm3

779 800 734 800 800
Total Hydro Generation in p01 MWh 348083 278492 383467 341912 291265
Total Reserve end p01 hm3 1560 1686 1478 1581 1665
Total System Variable Cost M€ 1123.997 1144.447 1103.624 1129.624 1130.284

EWPI or WS EEV VSS EVPI
1130.140 1130.360 0.077 0.144

In this case study, stochasticity in hydro inflows is not relevant 
from the point of view of total variable cost
… but it is essential for defining the operation of the first period
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Task assignment

• Compute the water value numerically for a particular period and 
reservoir by running twice the hydrothermal model and comparing 
this water value with the dual variable of the water balance 
constraint. Apply it to one reservoir in period 1 scenario 1 and 
another in period 7 scenario 3.
– Note that you need to take care of the change from m3/s to km3 and of the 

scenario probability

• Introduce intermittent power (with curtailment) into the model
– Play with this generation to observe the complementarity between hydro and 

intermittent generation

• Evaluate all the stochastic measures of considering the stochasticity 
of hydro inflows

• Introduce a take or pay gas contract into the model
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Takeaways

• Purpose of a medium-term stochastic hydrothermal coordination 
model
– Characteristics
– Overview
– Results for operation planning and economic planning
– Main modeling assumptions

• Prototype mathematical formulation
– General structure
– Parameters, variables, equations, objective function
– Short-run marginal cost, water value

• Case study with StarGenLite_SHTCM
– Input data
– Output data
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