

ESD.S30 Electric Power System Modeling for a Low Carbon Economy

Medium-Term Market Equilibrium Model

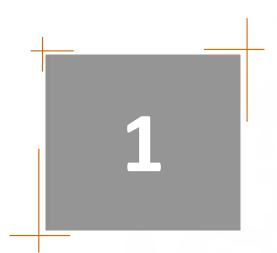
Prof. Andrés Ramos

https://www.iit.comillas.edu/aramos/

Andres.Ramos@comillas.edu

arght@mit.edu

Massachusetts Institute of Technology (MIT). January 2014



Introduction

Cournot model – conjectural variations Bushnell model Model based on the complementarity problem Some real models

Introduction

Objectives

- To understand:
 - How imperfect competition (oligopoly) is modeled
 - How to address technical and market constraints
 - How to formulate and solve a realistic model

UNIVERSIDAD PONTIFICIA

Bibliography

- M. Ventosa, A. Baíllo, A. Ramos, M. Rivier <u>Electricity Market Modeling Trends</u> Energy Policy 33 (7): 897-913 May 2005
- M. Rivier, M. Ventosa, A. Ramos, F. Martínez-Córcoles, A. Chiarri "A Generation Operation Planning Model in Deregulated Electricity Markets based on the Complementarity Problem" in the book M.C. Ferris, O.L. Mangasarian and J-S. Pang (eds.) Complementarity: Applications, Algorithms and Extensions pp. 273-295 Kluwer Academic Publishers 2001 ISBN 0792368169
- J. Bushnell (1998) "Water and Power: Hydroelectric Resources in the Era of Competition in the Western US"

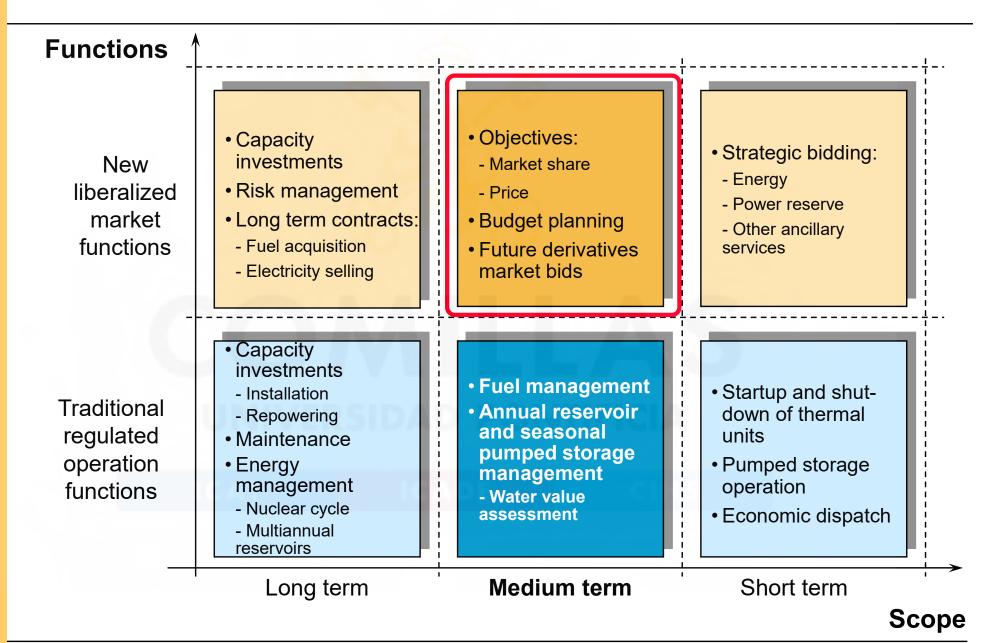
(http://www.ucei.berkeley.edu/PDF/pwp056.pdf)

• J. Barquín, E. Centeno, J. Reneses, "Medium-term generation programming in competitive environments: A new optimization approach for market equilibrium computing", IEE Proceedings-Generation Transmission and Distribution. vol. 151, no. 1, pp. 119-126, January 2004.

Why a market equilibrium model?

- Electricity generation business
 - Electricity production market
- Generating companies have new roles and responsibilities
 - New decision-making tools and models that take into account the market
 - Markets generally having only few companies
 - Companies' decisions are mutually dependent

Generation planning functions



Medium-term Market Equilibrium Model - 5

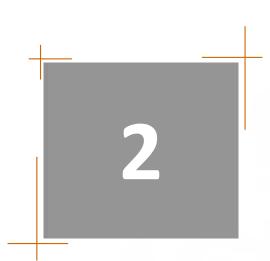
Why an equilibrium model based on the complementarity problem?

- Modeling the electricity market by a complementarity problem approach provides
 - A flexible representation of the market and its medium- and long-term operation
 - Modeling large-scale electricity schedules
 - A technically feasible solution
 - Actual, unique market equilibrium (in realistic conditions)
- Methods for **solving** complementarity problems (MCP)
 - Allow realistic sizes: 10,000 variables
 - Although solution time is greater than in linear optimization
- Alternative formulations and numerical solutions exist, based on the equivalent quadratic problem (QP)
 - Same optimality conditions as the equilibrium problem
 - Iterative solution of a linear problem

Nonlinear Optimization Optimality Conditions

- Unconstrained optimization
- Lagrangian
- Constrained optimization

COMILLAS UNIVERSIDAD PONTIFICIA



Introduction Cournot model – conjectural variations Bushnell model Model based on the complementarity problem Some real models

Cournot model – conjectural variations

Session outline

Cournot model

- ✓ Thermal generation
- ✓ Single period

Bushnell model

- ✓ Hydro thermal generation
- ✓ Multi-period

Model based on the complementarity problem

- ✓ Means of production
 - Fuel stock management
 - Pumped storage hydro plants
- ✓ Market aspects
 - Contracts for differences
 - Take-or-pay contracts

Cournot model (1838)

- Pioneer model to study companies' strategic behavior
- Simple model
 - Single generating plant
 - All the generating plants of each company are grouped
 - Inter-period constraints not considered
 - Single period equilibrium
 - Assumes perfect information
- Applicable to medium- and long-term analyses of thermal systems

French philosopher and mathematician (1801–1877)

Cournot model: approach

- Main characteristics
 - It explicitly considers
 - Each company's objective is to maximize profits
 - Company decisions are interdependent
 - Consumer behavior
 - Nash equilibrium in quantity strategies: each firm chooses an output quantity to maximize its profit. The Nash-Cournot market equilibrium defines a set of outputs such that no firm, taking its competitors' output as given, wishes to change its own output unilaterally
 - Price is derived from the inverse demand function
- These components are enough to interpret it as the origin of more complex models, such as the model based on the complementarity problem

Cournot model: formulation

S

e

(sty

INSTITUTO DE POSTGRADO

Y FORMACIÚN FONTINUA

https://pascua.iit.comillas.edu/aramos/StarMrkLite_CournotEn.gms

• Objective function: profits

$$B_{e} = p \cdot q_{e} - C_{e}$$
• Inverse demand function

$$p = f \left[\sum_{e} q_{e} \right]$$
• Cournet conjecture: vertical supply
vstem of

$$\frac{\partial p}{\partial q_{e}} = \frac{\partial p}{\partial q} \frac{\partial(q_{e} + q_{e^{*}})}{\partial q_{e}} = p' \leftrightarrow \frac{\partial q_{e^{*}}}{\partial q_{e}} = 0$$
• Optimality conditions

$$\frac{\partial B_{e}}{\partial q_{e}} = 0 \rightarrow MR_{e} = p + q_{e}p' = MC_{e}(q_{e}) \leftrightarrow \frac{q_{e}}{-p'}$$

Cournot model: conclusion

 In equilibrium, for each company (utility) e, marginal cost and marginal revenue must be equal

$$MR_{e} = \boldsymbol{p} + \boldsymbol{p'}\boldsymbol{q}_{e} = MC_{e}\left(\boldsymbol{q}_{e}\right)$$

- Marginal revenue has two components:
 - 1 additional MWh earns the market price p
 - But because of the greater production, market price decreases an amount p'. The price fall impacts on all the energy sold in the market, that we assume to be the total generation.
- Price mark-up $p MC_e(q_e)$
 - Small mark-up means competitive behavior
 - Large mark-up implies strategic behavior

Cournot model with contracts

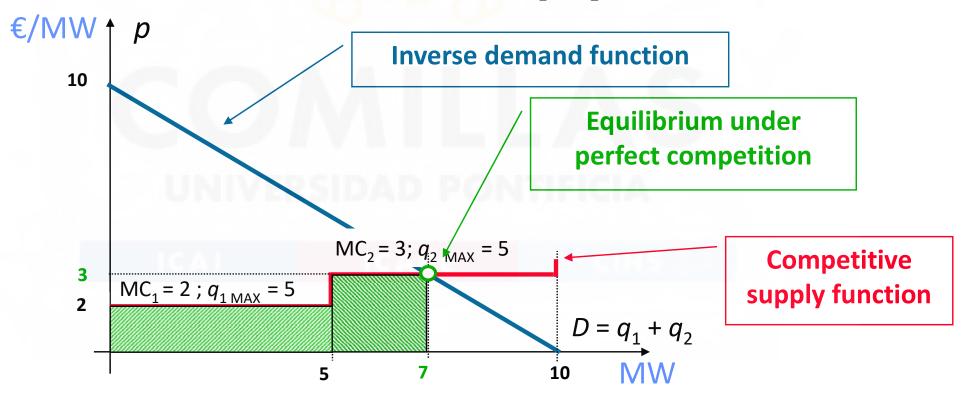
- Objective function $B_{e} = p\left(q_{e} L_{e}\right) C_{e} + p_{c}L_{e}$
- Optimality conditions

$$\begin{split} &\frac{\partial B_{e}}{\partial q_{e}} = 0\\ &MR_{e} = p + \left(q_{e} - L_{e}\right)p' = MC_{e}\left(q_{e}\right)\\ &\mathbf{q}_{e} = \frac{p - MC_{e}\left(\mathbf{q}_{e}\right)}{-p'} + L_{e} \end{split}$$

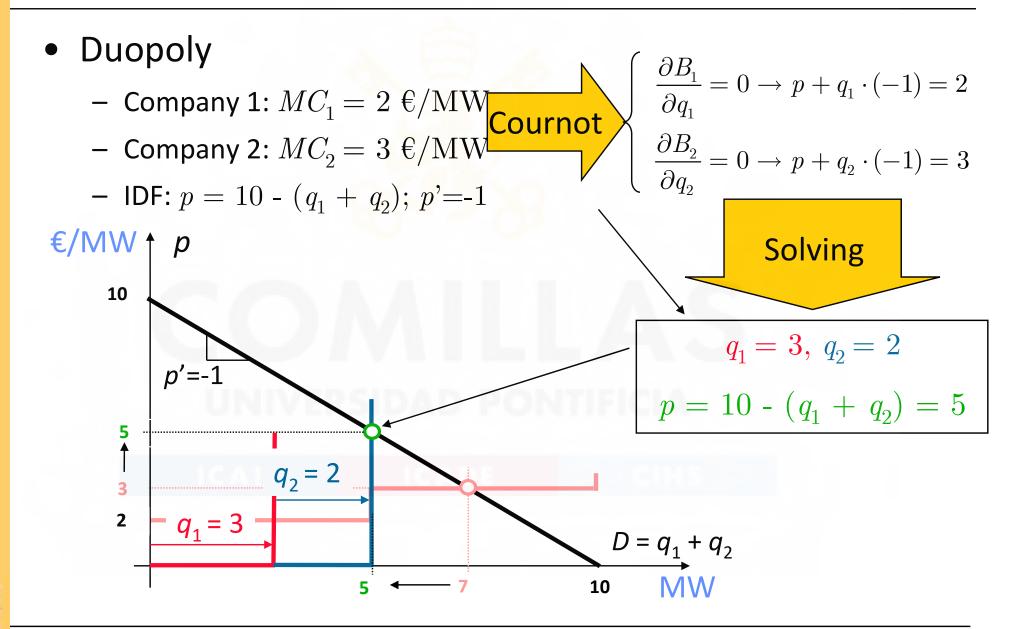
$$e$$
Company B_e Profits p Price q_e Output L_e Contracted output p_c Contract price C_e Variable costs MC_e Marginal cost MR_e Marginal revenue

Cournot model: example (I)

- Perfect competition
 - Company 1: $MC_1 = 2 \in /MW$ $q_{1MAX} = 5 MW$
 - Company 2: $MC_2 = 3 €/MW$ $q_{2 MAX} = 5 MW$
 - Inverse demand function: $p = 10 (q_1 + q_2)$



Cournot model: example (II)



From Cournot to conjectural variations (CV)

Objective function

 $\max B_e = p \cdot q_e - C_e$

Inverse demand function

$$p = f\left(\sum_{e} q_{e}\right)$$

Company e B_{e} Profits Price pOutput q_{e} C_{e} Variable costs MC_e Marginal cost MR_e Marginal revenue

Conjecture: every company sees its residual demand

 $\frac{\partial p}{\partial q_e} = p'_e$ \rightarrow generalization of the model based on CV

Optimality conditions

$$\frac{\partial B_{e}}{\partial q_{e}} = 0 \rightarrow MR_{e} = \mathbf{p} + \mathbf{q}_{e}p_{e}' = MC_{e}\left(\mathbf{q}_{e}\right)$$

Conjectural variation (CV)

- Other names:
 - Cross elasticity of demand between firms
 - Strategic parameter
 - Implicit residual demand slope
 - Conjectured price response
- It is a measure of the interdependence between firms. It captures the extent to which one firm reacts to changes in strategic variables (quantity) made by other firms
- The CV approach considers the reaction of competitors when a firm is deciding its optimal production. This reaction comes from firm's demand curve and supply functions (residual demand function). This curve is different for each firm and relates the market price with the firm's production

• Values of 0-10 c€/MWh/MW can be sensible

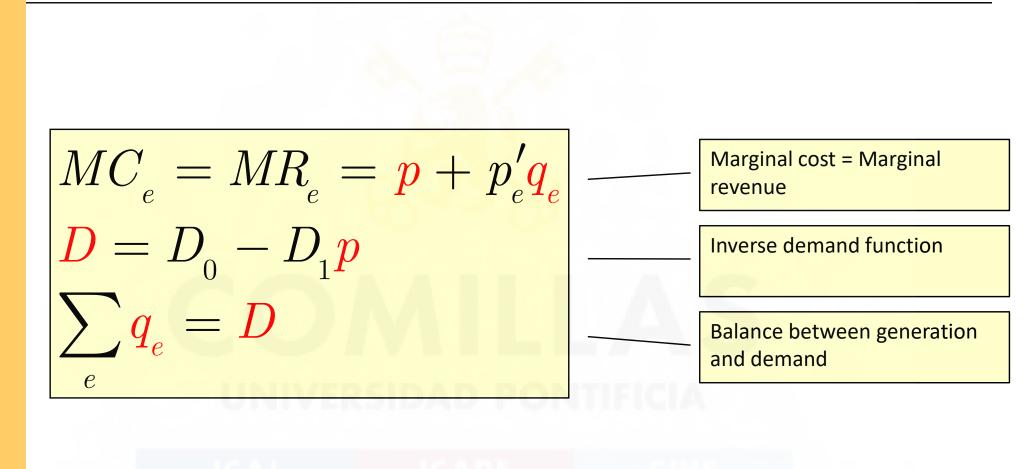
Some Comillas-IIT publications on computing CV

Optimization approach

- S. López, P. Sánchez, J. de la Hoz-Ardiz, J. Fernández-Caro, "Estimating conjectural variations for electricity market models", European Journal of Operational Research. vol. 181, no. 3, pp. 1322-1338, September 2007.
- Econometric approach
 - A. García, M. Ventosa, M. Rivier, A. Ramos, G. Relaño, "Fitting electricity market models. A conjectural variations approach", 14th PSCC
 Conference, Session 12-3, pp. 1-8. Sevilla, Spain, 24-28 June 2002

(http://www.pscc-central.org/uploads/tx_ethpublications/s12p03.pdf)

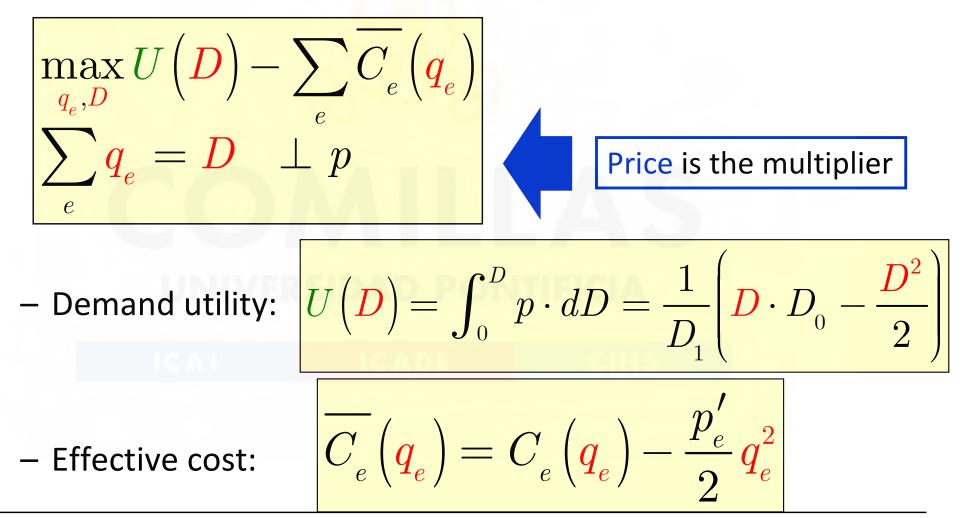
Cournot model: from system of equations to NLP



Medium-term Market Equilibrium Model - 21

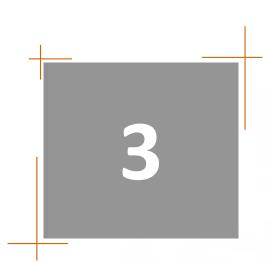
Cournot model: NLP equivalent problem

 It is easy to check that previous system of equations are just the KKT optimality conditions of the problem



Cournot model and CV: conclusions

- Solving Cournot equilibrium or equilibrium based on conjectural variations requires solving a system of equations (MCP)
- This system of equations is **linear** if:
 - Inverse demand function is linear
 - Marginal cost function is linear
- It can also be solved as a nonlinear programming problem (NLP)



Introduction Cournot model – conjectural variations Bushnell model Model based on the complementarity problem Some real models

Bushnell model

Session outline

Cournot model

✓ Thermal generation✓ Single period

Bushnell model

- ✓ Hydrothermal generation
- ✓ Multi-period

Model based on the complementarity problem

- ✓ Means of production
 - Fuel stock management
 - Pumped storage hydro plants
- ✓ Market aspects
 - Contracts for differences
 - Take-or-pay contracts

Bushnell model (1998)

- Extensions of the Cournot model to
 - Electricity markets
- Representation of storage hydro plants
 - Constraint on available hydro energy
 - Optimization problem with some constraints
 - Multi-period equilibrium when the available energy constraint involves several periods
 - Increased solution time
- Definition of the water value in electricity markets

Bushnell model: formulation I

https://pascua.iit.comillas.edu/aramos/StarMrkLite_BushnellEn.gms

• Objective function

$$B_{_{e}} = \sum_{_{p}} \left[p_{_{p}} \left(q_{_{p,e}}^{^{T}} + q_{_{p,e}}^{^{H}}
ight) - C_{_{p,e}}^{^{T}}
ight]$$

• Available hydro energy:

$$\sum_{p} q_{p,e}^{H} \leq Q_{e}^{H} \quad \perp \lambda_{e}^{H}$$

Inverse demand function

$$\boldsymbol{p}_p = f_p \left(\sum_{e} \left(\boldsymbol{q}_{p,e}^T + \boldsymbol{q}_{p,e}^H \right) \right)$$

- *e* Company
- p Period (duration 1)
- B_e Profits
- p Price
- q^T Thermal output
- q^H Hydro output
- C_e Variable costs
- $Q_e^{\ H}$ Available energy
- λ_e Water value

Bushnell model: formulation II

Lagrangian function (equivalent optimization

problem but without constraints)

$$egin{split} \mathcal{L}_e &= \sum_p \Big[p_p \left(q_{p,e}^T + q_{p,e}^H
ight) - C_{p,e}^T \left(q_{p,e}^T
ight) \Big] \ &+ \lambda_e^H \Bigg[\sum_p q_{p,e}^H - Q_e^H \Bigg] \end{split}$$

Optimality conditions

Company epPeriod (duration 1) B_e **Profits** Price p q^T Thermal output q^H Hydro output C_{ρ} Variable costs Q_e^H Available energy λ_{o} Water value MC_e Marginal cost MR_e Marginal revenue

$$\begin{aligned} \frac{\partial \mathcal{L}_{e}}{\partial q_{p,e}^{T}} &= 0 \to MR_{p,e} = p_{p} + \left(q_{p,e}^{T} + q_{p,e}^{H}\right)p_{p}' = MC_{p,e}^{T}\left(q_{p,e}^{T}\right) \\ \frac{\partial \mathcal{L}_{e}}{\partial q_{p,e}^{H}} &= 0 \to MR_{p,e} = p_{p} + \left(q_{p,e}^{T} + q_{p,e}^{H}\right)p_{p}' = -\frac{\lambda_{e}^{H}}{\lambda_{e}^{H}} \end{aligned}$$

Bushnell model: comments

 The "Bushnell conjecture" is the Cournot conjecture extended to all the periods (*e** = all other companies)

$$\frac{\partial \sum_{e^*} q_{p',e^*}}{\partial q_{p,e}} = 0$$

• Qualitative conclusions are drawn from the optimality conditions

$$\begin{aligned} &-\text{ Total optimal output (as in Cournot)} \\ &\frac{\partial \mathcal{L}_{e}}{\partial q_{p,e}^{T}} = 0 \qquad \rightarrow q_{p,e}^{T} + q_{p,e}^{H} = \frac{p_{p} - MC_{p,e}^{T} \left(q_{p,e}^{T}\right)}{-p_{p}'} \\ &- \text{ Water value} \\ &\frac{\partial \mathcal{L}_{e}}{\partial q_{p,e}^{T}} = 0; \frac{\partial \mathcal{L}_{e}}{\partial q_{p,e}^{H}} = 0 \rightarrow MR_{p,e} = MC_{p,e}^{T} = -\frac{\lambda_{e}^{H}}{\lambda_{e}} \end{aligned}$$

Water value in electricity markets

- Very important concept in hydrothermal coordination
 Final decision on hydro output
- The objective function changes when the amount of hydro energy available increases
 - In centralized planning
 - Reduces **system** operating **costs**
 - In electricity markets
 - Increases in each company's profits
- Calculated as the dual variable of the available hydro energy constraint

Water value: Bushnell model

Hydro output attempts to equal inter-period marginal revenues

$$\frac{\partial \mathcal{L}_{e}}{\partial q_{p,e}^{T}} = 0; \frac{\partial \mathcal{L}_{e}}{\partial q_{p,e}^{H}} = 0 \to MR_{p,e} = MC_{p,e}^{T} = -\lambda_{e}^{H}$$

- Each company regards its water to be marginal revenue, whose value coincides with the marginal cost of its thermal plant
- Intuitively, when a company replaces 1 MW of thermal output with 1 MW of hydro generation, the savings equal its marginal cost

$$q_{p,e}^{T} + q_{p,e}^{H} = rac{p_{p} - MC_{p,e}^{T}(q_{p,e}^{T})}{-p_{p}'}$$

Bushnell model: Example data

• Demand data (3 periods lasting 1 h each):

• period 1	$p_1 = 7 - Dem_1$
• period 2	p ₂ = 12 – Dem ₂
• period 3	p ₃ = 23 – Dem ₃
ny A data:	
• q^{Ta1} = 3 MW	<i>MC</i> ^{<i>Ta</i>1} = 3 €/MW
T-2	

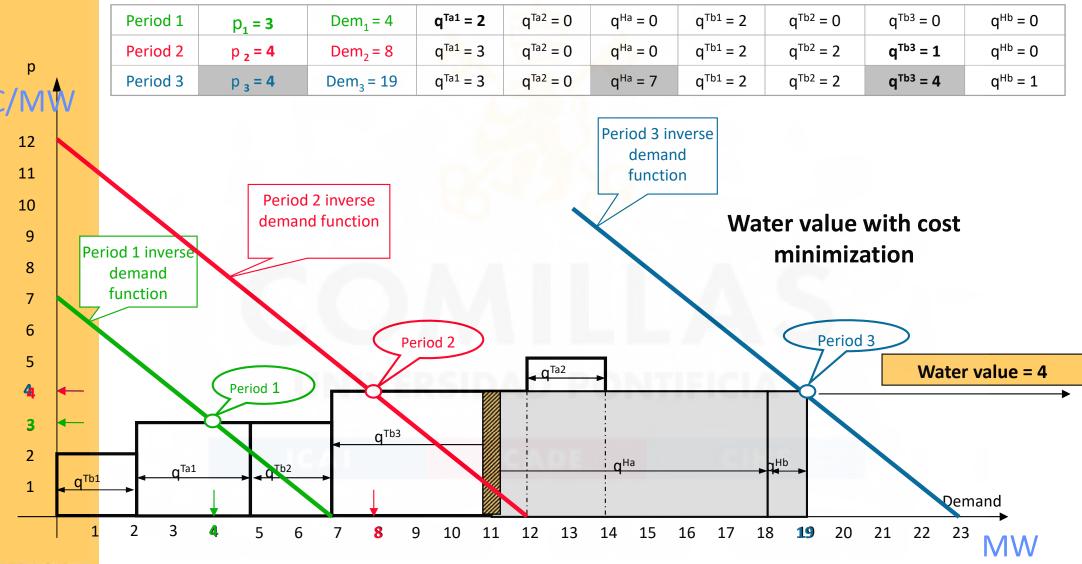
•Compar

$pq^{101} = 3 MW$	$MC^{ia_1} = 3 \in /MW$
$q^{Ta2} = 2 MW$	<i>MC</i> ^{<i>Ta</i>2} = 5 €/MW
$q^{Ha} = 7 \text{ MW}$	$Q^{Ha} = 7 \text{ MWh}$

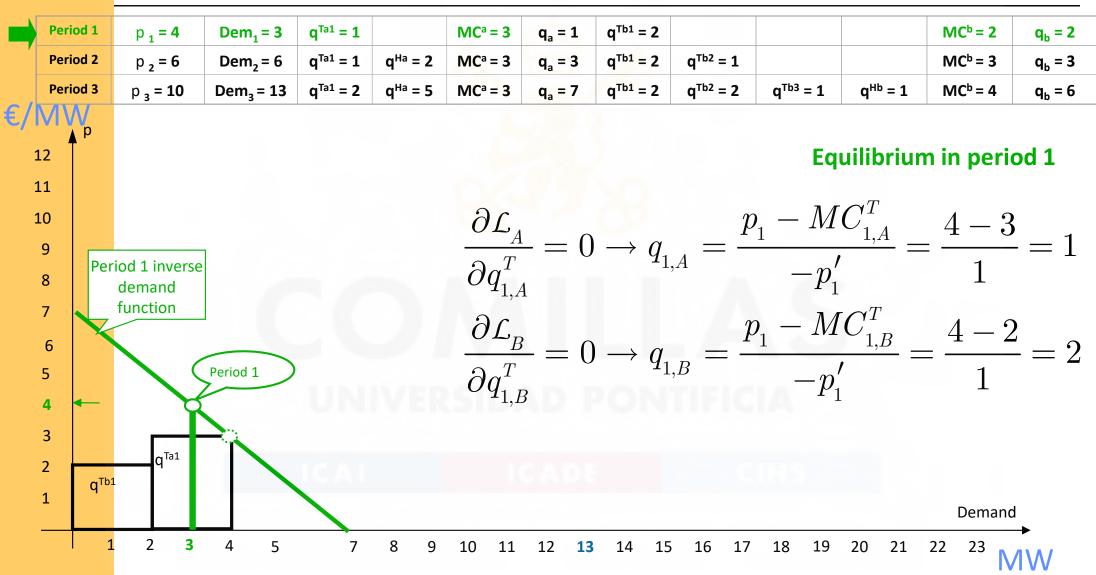
•Company B data:

• q^{Tb1} = 2 MW	<i>MC</i> ^{<i>Tb</i>1} = 2 €/MW
• $q^{Tb2} = 2 MW$	<i>MC</i> ^{<i>Tb</i>2} = 3 €/MW
• q^{Tb3} = 5 MW	<i>MC</i> ^{<i>Tb</i>3} = 4 €/MW
• $q^{Hb} = 1 \text{ MW}$	$Q^{Hb} = 1 \text{ MWh}$

Example: Perfect competition or minimum cost dispatch

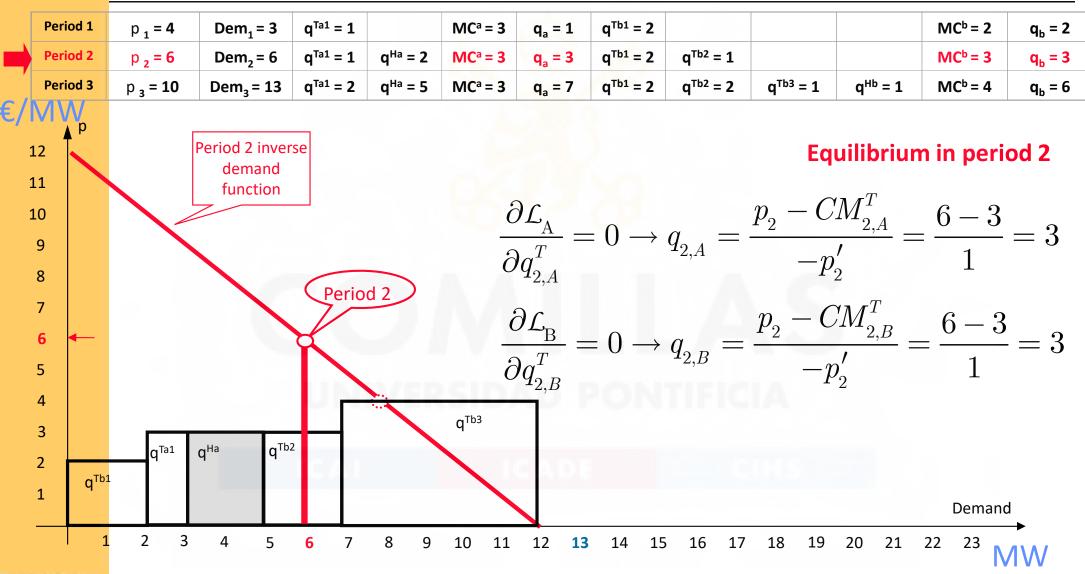


Example: dispatch under the Bushnell model

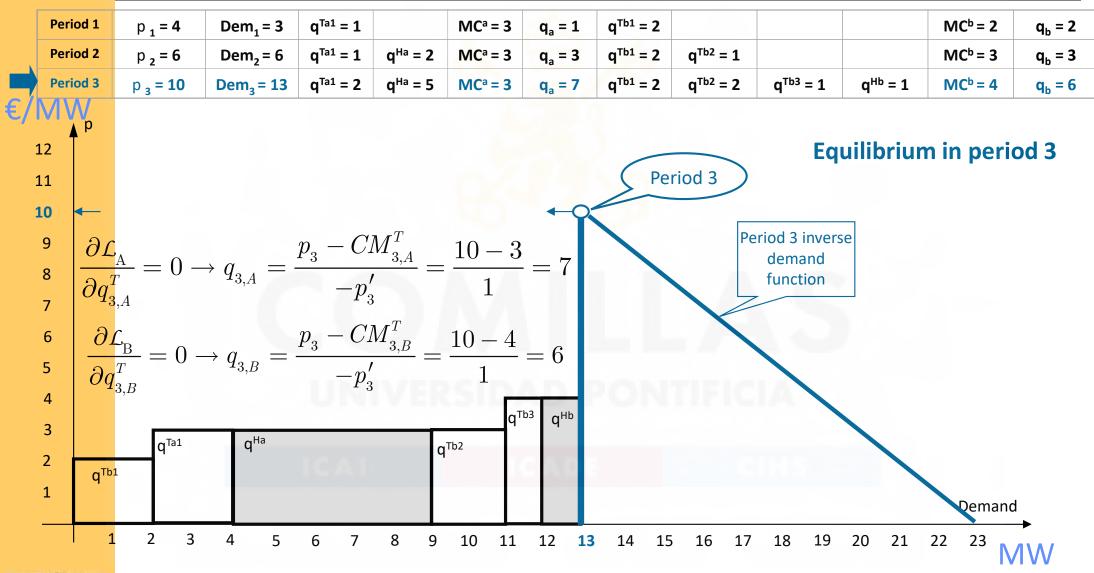


Medium-term Market Equilibrium Model - 34

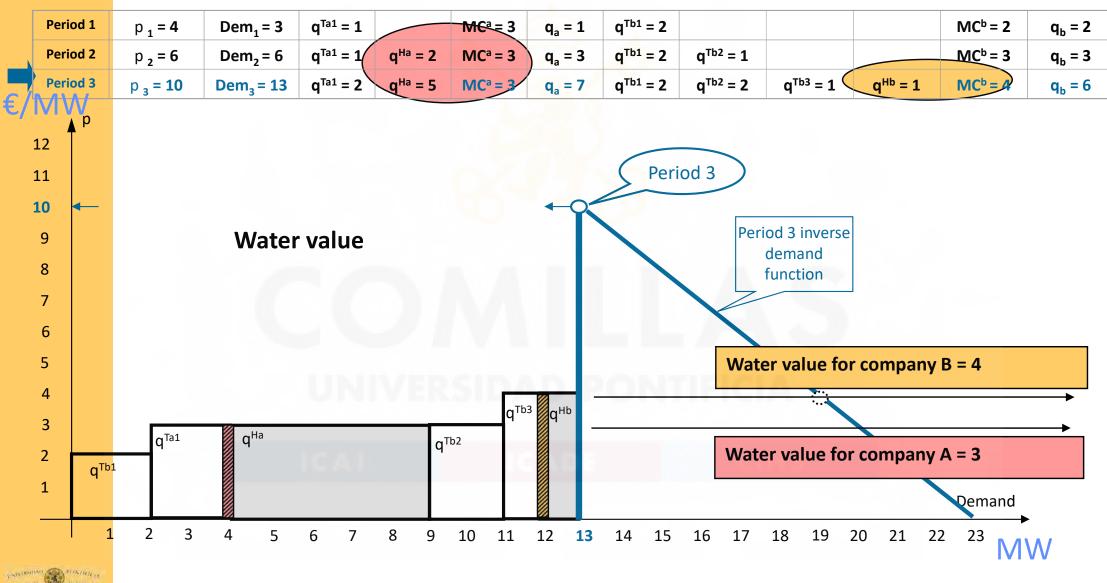
Example: dispatch under the Bushnell model



Example: dispatch under the Bushnell model



Example: dispatch under the Bushnell model



Medium-term Market Equilibrium Model - 37

Bushnell model: conclusions

- Solving Bushnell equilibrium (without less than or equal to constraints) entails solving a multiperiod system of equations
- The system of equations is **linear** if:
 - Inverse demand function is linear
 - Marginal cost function is linear

Optimization problems for both companies (i)

$$\begin{split} \max B_{A} &= \sum_{p} \left[p_{p} \left(\sum_{t} q_{p,A}^{t} + \sum_{h} q_{p,A}^{h} \right) - C_{p,A}^{T} \right] \\ \sum_{p} q_{p,A}^{h} &\leq Q_{A}^{h} \quad \perp \lambda_{A}^{h} \\ q_{p,A}^{t} &\geq 0 \qquad \perp \mu_{p,A}^{t} \\ q_{p,A}^{h} &\geq 0 \qquad \perp \mu_{p,A}^{h} \\ q_{p,A}^{t} &\leq \overline{q}^{t} \qquad \perp \nu_{p,A}^{t} \\ q_{p,A}^{h} &\leq \overline{q}^{h} \qquad \perp \nu_{p,A}^{h} \end{split}$$
 max B_{B}

$$p_{_{p}} = \alpha_{_{p}} + \beta_{_{p}} \left[\sum_{t} q_{_{p,A}}^{t} + \sum_{h} q_{_{p,A}}^{h} + \sum_{t} q_{_{p,B}}^{t} + \sum_{h} q_{_{p,B}}^{h} \right]$$

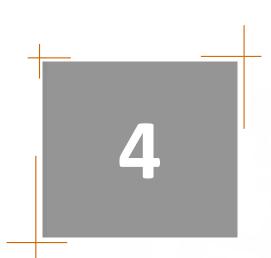
Minimization Optimization problems for both companies (ii)

$$\begin{split} \mathcal{L}_{A} &= -\sum_{p} \left[p_{p} \left(\sum_{t} q_{p,A}^{t} + \sum_{h} q_{p,A}^{h} \right) - C_{p,A}^{T} \right] + \lambda_{A}^{h} \left[\sum_{p} q_{p,A}^{h} - Q_{A}^{h} \right] + \\ &+ \mu_{p,A}^{t} q_{p,A}^{t} + \mu_{p,A}^{h} q_{p,A}^{h} + \nu_{p,A}^{t} \left[q_{p,A}^{t} - \overline{q}^{t} \right] + \nu_{p,A}^{h} \left[q_{p,A}^{h} - \overline{q}^{h} \right] \\ &\lambda_{A}^{h}, \nu_{p,A}^{t}, \nu_{p,A}^{h} \ge 0; \mu_{p,A}^{t}, \mu_{p,A}^{h} \le 0 \end{split}$$

$$\begin{split} \mathcal{L}_{B} \\ \end{split}$$

Optimization problems for both companies (iii)

$$\begin{split} \frac{\partial \mathcal{L}_{A}}{\partial q_{p,A}^{t}} &= -p_{p} - p_{p}' \left(\sum_{t} q_{p,A}^{t} + \sum_{h} q_{p,A}^{h} \right) + MC_{p,A}^{T} + \mu_{p}^{t} + \nu_{p}^{t} = 0 \\ \frac{\partial \mathcal{L}_{A}}{\partial q_{p,A}^{h}} &= -p_{p} - p_{p}' \left(\sum_{t} q_{p,A}^{t} + \sum_{h} q_{p,A}^{h} \right) + \lambda_{A}^{h} + \mu_{p}^{t} + \nu_{p}^{t} = 0 \\ \lambda_{A}^{h} \left[\sum_{p} q_{p,A}^{h} - Q_{A}^{h} \right] &= 0 \\ \mu_{p}^{t} q_{p,A}^{t} &= 0; \quad \mu_{p}^{h} q_{p,A}^{h} = 0 \\ \nu_{p}^{t} \left[q_{p,A}^{t} - \overline{q}^{t} \right] &= 0; \quad \nu_{p}^{h} \left[q_{p,A}^{h} - \overline{q}^{h} \right] = 0 \\ p_{p} &= \alpha_{p} + \beta_{p} \left[\sum_{t} q_{p,A}^{t} + \sum_{h} q_{p,A}^{h} + \sum_{t} q_{p,B}^{t} + \sum_{h} q_{p,B}^{h} \right] \\ \lambda^{h}, \nu_{p}^{t}, \nu_{p}^{h} \geq 0; \mu_{p}^{t}, \mu_{p}^{h} \leq 0 \end{split}$$



Introduction Cournot model – conjectural variations Bushnell model Model based on the complementarity problem Some real models

Model based on the complementarity problem

Session outline

Cournot model ✓ Thermal generation ✓ Single period

Bushnell model ✓ Hydrothermal generatio ✓ Multi-period

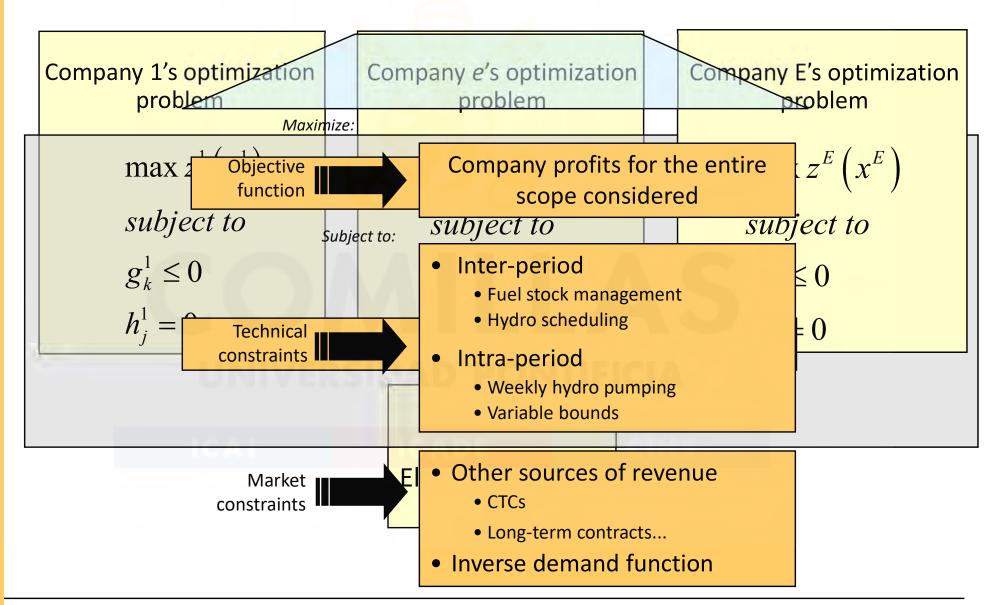
Model based on the complementarity problem ✓ Means of production

- Fuel stock management
- Pumped storage hydro plants
- ✓ Market aspects
 - Contracts for differences
 - Take-or-pay contracts

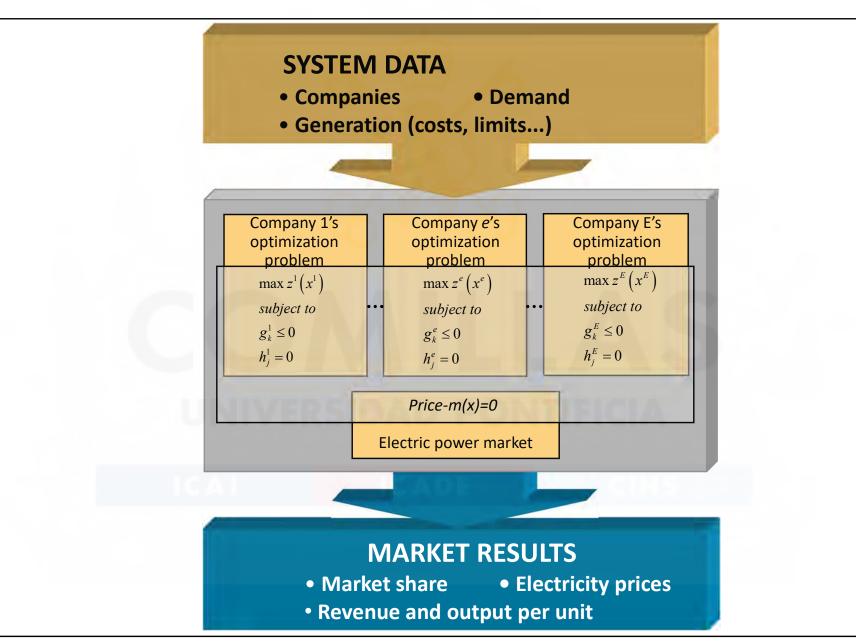
Stating the problem

Company 1's optimization problem		Company <i>e's</i> optimization problem		Company E's optimization problem
$\max z^{1}(x^{1})$ subject to $g_{k}^{1} \leq 0$ $h_{j}^{1} = 0$	•••	$\max z^{e} \left(x^{e} \right)$ $subject to$ $g_{k}^{e} \leq 0$ $h_{j}^{e} = 0$	•••	$\max z^{E} \left(x^{E} \right)$ subject to $g_{k}^{E} \leq 0$ $h_{j}^{E} = 0$
IGAL		Price-m(x)=0 Electric power market		

Stating the problem: Each company's problem



Stating the problem: Using the model



Practical difficulties

- The foregoing approach is impeccable, theoretically speaking
- And yet, there is no solver or algorithm able to solve the above mathematical problem:
 - Several optimization problems inter-connected by the inverse demand function
- An equivalent problem must be sought
 - With the same solution for its variables
 - Numerically solvable

Practical difficulties. Alternative approaches

• Complementarity problem

- M. Rivier, M. Ventosa, A. Ramos A Generation Operation Planning Model in Deregulated Electricity Markets based on the Complementarity Problem 2nd International Conference on Complementarity Problems (ICCP 99) Madison, WI, USA June 1999
- B.F. Hobbs. "LCP Models of Nash Cournot Competition in Bilateral and POOLCO–Based Power Markets." In Proc. IEEE Winter Meeting, New York, 1999

Equivalent quadratic system

- J. Barquín, E. Centeno, J. Reneses, "Medium-term generation programming in competitive environments: A new optimization approach for market equilibrium computing", IEE Proceedings-Generation Transmission and Distribution. vol. 151, no. 1, pp. 119-126, Enero 2004.
- B.F. Hobbs. "Linear Complementarity Models of Nash–Cournot competition in Bilateral and POOLCO Power Markets" IEEE Transactions on Power Systems, 16 (2), May 2001

• Variational inequalities

- W. Jing-Yuan and Y. Streets, "Spatial oligopolistic electricity models with Cournot generators and regulated transmission prices," Operations Res., vol. 47, no. 1, pp. 102–112, 1999

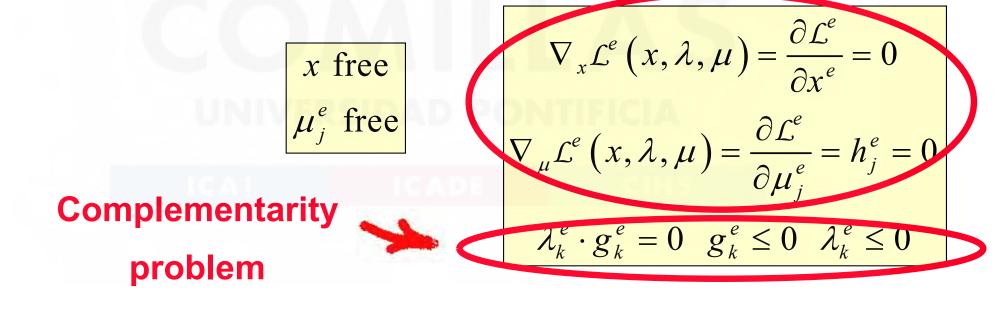
KKT Optimality conditions for each company's problem

maximize
$$z^e(x)$$
subject to: $g_k^e(x) \le 0$ $\perp \lambda_k^e$ $h_j^e(x) = 0$ $\perp \mu_j^e$ KKT optimality
conditions $\downarrow \mu^e(x, \lambda, \mu) = \frac{\partial \mathcal{L}^e}{\partial x^e} = 0$ $\nabla_{\mu} \mathcal{L}^e(x, \lambda, \mu) = \frac{\partial \mathcal{L}^e}{\partial \mu_j^e} = h_j^e = 0$ $\lambda_k^e \cdot g_k^e = 0$ $g_k^e \cdot g_k^e = 0$

Mixed complementarity problem (MCP)

- Combining a system of equations with a complementarity problem
- Generalization of the complementarity problem

System of equations



Linear complementarity problem (CP) Mixed linear complementarity problem (MCP)

LCP

$$x \ge 0$$

 $Ax - b \ge 0$
 $x^T(Ax - b) = 0$

$$\begin{split} & \text{MLCP} \\ & x_1 \geq 0 \\ & A_{11}x_1 + A_{12}x_2 - b_1 \geq 0 \\ & A_{21}x_1 + A_{22}x_2 - b_2 = 0 \\ & x_1^T (A_{11}x_1 + A_{12}x_2 - b_1) = 0 \end{split}$$

$$\begin{array}{l} x \in \mathbb{R}^{n} \\ b \in \mathbb{R}^{n} \\ A \in \mathbb{R}^{n \times n} \\ x_{1} \in \mathbb{R}^{n}, x_{2} \in \mathbb{R}^{m} \\ b_{1} \in \mathbb{R}^{n}, b_{2} \in \mathbb{R}^{m} \\ A_{11} \in \mathbb{R}^{n \times n}, A_{22} \in \mathbb{R}^{n \times n} \\ A_{12} \in \mathbb{R}^{n \times m}, A_{21} \in \mathbb{R}^{m \times n} \end{array}$$

Equivalent mixed complementarity problem for all the companies

Company 1's optimality conditions		Company <i>e</i> 's optimality conditions		Company E's optimality conditions
 $\nabla_{x} \mathcal{L}^{l}(x,\lambda,\mu) = \frac{\partial \mathcal{L}^{l}}{\partial x^{1}} = 0$ $\nabla_{\lambda} \mathcal{L}^{l}(x,\lambda,\mu) = \frac{\partial \mathcal{L}^{l}}{\partial \mu_{j}^{1}} = h_{j}^{1} = 0$ $\lambda_{k}^{1} \cdot g_{k}^{1} = 0 g_{k}^{1} \le 0 \lambda_{k}^{1} \le 0$	••••	$\nabla_{x} \mathcal{L}^{e}(x,\lambda,\mu) = \frac{\partial \mathcal{L}^{e}}{\partial x^{e}} = 0$ $\nabla_{\lambda} \mathcal{L}^{e}(x,\lambda,\mu) = \frac{\partial \mathcal{L}^{e}}{\partial \mu_{j}^{e}} = h_{j}^{e} = 0$ $\lambda_{k}^{e} \cdot g_{k}^{e} = 0 g_{k}^{e} \leq 0 \lambda_{k}^{e} \leq 0$ $Price-m(y)=0$	•••	$\nabla_{x} \mathcal{L}^{E} (x, \lambda, \mu) = \frac{\partial \mathcal{L}^{E}}{\partial x^{E}} = 0$ $\nabla_{\lambda} \mathcal{L}^{E} (x, \lambda, \mu) = \frac{\partial \mathcal{L}^{E}}{\partial \mu_{j}^{E}} = h_{j}^{E} = 0$ $\lambda_{k}^{E} \cdot g_{k}^{E} = 0 g_{k}^{E} \leq 0 \lambda_{k}^{E} \leq 0$
		Electric power market		

Detailed system modeling (I)

- Market modeling
 - Demand-side behavior
 - Price is a linear function of demand
 - Load-duration curve per period
 - Cournot or CV company competition
 - Simultaneous maximization of profits
 - Market revenues are a quadratic function of price
 - Other market characteristics
 - Contracts for differences (sales)
 - Take-or-pay contracts (purchase)

Detailed system modeling (II)

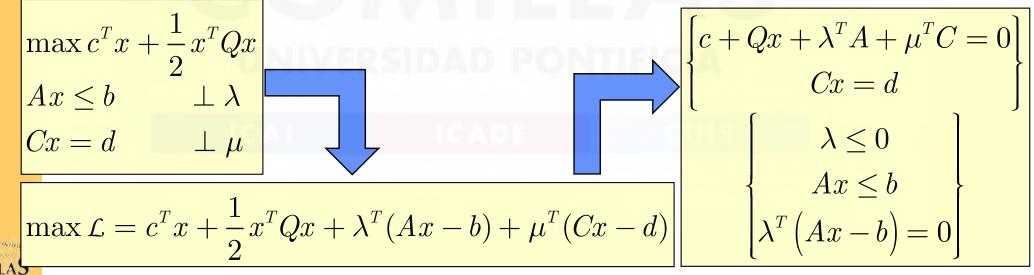
- Thermal generation
 - Output limits
 - Fuel consumption is quadratic
 - Scheduled maintenance
 - Deterministic modeling of unit outages
 - Linear fuel stock management
- Hydro generation
 - Storage hydro plants with reservoirs
 - Run-of-the-river hydro plants
 - Pumped storage hydro plants

– Linear reservoir management

Mixed linear complementarity problem (MLCP)

- Medium-term problem formulated with
 - linear constraints
 - quadratic objective function

System of equations with a **mixed linear complementarity problem** structure



Existence and unicity

- In a medium-term model formulated with
 - linear constraints
 - quadratic objective function

System of equations with a **mixed linear complementarity problem** structure

• Sufficient conditions for existence and unicity:

An **increasing and** strictly monotonic **marginal cost** function and a **decreasing** linear **inverse demand** function

Introduction Cournot model – conjectural variations Bushnell model Model based on the complementarity problem Some real models

Some real models

MOES Stochastic

- Purpose
 - Medium-term generation operation
 - Market equilibrium model
 - Conjectural variations approach
 - Implicit elasticity of residual demand function
- Main characteristics
 - Market equilibrium model based on the complementarity problem (MCP)
- References
 - J. Cabero, Á. Baíllo, S. Cerisola, M. Ventosa, A. García, F. Perán, G. Relaño, "A Medium-Term Integrated Risk Management Model for a Hydrothermal Generation Company," IEEE Transactions on Power Systems. vol. 20, no. 3, pp. 1379-1388, August 2005
 - J. Cabero, Á. Baíllo, S. Cerisola, M. Ventosa, "Application of benders decomposition to an equilibrium problem," Proceedings of the 15th PSCC, Power Systems Computing Conference. Liege, Belgium, 22-26 Agosto 2005
 - M. Ventosa, A. Baíllo, A. Ramos, M. Rivier *Electricity Market Modeling Trends* Energy Policy Vol. 33 (7) pp. 897-913 May 2005
 - A. García-Alcalde, M. Ventosa, M. Rivier, A. Ramos, G. Relaño *Fitting Electricity Market Models. A Conjectural Variations Approach* 14th Power Systems Computation Conference (PSCC '02) Seville, Spain June 2002
 - M. Rivier, M. Ventosa, A. Ramos, F. Martínez-Córcoles and A. Chiarri A Generation Operation *Planning Model in Deregulated Electricity Markets based on the Complementarity Problem* in book Complementarity: Applications, Algorithms and Extensions Kluwer Academic Publishers. Dordrecht, The Netherlands. pp. 273-295. 2001

Valore

- Purpose
 - Oligolopolistic electricity markets simulation
- Main characteristics
 - Based on quadratic optimization (QP)
 - Medium-term
 - Allows detailed physical assets modeling
 - Extended for stochastic optimization (i.e. water inflows)
 - Network constraints (explicit and implicit transmission auctions)

References

- J. Barquín, M. Vázquez, <u>Cournot Equilibrium Calculation in Power Networks: An</u> <u>Optimization Approach With Price Response Computation</u>, *IEEE Trans. on Power Systems*, 23, no. 2, 317-326, May, 2008
- J. Barquín, E. Centeno, J. Reneses, <u>Stochastic Market Equilibrium Model For</u> <u>Generation Planning</u>, *Probability in the Engineering and Informational Sciences*, 19, 533-546, August, 2005

Fuzzy Valore

• Purpose

 Proposing an electricity market model based on the conjectural-priceresponse equilibrium when uncertainty of RDC is modeled using the possibility theory

Main characteristics

- Compute robust Cournot equilibrium by using possibilistic VAR for medium term analysis
- Determine possibility distributions of main outputs (prices and incomes)
- Novel variational inequalities (VI) algorithms with global and proved convergence that iteratively solve quadratic programming (QP) models

References

- F.A. Campos, J. Villar, J. Barquín, J. Reneses, "Variational inequalities for solving possibilistic risk-averse electricity market equilibrium," *IET Gener. Transm. Distrib.* vol. 2, no. 5, pp. 632-645, Sep 2008
- F.A. Campos, J. Villar, J. Barquín, J. Ruipérez, "Robust mixed strategies in fuzzy noncooperative Nash games," *Engineering Optimization*. vol. 40, no. 5, pp. 459-474, May 2008
- F.A. Campos, J. Villar, J. Barquín, "Application of possibility theory to robust Cournot equilibriums in electricity market," *Probability in the Engineering and Informational Sciences*. vol. 19, no. 4, pp. 519-531, October 2005

Task assignment

- Take one model as the base case and run it modifying
 - The marginal cost a thermal units
 - The available water of a hydro reservoir
- Extend the model to consider an small electric system
- Introduce intermittent generation in the model
- Write a small report (1 page long)

Prof. Andres Ramos

https://www.iit.comillas.edu/aramos/

Andres.Ramos@comillas.edu

arght@mit.edu

