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2Transmission Expansion Planning

Motivation

• To understand why the transmission plays a vital role in 
renewable integration

• To indicate what it is possible to state with a decision tool
– Capabilities and limitations

• To become familiar with transmission network expansion 
modeling techniques

• To give the mathematical foundation



3Transmission Expansion Planning

Electric System. Activities, businesses and markets

Source: Iberdrola
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Electric System. Physical layout

https://upload.wikimedia.org/wikipedia/commons/4/41/Electricity_grid_simple-_North_America.svg
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The future of system operations: The new 50Hertz 
Transmission Control Center

TenneT network planning - to guarantee system stability

http://www.youtube.com/watch?v=uE49sQMWekg

https://youtu.be/P5Nol6dyJN4
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Drivers for investing

• Reliability
• Economic efficiency

– Reduce network losses
– Mitigate capacity constraints (congestion), expand electricity markets, or 

mitigate market power
– Avoidance/postponement of generation investments

• Generation connection of new (conventional) power plants
• Meet RES policy targets (solar and wind generation)

– European Green Deal: 55% emission reductions by 2030 (Fit for 55)
https://www.consilium.europa.eu/en/policies/green-deal/

– National Energy and Climate Plans (NCEP)
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USA Projected Transmission Investment Opportunities

http://www.brattle.co.uk/industry/electric-power/82-transmission
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The White House. FACT SHEET: The American Jobs Plan

Reenergize America’s power infrastructure
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USA Historical and Projected Transmission Investments

http://www.brattle.co.uk/industry/electric-power/82-transmission
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USA Historical and Projected Transmission Investments
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New England Clean Energy Connect (NECEC)

145 miles (233 km) of new HVDC line 
with 1200 MW at 345 kV, new DC/AC 
converter station, and multiple 
system upgrades

Started in January 2021
https://youtu.be/TEdr_DfzUyE https://www.necleanenergyconnect.org/
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USA Renewable Portfolio Standards (RPS)

Source: www.dsireusa.org November 2022
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US red states among wind and/or solar leaders
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Land Based and Offshore Annual Average Wind Speed at 100 
Meters

https://energy.gov/eere/wind/downloads/united-states-land-based-and-offshore-annual-average-wind-speed-100-meters
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Major PV and CSP projects in the US
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Maps of Global Horizontal Irradiance (GHI) and Utility-Scale PV 
Projects

https://emp.lbl.gov/utility-scale-solar/
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ERCOT. Locational marginal prices

http://www.ercot.com/content/cdr/contours/rtmLmpHg.html
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ERCOT. Locational marginal prices

http://www.ercot.com/content/cdr/contours/rtmLmpHg.html
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MISO (Midcontinent Independent System Operator). 
Locational marginal prices
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(Ten-Year Network Development Plan) TYNDP 2022
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Projects of Common Interest (PCI)

Selected based on five criteria:
1. have a significant impact on at least two EU countries
2. enhance market integration and contribute to the integration of EU countries' 

networks
3. increase competition in energy markets by offering alternatives to consumers
4. Improve the security of the supply
5. contribute to the EU's energy and climate goals. They should facilitate the 

integration of an increasing share of energy from variable renewable energy 
sources. https://ec.europa.eu/energy/topics/infrastructure/projects-common-interest_en
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Map of European wind farms

https://setis.ec.europa.eu/sites/default/files/report_graphs/farm_locations_0.png
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Off-shore wind farms in the North Sea and Baltic Sea

https://www.4coffshore.com/offshorewind/

London Array
(http://www.londonarray.com/)
• An offshore area of 100 km2

• 175 wind turbines
• Two offshore substations
• Nearly 450 km of offshore cabling
• One onshore substation
• 630 MW of capacity

Dogger Bank
(https://doggerbank.com/)
• 8660km²
• 3.6 GW

East Anglia One
(http://eastangliaone.eastangliawind.com/)
• An offshore area of 300 km2

• 102 wind turbines 7 MW
• One offshore converter substation
• Two offshore export cables
• 714 MW of capacity
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Projects awarded Contracts for Difference in UK (2015)

https://www.gov.uk/government/publications/uk-offshore-wind-opportunities-for-trade-and-investment/uk-offshore-wind-opportunities-for-trade-and-investment
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Offshore wind (UK) map – May 2015

https://www.gov.uk/government/publications/uk-offshore-wind-opportunities-for-trade-and-investment/uk-offshore-wind-opportunities-for-trade-and-investment
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Western Link, UK

Eastern Green Link 2, UK

https://www.iberdrola.com/about-us/lines-business/flagship-
projects/eastern-link-electric-underwater-line

440km-long subsea of two 2GW HVDC 
cables

850km-long (770 km 
undersea) of 2.2GW 
HVDC cables
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Spanish Grid

1988

1997
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2004

2017

Spanish Grid
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Influence of wind connection on transmission planning

Source: J.F. Alonso, System Operation Perspective: Connection and Operation Aspects, REE, 2006
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REE Transmission Planning 2015-2020

http://ree.es/en/activities/grid-manager-and-transmission-agent/grid-planning-an-development
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Spanish high voltage transmission network (1990-2022)
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Centralized TEP model
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Market TEP model

• No longer exists coordination between generation operation and TEP
• Conceptual solution of the market equilibrium with network 

expansion decisions
– TSO decides first: Proactive investment 

• Stackelberg leader-multi-follower game stated as a bilevel optimization

– TSO reacts to generation investments: Reactive investment

• Financial Transmission Rights (FTR) can help in solving this dilemma
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TSO (Transmission System Operator) optimization problem
– O.F.: Investment cost minimization and computation of nodal prices
– Constraints: load flow equations
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GenCo profit maximization problem

• O.F.: Maximize its profit given nodal prices
• Constraints: generation operation
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GenCos market equilibrium problem (MEP)

• Each company solves independently its own profit maximization 
problem
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Overall MEP + TEP

Bilevel
optimization
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Challenges for Transmission Expansion Planning (TEP)

Stochastic complexity: weather conditions 
and human behaviors
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TSO (Transmission System Operator) activities

Source: GARPUR Project. D1.1 State of the art on reliability assessment in power systems http://www.garpur-project.eu/deliverables
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Time scopes

• Long-term (tactical) (5-10 years)
– Specific decisions for network development
– More detailed models are required
– Analysis of proposed plans is the main objective

• Very long-term (strategic) (10-20 years)
– Guidelines for network development
– Simpler models are acceptable
– New corridors are the main objective to determine
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Characteristics of the TEP
• Very complex decision problem with multiple 

criteria
• Important strategic decision. Decisions require very 

long building periods and have long book life
• Generation planning decisions strongly affect 

transmission planning decisions
– Wind and solar far from load centers

• Generation operation decisions and constraints are 
a subset of the transmission expansion problem. A 
large-scale transmission planning problem
– Large and correlated variations of renewable sources cause 

interdependency power flows in large regions
– Spatial correlation in generation profiles (wind and solar)
– Sudden temporal changes from one day to another
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Why coordination between generation and transmission 
expansion planning?

• Independent entities make decisions
– Private generation companies
– Publicly owned transmission system operators

• With different periods in advance
– Several years for generation investment
– A decade for transmission investment
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Proactive and reactive investment game

Y. Tohidi Optimal Long-Term Generation-transmission 
Planning in the Context of Multiple TSOs. PhD Thesis. 
KTH, 2016
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Source: SUSPLAN 
(http://www.susplan.eu/) 
Planning for Sustainability

 Generation Expansion Planning (GEP) or Integrated Resource 
Planning (IRP)
 GEP included in the optimization: GEP+TEP
 GEP as an external input

 Single future scenario vs. uncertain GEP

General Scope

Implies using methods to cope 
with non-random uncertainties 
(exogenous 
storylines/pathways/options)

 

Difficult future for high RES 
integration. Few new technologies are 

available, and low interest to invest. 
Mainly centralized development with 

traditional technologies 

New technologies are available, 
but low interest to invest and use. 
Mainly centralized development, 
but with new technologies.

Positive future for high RES 
integration, but too low technology 

development rate. Mainly 
decentralized development

Positive future for high RES 
integration. Both market pull 
and technology push existing.

Fast tech development
Major break-throughs
several technologies, 
RES, grids, demand side

Fast tech development
Major break-throughs
several technologies, 
RES, grids, demand side

Slow tech development
No major technology

break-throughs; gradual
development of 

current technologies

Slow tech development
No major technology

break-throughs; gradual
development of 

current technologies

Positive public attitude
High environmental focus in population and business.

Reduced energy consumption and demand 
for environmentally friendly products

Positive public attitude
High environmental focus in population and business.

Reduced energy consumption and demand 
for environmentally friendly products

Indifferent public attitude
Low environmental focus in population and business.

Higher energy consumption and no demand 
for environmentally friendly products or services

Indifferent public attitude
Low environmental focus in population and business.

Higher energy consumption and no demand 
for environmentally friendly products or services

GreenGreenYellowYellow

BlueBlueRedRed
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Future storylines for SET-Nav project
(http://www.set-nav.eu/)
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Future storylines for openENTRANCE project 
(https://openentrance.eu/)
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Future storylines for TYNDP 2018
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TYNDP. Scenario Report

https://www.entsos-tyndp2020-scenarios.eu/#download
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Scenarios of uncertainty

• Long-term (some of them are non-random –nonrepeatable–)
– Electricity demand growth. Macroeconomic data
– Inflation and discount rate
– Demand side management (DSM) programs
– Location of generation plants (CCS plants? CSP generation?)
– Intermittent generation capacity
– Fuel and CO2 prices
– Public opinion (No nukes?)
– Available transmission technologies

• Medium-term (random –repeatable–)
– Climate conditions (hydro inflows, wind, sun, temperature)
– Contingencies (availability of generation and network elements)
– System operation for several snapshots representative of the situations that

may occur over the horizon year (Peak/Off-peak? Winter/Summer?). Possible
use of clustering techniques



83Transmission Expansion Planning

Criteria/Objectives

• Enable a low-cost operation of the system
• Enable a high level of security of supply
• Contribute to a sustainable energy supply
• Facilitate grid access to all market participants
• Contribute to internal market integration, facilitate competition and 

harmonization
• Contribute to the energy efficiency of the system
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Multicriteria Decision Making (MCDM)

Investment (CapEx) and 
operation cost (OpEx)

Financial effort. Cash flow

Environmental impact

RES integration

Hours of market splitting

Social acceptance

Geopolitical risk

Costs

Environment

Market integration

Exogenous factors

Criteria Attributes
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Which is the fastest animal of the nature in running, flying and 
swimming simultaneously?

• The fastest runner?

• The fastest flying?

• The fastest swimmer?
Sailfish is the fastest 
fish in the world

Peregrine falcon is the 
fastest bird in the 
world

Cheetah is the fastest 
running animal in the 
world
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Which is the fastest animal of the nature in all the three 
attributes simultaneously? And the winner is … the DUCK

• Can run, although less than the cheetah

• Can fly, although less than the peregrine falcon

• Can swim, although less than the sailfish
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Weighted-Sum Method of MCDM

• Combines several quantifiable criteria in a single one by monetizing
the criteria

– 𝑖 the weight of each criterion and 𝑖 the value of the criterion

– Reliability: not served is energy [MWh] monetized by multiplying by the cost of 
the energy not served [€/MWh]

– RES integration: RES curtailment/spillage [MWh] monetized by multiplying by 
the penalty associated with RES curtailment/spillage [€/MWh]

– Environmental impact: length of the line [km] multiplied by the restoration 
measures to be taken [€/km]

• No quantifiable criteria are usually analyzed as a post-process for the 
best decisions under the previous method
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 Decision dynamics
Static (myopic or short-sighted)

• Determine optimal investment decisions for a horizon (the year 
2030) without representing how to achieve this optimal solution 
from now on

• Can be helpful as an “ideal” reference for very long-time horizons

Sequential static (forward vs. backward planning)
Dynamic

• Determine optimal investment decisions since nowadays, up to a 
particular horizon

• More cumbersome to solve

Time scope
2030 2035 2040 2045 2050
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Transmission expansion planning model

L. Gacitua,P. Gallegos, R. Henriquez-Auba, Á. Lorca, M. Negrete-Pincetic, D. Olivares, A. 
Valenzuela, G. Wenzel A comprehensive review on expansion planning: Models and tools for 
energy policy analysis Renewable and Sustainable Energy Reviews 98 (2018) 346–360
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Other uses of transmission planning models

• Remuneration based on the marginal contribution of the line to the 
system (congestion rent)
– Difference of locational marginal prices (LMP) times the power flow

• Management of transmission capacity markets
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After getting several optimal TEP plans…

• Check that transmission plan can be operated without voltage, 
stability and short-circuit concerns
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Mathematical formulation
• Objective function

– Minimize the total investment and expected operation costs

• Investment variables
– Investment decisions (what lines to build). Binary by nature

• Operation variables for each year
– Commitment, startup, and shutdown of thermal units
– Thermal, storage hydro, and pumped storage hydro output
– Flows through the lines

• Investment constraints
– Operating capacity lower than installed capacity

• Operation constraints for each year
– Inter-period

• Storage hydro and pumped storage hydro scheduling
– Intra-period

• Load and reserve balance
• Detailed hydro basin modeling
• Thermal, hydro, and pumped-storage operation constraints
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Indices

• Time scope
– years

• Period
– 1 month

• Subperiod
– weekdays and weekends

• Load level
– peak, shoulder, and off-peak

• Node

Period
Subperiod
Load level

Year

Node

p
y

s
n
d

Period
Subperiod
Load level

Year

Node

p
y

s
n
d
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Demand (5 weekdays)
Chronological Load Curve (5 Working Days)
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Demand
• Monthly demand with several load levels

– Peak, shoulder, and off-peak for weekdays and weekends

• All the weekdays of the same month are similar (same for weekends)
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Technical characteristics of thermal units (t)
• Maximum and minimum output
• Fuel cost
• Slope and intercept of the heat rate straight line
• Operation and maintenance (O&M) variable cost

– No load cost = fuel cost x heat rate intercept
– Variable cost = fuel cost x heat rate slope       + O&M cost

• Cold startup and shutdown cost
• Equivalent forced outage rate (EFOR)

Max and min output [ ] ,
No load cost [€ / ]
Variable cost [€ / ]
Startup, shutdown cost [€] ,

[ . .]

t t

t

t

t t

t

MW p p
h f
MWh v

su sd
EFOR pu q

Max and min output [ ] ,
No load cost [€ / ]
Variable cost [€ / ]
Startup, shutdown cost [€] ,

[ . .]

t t

t

t

t t

t

MW p p
h f
MWh v

su sd
EFOR pu q
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Technical characteristics of hydro plants ( )
• Maximum and minimum output
• Production function (efficiency for conversion of water inflow to 

electric power)
• Round-trip efficiency of pumped storage hydro plants

– Only this ratio of the energy consumed to pump the water is recovered by 
turbining it

3

Max and min output [ ] ,
Production function [ / ]
Efficiency [ . .]

h h

h

h

MW p p
kWh m c
p u 

3

Max and min output [ ] ,
Production function [ / ]
Efficiency [ . .]

h h

h

h

MW p p
kWh m c
p u 



109Transmission Expansion Planning

Technical characteristics of hydro reservoirs ( )
• Maximum and minimum reserve
• Initial reserve for every year

– Final reserve = initial reserve

• Stochastic inflows independent for every year

• Assumption: There is no connection in reservoir levels or inflows 
between consecutive years

3

3

3

Max and min reserve [ ] ,
Initial and final reserve [ ]
Stochastic inflows [ / ]

r r

r

pr

hm r r
hm r
m s i



3

3

3

Max and min reserve [ ] ,
Initial and final reserve [ ]
Stochastic inflows [ / ]

r r

r
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hm r r
hm r
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Hydro topology

r1 r2

r3

h1 h2

h3
           Hydro plant upstream of reservoir ( ) ( , ) ( 1, 3)
Pumped hydro plant upstream of reservoir ( ) ( , ) ( 3, 2)
Reservoir upstream of            hydro plant ( ) ( , ) ( 2, 2)
Reserv

h up r hur h r h r
h up r hpr h r h r
h dw r ruh r h r h





oir upstream of pumped hydro plant ( ) ( , ) ( 3, 3)
Reservoir upstream of reservoir ( ) ( , ) ( 1, 3)

h dw r rph r h r h
r up r rur r r r r

 

           Hydro plant upstream of reservoir ( ) ( , ) ( 1, 3)
Pumped hydro plant upstream of reservoir ( ) ( , ) ( 3, 2)
Reservoir upstream of            hydro plant ( ) ( , ) ( 2, 2)
Reserv

h up r hur h r h r
h up r hpr h r h r
h dw r ruh r h r h





oir upstream of pumped hydro plant ( ) ( , ) ( 3, 3)
Reservoir upstream of reservoir ( ) ( , ) ( 1, 3)

h dw r rph r h r h
r up r rur r r r r

 

Only one spillage per 
reservoir can be considered
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Scenario tree. Ancestor and descendant

Scenario 1
Scenario 1

Scenario 3

Scenario 4

Scenario 3

Scenario 2( 02, 01)p sc( 02, 01)p sc

( 02, 03)p sc( 02, 03)p sc

( 03, 04)p sc( 03, 04)p sc

( 03, 03)p sc( 03, 03)p sc

( 03, 01)p sc( 03, 01)p sc

( 01, 01)p sc( 01, 01)p sc
( 03, 02)p sc( 03, 02)p sc

3

Scenario probability [ . .]
[ /Stochastic i s ]nflow

p

pr

p u p
m s i



3

Scenario probability [ . .]
[ /Stochastic i s ]nflow

p

pr

p u p
m s i





Tree data

Tree relations

Scenario
Period
Scenario tree ( , )

p
p





Scenario
Period
Scenario tree ( , )

p
p





Tree structure

( ) ( 02, 03) ( 03, 03)a p sc a p sc        ( ) ( 02, 03) ( 03, 03)a p sc a p sc        
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Technical characteristics of transmission lines ( )
• Resistance
• Reactance
• Maximum flow

Resistance [ . .]
Reactance [ . .]
Maximum flow [ ]

dd

dd

dd

p u R
p u X
MW F







Resistance [ . .]
Reactance [ . .]
Maximum flow [ ]

dd

dd

dd

p u R
p u X
MW F
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Technical characteristics of transmission lines ( )
• Overnight investment cost
• Fixed charge rate

– Annual investment cost = Overnight investment cost x Fixed charge rate

Annual investment cost [€] ddf Annual investment cost [€] ddf 
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Other system parameters
• Energy not served cost
• Operating power reserve not served
• Operating power reserve
• Base power

1

Energy not served cost [€ / ]
Power  not served cost [€ / ]
Operating reser
B

ve [ ]
[ase power ]

ps

B

MWh v
MW v

MW O
M SW




1

Energy not served cost [€ / ]
Power  not served cost [€ / ]
Operating reser
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ve [ ]
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Investment variables

• Transmission line exists in year 

 Candidate line exists in year 0,1 yddy IC  Candidate line exists in year 0,1 yddy IC 
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Operation variables for each year

• Commitment, startup, and shutdown of thermal units

• Production of thermal and hydro units

• Consumption of pumped storage hydro plants

• Reservoir levels

• Energy not served for each node, and power not served

Production of a thermal or hydro unit [ ] ,ypsn hyt psnMW P P Production of a thermal or hydro unit [ ] ,ypsn hyt psnMW P P 

 Commitment, startup and shutdown 0,1 , ,pst pst psty y yUC SU SD   Commitment, startup and shutdown 0,1 , ,pst pst psty y yUC SU SD  

Consumption of a hydro plant [ ] snhypMW C Consumption of a hydro plant [ ] snhypMW C 

Energy and power not served [ ] ,ps d sy pynMW ENS PNS Energy and power not served [ ] ,ps d sy pynMW ENS PNS 

3Reservoir level [ ] py rhm R3Reservoir level [ ] py rhm R
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Operation variables for each year
• Flow for the transmission lines

• Voltage angle in any node

Flow [ ] ddnypsMW F 
Flow [ ] ddnypsMW F 


Voltage angle [ ] yps dnrad Voltage angle [ ] yps dnrad 
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Constraints: Operating power reserve

Committed output of thermal units
+ Maximum output of hydro plants
+ Power not served
≥ Demand
+ Operating reserve for peak load level, subperiod,

period and scenario [MW]

Committed output of thermal units
+ Maximum output of hydro plants
+ Power not served
≥ Demand
+ Operating reserve for peak load level, subperiod,

period and scenario [MW]

1 1( )t pst h py s ps ps
t

y
h

ypUC p PNS D psyO I        1 1( )t pst h py s ps ps
t

y
h

ypUC p PNS D psyO I       
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Constraints: Generation and load balance for each node

Generation of thermal units
+ Generation of storage hydro plants
– Consumption of pumped storage hydro plants
+ Energy not served
+ Flow from incoming lines
– Flow from outgoing lines
= Demand for each node, load level, subperiod,

period, year and scenario [MW]

Generation of thermal units
+ Generation of storage hydro plants
– Consumption of pumped storage hydro plants
+ Energy not served
+ Flow from incoming lines
– Flow from outgoing lines
= Demand for each node, load level, subperiod,

period, year and scenario [MW]

y y y y dpsnt psnh psnh ps
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• All the weekdays of the same month are similar (same for weekends)
• Commitment decision of a thermal unit

• Assumption: no startup between periods of consecutive years

Constraints: Commitment, startup and shutdown

Weekdays Weekdays WeekdaysWeekend Weekend
s s+1 s s+1 s

Period p-1 Period p Period p+1

1

0
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• Startup of thermal units can only be made in the transition between consecutive 
weekend and weekdays

• Shutdown only in the opposite transition

Constraints: Commitment, startup and shutdown

Commitment of a thermal unit in a weekend
– Commitment of a thermal unit in the previous weekday
= Startup of a thermal unit in this weekend 
– Shutdown of a thermal unit in this weekend [p.u.]

Commitment of a thermal unit in a weekend
– Commitment of a thermal unit in the previous weekday
= Startup of a thermal unit in this weekend 
– Shutdown of a thermal unit in this weekend [p.u.]

1 1 ( )pst p s t py y y yst pstUC UC SU SD ypst a      
 

    1 1 ( )pst p s t py y y yst pstUC UC SU SD ypst a      
 

    

Commitment of a thermal unit in a weekday
– Commitment of a thermal unit in the weekend of previous period
= Startup of a thermal unit in this weekday 
– Startup of a thermal unit in this weekday [p.u.]

Commitment of a thermal unit in a weekday
– Commitment of a thermal unit in the weekend of previous period
= Startup of a thermal unit in this weekday 
– Startup of a thermal unit in this weekday [p.u.]

1 1 1ps t pst py y y ys t ps tUC UC SU SD psy t         1 1 1ps t pst py y y ys t ps tUC UC SU SD psy t         
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Constraints: Commitment and production

Production of a thermal unit
≤ Commitment of a thermal unit times the maximum 

output reduced by availability rate [MW]

Production of a thermal unit
≤ Commitment of a thermal unit times the maximum 

output reduced by availability rate [MW]

(1 ) (1 )pst t t psnt psty ty tyUC p q P U yC p q psnt       (1 ) (1 )pst t t psnt psty ty tyUC p q P U yC p q psnt       

Production of a thermal unit
≥ Commitment of a thermal unit times the minimum output 

reduced by availability rate [MW]

Production of a thermal unit
≥ Commitment of a thermal unit times the minimum output 

reduced by availability rate [MW]

• If the thermal unit is committed ( ) it can produce
between its minimum and maximum output

• If the thermal unit is not committed ( ) it can’t produce
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Constraints: Water balance for each reservoir
Reservoir volume at the beginning of the period

– Reservoir volume at the end of the period
+ Natural hydro inflows
– Spills from this reservoir
+ Spills from upstream reservoirs
+ Turbined water from upstream storage hydro plants
– Turbined and pumped water from this reservoir
+ Pumped water from upstream pumped hydro plants = 0 for each reservoir,

period, year and scenario 
[hm3]

Reservoir volume at the beginning of the period
– Reservoir volume at the end of the period
+ Natural hydro inflows
– Spills from this reservoir
+ Spills from upstream reservoirs
+ Turbined water from upstream storage hydro plants
– Turbined and pumped water from this reservoir
+ Pumped water from upstream pumped hydro plants = 0 for each reservoir,

period, year and scenario 
[hm3]

1
( )

( ) ( )

( ) ( )

/ /

/ / 0 ( )

p r pr pr pr pr
r up r

psn psnh h psn psnh h
sn sn

h up r h dw r

psn psnh h h psn psnh h h
sn sn

h up r

y y y y

y y

y y

h dw r

R R i S S

d P c d P c

d C c d p ayC c r

    

 

     






 

 

   

 

    


 

 

1
( )

( ) ( )

( ) ( )

/ /

/ / 0 ( )

p r pr pr pr pr
r up r

psn psnh h psn psnh h
sn sn

h up r h dw r

psn psnh h h psn psnh h h
sn sn

h up r

y y y y

y y

y y

h dw r

R R i S S

d P c d P c

d C c d p ayC c r

    

 

     






 

 

   

 

    


 

 



125Transmission Expansion Planning

Constraints: Operation limits
Reservoir volumes between limits for each hydro reservoir [hm3]Reservoir volumes between limits for each hydro reservoir [hm3]

Operation power lower than installed capacity [MW]Operation power lower than installed capacity [MW]

0

r pr r

r P
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y r r

r R r pr
R yR r r

y
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 , , 0,1y ypst pst pstyUC SU S yD pst     , , 0,1y ypst pst pstyUC SU S yD pst    

Commitment, startup and shutdown for each unit [MW]Commitment, startup and shutdown for each unit [MW]
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Constraints: DC linearized load flow and flow limits

Flow in existing lines as a function of the voltage angles of beginning 
and ending nodes [MW]

Flow in existing lines as a function of the voltage angles of beginning 
and ending nodes [MW]

ypsnd ypsnd
ypsndd B

dd

F S ypsndd
X
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dd

F S ypsndd
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Flow in candidate  lines as a function of the voltage angles of beginning 
and ending nodes [MW]

Flow in candidate  lines as a function of the voltage angles of beginning 
and ending nodes [MW]

(1 )

(1 )
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ypsndd B dd ydd
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ypsndd B dd ydd
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Constraints: Flow limits and voltage angle

Flow of existing lines below limit for every year [MW]Flow of existing lines below limit for every year [MW]

dd ypsndd ddF F F ypsndd       dd ypsndd ddF F F ypsndd       

Flow of candidate lines below limit for every year [MW]Flow of candidate lines below limit for every year [MW]

dd ydd ypsndd dd yddF IC F F IC ypsndd        dd ydd ypsndd dd yddF IC F F IC ypsndd        

Reference angle [rad]Reference angle [rad]

* 0ypsnd ypsn  * 0ypsnd ypsn  
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Constraints: Installation decision in consecutive years

Existence of an installed line in the following year [p.u.]Existence of an installed line in the following year [p.u.]

1y dd yddIC IC ydd   1y dd yddIC IC ydd   



129Transmission Expansion Planning

Weighted-sum objective function

• Minimize
– Transmission investment costs [€]

– Thermal unit expected variable (fuel, O&M, emission) costs [€]

– Expected penalties introduced in the objective function for energy not 
served and power non served [€]

p t pst p t pst p psn t pst
pst pst psnt

p psn t psnt
psn

y y y
y

t

y y

y
y

p su SU p sd SD p d fUC
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Long (Short) Run Marginal Cost (LRMC-SRMC)

• Dual variable of generation and load balance in each node [€/MW]
– Change in the objective function due to a marginal increase in the demand 

when binary variables (investment, commitment, startup, and shutdown) are 
relaxed (LRMC) or binary/fixed (SRMC)

• Long/Short Run Marginal Cost = dual variable / load level duration / 
scenario probability. Expressed in [€/MWh]

 or / /ypypsn n psd psndLRMC SRMC d p psndy    or / /ypypsn n psd psndLRMC SRMC d p psndy   
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y y y y d
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Prototype TEP.
Computer implementation

5

1. Transmission Expansion Planning
2. Simple TEP models
3. Modeling issues
4. Prototype TEP. Mathematical formulation
5. Prototype TEP. Computer implementation
6. Takeaways
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openTEPES Open Generation, Storage, and Transmission Operation and Expansion 
Planning Model with RES and ESS in Pyomo

(https://pascua.iit.comillas.edu/aramos/openTEPES/index.html) (https://github.com/IIT-EnergySystemModels/openTEPES)
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Main modeling features (i)

• Generation and transmission operation and expansion planning
• Network-constrained unit commitment (NCUC) 
• DC power flow (DCPF) with losses
• Hourly, bi-hourly, etc. time steps
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Main modeling features (ii)

• Energy Storage Systems (ESS), e.g., hydropower plants, open- and 
closed-loop pumped-storage hydro, battery

• Pumped-storage hydro (PSH) or batteries operate shifting energy 
between different timeframes and represent a small modification of 
the opera on variable cost → a detailed system operation modeling 
is mandatory
• Hourly operation
• Unit-based modeling of energy storage units 
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Main code features

• Simplicity and transparency
• Code is written to be read by 

humans
• Tight and compact formulation
• Careful implementation. 

Numerical stability
• Scalability: from small- to large-

scale cases
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Sets
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Demand and operating reserves

• Balance of generation and demand [GW]
• Upward and downward operating reserves [GW] provided by controllable 

generators (CCGT, storage hydro) and ESS (pumped-storage hydro, 
batteries), including activation of these reserves [GWh]

• Reserve activation: a proportion (e.g., 25-30 %) of the power provided as 
operating reserves that are asked to be deployed as energy
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Parameters. Demand and operating reserves
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Thermal subsystem
• Maximum and minimum output 

of the second block of a 
committed unit (all except the 
VRES units) [p.u.]

• Total output of a committed 
unit [GW]

• Logical relation between 
commitment, startup, and 
shutdown status of a 
committed unit [p.u.]

• Maximum ramp up and down 
for the second block of a 
thermal unit [p.u.]

• Minimum up time and down 
time of a thermal unit [h]
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Hydro and storage subsystems
• Power plants: hydro, open-loop 

pumped-storage hydro (PSH) 
aggregated in management units, 
closed-loop PSH treated 
individually, and system battery
storage

• ESS energy inventory (only for 
load levels multiple of 24 or 168 h 
depending on the ESS type) 
[TWh]

• Total charge of an ESS unit [GW]
• Maximum and minimum charge 

of an ESS [p.u.]
• Incompatibility between charge 

and discharge of an ESS [p.u.]
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Variable renewable energy sources (VRES)

• Power plants: solar PV, solar thermal, onshore wind, biomass
• Distinction between existing onshore wind and a new one
• Maximum and minimum hourly variable generation
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Parameters. Generation
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Parameters. Transmission network
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Variables. ENS and generation
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Variables. Transmission network
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Objective function
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Constraints. Operation bounded by investment 
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Constraints. Balance and operating reserves
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Constraints. ESS Inventory. Total output

Ricobayo
hydroelectric 
power plant
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Constraints. Charge/discharge of ESS. Commitment, startup, 
shutdown

Source: Wikipedia
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Constraints. Ramps, minimum up- and downtime
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Constraints. Transmission network. DC power flow

Source: REE
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Constraints. Bounds
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Case study: Spain 2030

Biomass
1%

CCGT
15%

CL_Bat
1%

CL_PSH
2%

CL_PSH_20h
1% CL_PSH_40h

0%

CL_PSH_60h
1%

CL_PSH_8h
1%Cogeneration

2%

Hydro_NonUGH
1%Hydro_UGH

5%

Nuclear
2%

OL_PSH
5%

Onshore_wind
40%

Solar_PV
23%

Solar_Thermal
1%

Installed capacity

• 10-year Integrated National Energy 
and Climate Plan (NECP) 

• Installed capacity: 165,000 MW
• Half of the nuclear units phased out 

(3,100 MW), no coal units, existing 
CCGT (24,500 MW)

• Significant investments in solar PV 
(37,500 MW) and onshore wind 
(65,200 MW)

• Existing (11,500 MW) and additional 
pumped-storage hydro (5,300 MW)

• Batteries forced to be installed 
(1,000 MW)
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Why flexibility will be needed in future electric systems?

1. Conventional generation is being phased out
2. VRES introduce additional flexibility requirements

– Flexibility mechanisms:
• ESS (Energy Storage Systems) (PSH, batteries)
• Flexible electricity generation (CCGT, hydro)
• Solar Thermal
• Flexible demand (DSM)
• Electric Vehicle (EV)
• Grid expansion
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Operational flexibility

• Ability of the system to withstand the uncertainty and variability in 
generation and electricity demand while maintaining the desired 
reliability at an affordable cost

• Measure: the contribution of each dispatchable technology to the 
variation of the (net) demand at different time horizons (monthly, 
weekly, daily)
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System operation

Energy demand: 334,270 GWh
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Firmness/Electric Load Carrying Capability (ELCC)

• Capacity factors of the different technologies at peak hours of 
demand and net demand
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Flexibility

Technology contribution to the monthly/weekly variation of the net 
demand (difference between the value and its mean)
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Conclusions

• Future electric systems with a high share of VRES will require 
flexible generation and ESS

• A detailed operation model is mandatory and suitable for capturing 
the operation of ESS

• At peak net-demand hours, CCGT, hydro, open- and closed-loop PSH 
have larger capacity factors while VRES decrease their capacity 
factor

• Flexibility provided by CCGT, hydro, PSH, and batteries
• The higher the storage capacity the more ESS is used (PSH with large 

reservoirs preferred over smaller ones). Batteries compete with the 
PSH with small size (8 h)
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• How is the European system going to be in 2025 and 2030 from an adequacy 
point of view?

• Like Reliability Assessment and Performance Analysis done by NERC in the USA

MAF (Mid Term Adequacy Forecast) 2020
(https://www.entsoe.eu/outlooks/maf/Pages/default.aspx)
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Energy generation mix
Europe

Spain Germany France UK

Italy

Norway
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Research projects (i)
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Research projects (ii)
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Research projects (iii)
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Research projects (iv)
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StarNetLite_TEPM Long-Term Transmission Expansion Model
(https://pascua.iit.comillas.edu/aramos/StarNetLite_TEPM.zip)

• Files
– Microsoft Excel interface for input data and output results 

StarNetLite_TEPM.xlsm
– GAMS file StarNetLite_TEPM.gms

• How to run it from Windows
– Save the Excel workbook if data have changed
– Run the model
– The model creates

• tmp_ StarNetLite_TEPM.xlsx with the output results
• tmp_ StarNetLite_TEPM.gdx with the output results
• StarNetLite_TEPM.lst as the listing file of the GAMS execution

– Load the results into the Excel interface

Run

Load results
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StarNetLite_TEPM Long-Term Transmission Expansion Model
(https://pascua.iit.comillas.edu/aramos/StarNetLite_TEPM.zip)

• Files
– Text files for input data
– GAMS file StarNetLite_TEPM.gms

• How to run it from MacOS
– Run the model from GAMS Studio with these parameters

• u1= StarNetLite_TEPM u2=1 u3=1

– The model creates
• tmp_ StarNetLite_TEPM.gdx with the output results
• StarNetLite_TEPM.lst as the listing file of the GAMS execution



170Transmission Expansion Planning

Menu
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Input Data. Indices
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Input Data. Cost of energy or power not served. Demand 
growth. Base power
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Input Data. Demand, operating reserve and duration
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Input Data. Thermal and hydro parameters
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Scenario tree

( 03, 03)p sc( 03, 03)p sc

( 01, 01)p sc( 01, 01)p sc

Scenario 1

Scenario 3

( 02, 01)p sc( 02, 01)p sc

( 03, 01)p sc( 03, 01)p sc

( 02, 03)p sc( 02, 03)p sc

( 04, 03)p sc( 04, 03)p sc

( 04, 01)p sc( 04, 01)p sc

( 05, 03)p sc( 05, 03)p sc

( 05, 01)p sc( 05, 01)p sc

( 06, 03)p sc( 06, 03)p sc

( 06, 01)p sc( 06, 01)p sc

Scenario 2
( 03, 02)p sc( 03, 02)p sc

( 02, 02)p sc( 02, 02)p sc ( 04, 02)p sc( 04, 02)p sc

( 05, 02)p sc( 05, 02)p sc

( 06, 02)p sc( 06, 02)p sc
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Input Data. Inflows
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Input Data. Existing and candidate lines
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StarNetLite_TEPM (i)
$Title StarNet Lite Long Term Transmission Expansion Planning Model (TEPM)

$OnText

Developed by

Andrés Ramos
Instituto de Investigacion Tecnologica
Escuela Tecnica Superior de Ingenieria - ICAI
UNIVERSIDAD PONTIFICIA COMILLAS
Alberto Aguilera 23
28015 Madrid, Spain
Andres.Ramos@comillas.edu
https://pascua.iit.comillas.edu/aramos/Ramos_CV.htm

October 23, 2017

$OffText

$OnEmpty OnMulti OffListing

* options to skip or not the Excel input/output
* if you want to skip it put these values to 1
* in such a case input files have to be already in the directory created by any other means
* output file will be the tmp.gdx that can be exported to Excel manually
$ifthen.OptSkipExcelInput %gams.user2% == ""
$  setglobal OptSkipExcelInput 0
$else.OptSkipExcelInput
$  setglobal OptSkipExcelInput %gams.user2%
$endif.OptSkipExcelInput

$ifthen.OptSkipExcelOutput %gams.user3% == ""
$  setglobal OptSkipExcelOutput 0
$else.OptSkipExcelOutput
$  setglobal OptSkipExcelOutput %gams.user3%
$endif.OptSkipExcelOutput

* solve the optimization problems until relative optimality of 1 %
option OptcR = 0.01, IterLim=1000000, ResLim=3600, MINLP=SBB
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StarNetLite_TEPM (ii)

* definitions

sets
y              year

   ly(y)          not last year
   z (y)                   year
   p                        period
   p1(p)          first     period
   pn(p)          last      period
   s                     subperiod
   s1(s)          first  subperiod
   n                    load level
   n1(n)          first load level
   sc             scenario
   sca  (sc     ) scenario
   scp  (sc,p   ) tree defined as scenario and period
   scscp(sc,p,sc) ancestor        sc2    of node (sc1 p)
   scsch(sc,sc,p) descendant     (sc2 p) of node  sc1
   scscr(sc,p,sc) representative  sc2    of node (sc1 p)
   spsn(sc,p,s,n) active load levels for each scenario
   psn (   p,s,n) active load levels

   g              generating unit
   t (g)          thermal    unit
   h (g)          hydro      plant
   r                         reservoir
   rs(r)          storage    reservoir
   ruh(r,g)              reservoir   upstream of        hydro plant
   rph(r,g)              reservoir   upstream of pumped hydro plant
   hur(g,r)              hydro plant upstream of reservoir
   hpr(g,r)       pumped hydro plant upstream of reservoir
   rur(r,r)              reservoir 1 upstream of reservoir 2

   nd             node (bus)
   la(nd,nd)      existing and candidate lines
   lc(nd,nd)                   candidate lines
   le(nd,nd)      existing               lines
   gnd(g,nd)      location of a unit at a node

alias (sc,scc), (r,rr), (nd,ni,nf)
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StarNetLite_TEPM (iii)
parameters

pDemand (  sc,      p,s,n) hourly load by node            [GW]
   pDemShare   (     nd         ) demand share                   [p.u.]
   pOperReserve(  sc,      p,s,n) hourly operating reserve       [GW]
   pDuration   (           p,s,n) duration                       [h]
   pCommitt    (y,sc,g,    p,s  ) commitment of the unit         [0-1]
   pProduct    (y,sc,g,    p,s,n) production of the unit         [MW]
   pEnergy     (y,sc,g,    p,s,n) energy     of the unit         [MWh]
   pLRMC       (y,sc,nd,   p,s,n) long run marginal cost         [€ per MWh]
   pReserve    (y,sc,r,    p    ) reservoir level                [hm3]
   pWValue     (y,sc,r,    p    ) water value                    [M€ per hm3]
   pFlow       (y,sc,nd,nd,p,s,n) flow                           [MW]
   pTheta      (y,sc,nd,   p,s,n) voltage angle                  [rad]

   pInstalCapT (nd,nd,y)          TEP investment decision        [0-1]

   pDemIncr     (y)                   yearly demand increase     [p.u.]
   pCumDemIncr  (y)               cum yearly demand increase     [p.u.]
   pOrder       (y)               ordinal of the year

   pEFOR        (g)               EFOR                           [p.u.]
   pMaxProd     (g)               maximum output                 [GW]
   pMinProd     (g)               minimum output                 [GW]
   pMaxCons     (g)               maximum consumption            [GW]
   pSlopeVarCost(g)               slope     variable cost        [M€ per GWh]
   pInterVarCost(g)               intercept variable cost        [M€ per   h]
   pStartupCost (g)               startup            cost        [M€]
   pMaxReserve  (r)               maximum reserve                [km3]
   pMinReserve  (r)               minimum reserve                [km3]
   pIniReserve  (r)               initial reserve                [km3]
   pProdFunct   (g)               production function            [GWh per km3]
   pEffic       (g)               pumping efficiency             [p.u.]
   pInflows     (r,sc,p)          inflows                        [km3]
   pENSCost                       energy non-served cost         [M€ per GWh]
   pPNSCost                       power  non-served cost         [M€ per GW ]

   pProbsc        (sc,p)          probability of a given period

   pR           (nd,nd)           line resistance                [p.u.]
   pX           (nd,nd)           line reactance                 [p.u.]
   pTTC         (nd,nd)           total transfer capacity        [GW]
   pFixedCost   (nd,nd)                     fixed    cost        [M€]

   pSbase                         base power                     [GW]

   lag(p)                         backward counting of period
   scaux                          scenario number
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StarNetLite_TEPM (iv)
variables

vTotalTCost total system          cost       [M€]
   vTotalFCost                    total system fixed    cost       [M€]
   vTotalVCost                    total system variable cost       [M€]

binary   variables
   vCommitt  (y,sc,p,s,  g)       commitment of the unit           [0-1]
   vStartup  (y,sc,p,s,  g)       startup     of the unit          [0-1]
   vShutdown (y,sc,p,s,  g)       shutdown    of the unit          [0-1]
   vCumInstDc(y,         nd,nd)   installation decision in year y  [0-1]

positive variables
   vProduct  (y,sc,p,s,n,g)       production  of the unit          [GW]
   vConsump  (y,sc,p,s,n,g)       consumption of the unit          [GW]
   vLosses   (y,sc,p,s,n,nd)      losses in a node                 [GW]
   vENS      (y,sc,p,s,n,nd)      energy non served                [GW]
   vPNS      (y,sc,p,s    )       power  non served                [GW]
   vWtReserve(y,sc,p,    r)       water reserve at end of period   [km3]
   vSpillage (y,sc,p,    r)       spillage                         [km3]

variables
   vFlow     (y,sc,p,s,n,nd,nd)   flow                             [GW]
   vTheta    (y,sc,p,s,n,nd   )   voltage angle                    [rad]

equations
   eTotalTCost                    total system          cost       [M€]
   eTotalFCost                    total system fixed    cost       [M€]
   eTotalVCost                    total system variable cost       [M€]
   eOpReserve(y,sc,p,s,n      )   operating reserve                [GW]
   eBalance  (y,sc,p,s,n,nd   )   load generation balance          [GW]
   eInstlCapC(y,      nd,nd   )   consecutive installed capacity   [GW]
   eInstlCap1(y,sc,p,s,n,nd,nd)   max flow by installed capacity   [GW]
   eInstlCap2(y,sc,p,s,n,nd,nd)   max flow by installed capacity   [GW]
   eFlowNetN1(y,sc,p,s,n,nd,nd)   flow for each candidate line     [GW]
   eFlowNetN2(y,sc,p,s,n,nd,nd)   flow for each candidate line     [GW]
   eFlowNetEx(y,sc,p,s,n,nd,nd)   flow for each existing  line     [GW]
   eLosses   (y,sc,p,s,n,nd   )   losses in a node                 [GW]
   eMaxOutput(y,sc,p,s,n,g)       max output of a committed unit   [GW]
   eMinOutput(y,sc,p,s,n,g)       min output of a committed unit   [GW]
   eProdctPer(y,sc,p,s,n,g)       unit production in same period   [GW]
   eStrtUpPer(y,sc,p,s,  g)       unit startup    in same period
   eStrtUpNxt(y,sc,p,s,  g)       unit startup    in next period
   eWtReserve(y,sc,p,    r)       water reserve                    [km3] ;
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StarNetLite_TEPM (v)
* mathematical formulation

eTotalTCost .. vTotalTCost =e= vTotalFCost + vTotalVCost ;

eTotalFCost .. vTotalFCost =e= sum[(y,lc), pFixedCost(lc)*vCumInstDc(y,lc)] ;

eTotalVCost .. vTotalVCost =e= sum[(y,spsn(sc,p ,s,n),nd), pProbSc(sc,p)*pDuration(p,s,n)*pENSCost *vENS (y,sc,p,s,n,nd)] +
sum[(y,scp (sc,p),s      ), pProbSc(sc,p)                 *pPNSCost *vPNS (y,sc,p,s )] +
sum[(y,scp (sc,p),s,   t ), pProbSc(sc,p)                 *pStartupCost (t)*vStartup(y,sc,p,s,  t )] +
sum[(y,spsn(sc,p ,s,n),t ), pProbSc(sc,p)*pDuration(p,s,n)*pInterVarCost(t)*vCommitt(y,sc,p,s,  t )] +
sum[(y,spsn(sc,p ,s,n),t ), pProbSc(sc,p)*pDuration(p,s,n)*pSlopeVarCost(t)*vProduct(y,sc,p,s,n,t )] ;

eOpReserve(y,spsn(sc,p,s,n1(n)         )) $pOperReserve(sc,p,s,n) .. sum[t,   pMaxProd(t)*vCommitt(y,sc,p,s,  t)] + sum[h,         pMaxProd(           h)] + vPNS(y,sc,p,s ) =g= [pDemand(sc,p,s,n) + pOperReserve(sc,p,s,n)] * 
pCumDemIncr(y) ;
eBalance (y,spsn(sc,p,s,   n),   nd )                         .. sum[gnd(g,nd),       vProduct(y,sc,p,s,n,g)] - sum[gnd(h,nd), vConsump(y,sc,p,s,n,h)] + vENS(y,sc,p,s,n,nd) =e=  pDemand(sc,p,s,n) * pDemShare(nd)           * 
pCumDemIncr(y) +

sum[la(nd,nf), vFlow(y,sc,p,s,n,nd,nf)] - sum[la(ni,nd), vFlow(y,sc,p,s,n,ni,nd)] + vLosses(y,spsn,nd) ;

eInstlCapC(ly(y),lc )            .. vCumInstDc(y,lc) =l= vCumInstDc(y+1,lc) ;

eInstlCap1(y,spsn(sc,p,s,   n),lc(ni,nf)) .. vFlow(y,sc,p,s,n,ni,nf) /     pTTC(ni,nf) =g=                                                                                            - vCumInstDc(y,ni,nf) ;
eInstlCap2(y,spsn(sc,p,s,   n),lc(ni,nf)) .. vFlow(y,sc,p,s,n,ni,nf) /     pTTC(ni,nf) =l=                                                                                              vCumInstDc(y,ni,nf) ;
eFlowNetN1(y,spsn(sc,p,s,   n),lc(ni,nf)) .. vFlow(y,sc,p,s,n,ni,nf) / 1e3*pTTC(ni,nf) =g= [vTheta(y,sc,p,s,n,ni) - vTheta(y,sc,p,s,n,nf)] * pSbase / pX(ni,nf) / 1e3*pTTC(ni,nf) - 1 + vCumInstDc(y,ni,nf) ;
eFlowNetN2(y,spsn(sc,p,s,   n),lc(ni,nf)) .. vFlow(y,sc,p,s,n,ni,nf) / 1e3*pTTC(ni,nf) =l= [vTheta(y,sc,p,s,n,ni) - vTheta(y,sc,p,s,n,nf)] * pSbase / pX(ni,nf) / 1e3*pTTC(ni,nf) + 1 - vCumInstDc(y,ni,nf) ;
eFlowNetEx(y,spsn(sc,p,s,   n),le(ni,nf)) .. vFlow(y,sc,p,s,n,ni,nf)                   =e= [vTheta(y,sc,p,s,n,ni) - vTheta(y,sc,p,s,n,nf)] * pSbase / pX(ni,nf)                                             ;

eLosses(y,spsn(sc,p,s,n),nd) .. vLosses(y,sc,p,s,n,nd) =e= pSbase * sum[la(ni,nd), (1-cos(vTheta(y,sc,p,s,n,ni) - vTheta(y,sc,p,s,n,nd))) * pR(la)/[sqr(pR(la))+sqr(pX(la))]] +
pSbase * sum[la(nd,nf), (1-cos(vTheta(y,sc,p,s,n,nd) - vTheta(y,sc,p,s,n,nf))) * pR(la)/[sqr(pR(la))+sqr(pX(la))]] ;

eMaxOutput(y,spsn(sc,p,s,n),t) $pMaxProd(t) .. vProduct(y,sc,p,s,n,t) / pMaxProd(t) =l= vCommitt(y,sc,p,s,t) ;
eMinOutput(y,spsn(sc,p,s,n),t) $pMinProd(t) .. vProduct(y,sc,p,s,n,t) / pMinProd(t) =g= vCommitt(y,sc,p,s,t) ;

eProdctPer(y,spsn(sc,p,s1(s),n),g) .. vProduct(y,sc,p,s+1,n,g) =l= vProduct(y,sc,p,s,n,g) ;

eStrtUpPer(y,scp(sc,p),s1(s),t) $[card(s) > 1              ] .. vCommitt(y,sc,p,s+1,t) =g=                      vCommitt(y,sc ,p  ,s  ,t)  + vStartup(y,sc,p,s+1,t) - vShutdown(y,sc,p,s+1,t) ;
eStrtUpNxt(y,scp(sc,p),s1(s),t) $[card(s) > 1 and not p1(p)] .. vCommitt(y,sc,p,s ,t) =g= sum[scscp(sc,p,scc), vCommitt(y,scc,p-1,s+1,t)] + vStartup(y,sc,p,s ,t) - vShutdown(y,sc,p,s ,t) ;

eWtReserve(y,scp(sc,p),      r) .. sum[scscp(sc,p,scc), vWtReserve(y,scc,p-1,r)] + pIniReserve(r) $p1(p) - vWtReserve(y,sc,p,r) +
pInflows(r,sc,p) - vSpillage(y,sc,p,r) + sum[rur(rr,r), vSpillage(y,sc,p,rr)]  +
sum{(s,n), pDuration(p,s,n)*sum[hur(h,r), vProduct(y,sc,p,s,n,h)/pProdFunct(h)]} -
sum{(s,n), pDuration(p,s,n)*sum[ruh(r,h), vProduct(y,sc,p,s,n,h)/pProdFunct(h)]} +
sum{(s,n), pDuration(p,s,n)*sum[hpr(h,r), vConsump(y,sc,p,s,n,h)/pProdFunct(h)*pEffic(h)]} -
sum{(s,n), pDuration(p,s,n)*sum[rph(r,h), vConsump(y,sc,p,s,n,h)/pProdFunct(h)*pEffic(h)]} =e= 0 ;

model mTEPM / all - eLosses / ;
mTEPM.SolPrint = 1 ; mTEPM.HoldFixed = 1 ; mTEPM.TryLinear = 1 ;
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StarNetLite_TEPM (vi)
* read input data from Excel and include into the model

file TMP / tmp_%gams.user1%.txt /
$OnEcho > tmp_%gams.user1%.txt

r1=    indices
o1=tmp_indices.txt
r2=    param
o2=tmp_param.txt
r3=    demand
o3=tmp_demand.txt
r4=    oprres
o4=tmp_oprres.txt
r5=    duration
o5=tmp_duration.txt
r6=    thermalgen
o6=tmp_thermalgen.txt
r7=    hydrogen
o7=tmp_hydrogen.txt
r8=    reservoir
o8=tmp_reservoir.txt
r9=    inflows
o9=tmp_inflows.txt
r10=    tree
o10=tmp_tree.txt
r11=    network
o11=tmp_network.txt

$OffEcho
* Mac OS X and Linux users must comment the following call and copy and paste the named ranges of the Excel interface into the txt files
$ifthen.OptSkipExcelInput '%OptSkipExcelInput%' == '0'
$call xls2gms m i="%gams.user1%.xlsm" @"tmp_%gams.user1%.txt"
$else.OptSkipExcelInput
$  log Excel input skipped
$endif.OptSkipExcelInput

sets
$include tmp_indices.txt
;
$include tmp_param.txt
table pDemand(sc,p,s,n)
$include tmp_demand.txt
table pOperReserve(sc,p,s,n)
$include tmp_oprres.txt
table pDuration(p,s,n)
$include tmp_duration.txt
table pThermalGen(g,*)
$include tmp_thermalgen.txt
table pHydroGen(g,*)
$include tmp_hydrogen.txt
table pReservoir(r,*)
$include tmp_reservoir.txt
table pInflows(r,sc,p)
$include tmp_inflows.txt
table pScnTree(sc,*)
$include tmp_tree.txt
table pNetwork(nd,nd,*)
$include tmp_network.txt
;

* Mac OS X and Linux users must comment the following execute
execute 'del tmp_"%gams.user1%".txt tmp_indices.txt tmp_param.txt tmp_demand.txt tmp_oprres.txt tmp_duration.txt tmp_thermalgen.txt tmp_hydrogen.txt tmp_reservoir.txt tmp_inflows.txt tmp_tree.txt 
tmp_network.txt' ;
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StarNetLite_TEPM (vii)
* determine the first and last period and the first subperiod

p1(p)      $[ord(p) =       1] = yes ;
s1(s)      $[ord(s) =       1] = yes ;
n1(n)      $[ord(n) =       1] = yes ;
pn(p)      $[ord(p) = card(p)] = yes ;
psn(p,s,n) $pDuration(p,s,n)   = yes ;
lag(p)    = card(p) - 2*ord(p) + 1   ;

* assignment of thermal units, storage hydro and pumped storage hydro plants

t (g) $[pThermalGen(g,'MaxProd' ) and pThermalGen(g,'FuelCost')] = yes ;
h (g) $[pHydroGen (g,'MaxProd' )                              ] = yes ;
rs(r) $[pReservoir (r,'MaxReserve') > 0                          ] = yes ;

* compute the cumulative yearly demand growth

ly(y) $[ord(y) < card(y)] = yes ;
z          (y)            = yes ;
pOrder (y) = ord(y) ;
pCumDemIncr(y) = prod[z $[pOrder(z) <= ord(y)], 1+pDemIncr(z)] ;
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StarNetLite_TEPM (viii)

* scaling of parameters

pDemand (sc,p,s,n) = pDemand (sc,p,s,n)      * 1e-3 ;
pOperReserve(sc,p,s,n) = pOperReserve(sc,p,s,n)      * 1e-3 ;
pENSCost = pENSCost * 1e-3 ;
pPNSCost = pPNSCost * 1e-3 ;

pEFOR (t)    = pThermalGen(t,'EFOR' )        ;
pMaxProd (t)    = pThermalGen(t,'MaxProd' ) * 1e-3 * [1-pEFOR(t)] ;
pMinProd (t)    = pThermalGen(t,'MinProd' ) * 1e-3 * [1-pEFOR(t)] ;
pSlopeVarCost(t)    = pThermalGen(t,'OMVarCost' ) * 1e-3 +

pThermalGen(t,'SlopeVarCost' ) * 1e-3 * pThermalGen(t,'FuelCost') ;
pInterVarCost(t)    = pThermalGen(t,'InterVarCost' ) * 1e-6 * pThermalGen(t,'FuelCost') ;
pStartupCost (t)    = pThermalGen(t,'StartupCost' ) * 1e-6 * pThermalGen(t,'FuelCost') ;

pMaxProd (h)    = pHydroGen (h,'MaxProd' ) * 1e-3 ;
pMinProd (h)    = pHydroGen (h,'MinProd' ) * 1e-3 ;
pMaxCons (h)    = pHydroGen (h,'MaxCons' ) * 1e-3 ;
pProdFunct (h)    = pHydroGen (h,'ProdFunct' ) * 1e+3 ;
pEffic (h)    = pHydroGen (h,'Efficiency' )        ;
pMaxReserve (r)    = pReservoir (r,'MaxReserve' ) * 1e-3 ;
pMinReserve (r)    = pReservoir (r,'MinReserve' ) * 1e-3 ;
pIniReserve (r)    = pReservoir (r,'IniReserve' ) * 1e-3 ;

pInflows(r,sc,p)    = pInflows (r,sc,p ) * 1e-6 * 3.6*sum[(s,n), pDuration(p,s,n)] ;

pR (ni,nf)   = pNetwork (ni,nf,'R' )        ;
pX (ni,nf)   = pNetwork (ni,nf,'X' )        ;
pTTC (ni,nf)   = pNetwork (ni,nf,'TTC' ) * 1e-3 ;
pFixedCost(ni,nf)   = pNetwork (ni,nf,'FixedCost') * pNetwork(ni,nf,'FxChargeRate') ;

pSbase = pSbase * 1e-3 ;

* assignment of all network lines (la) candidate lines (lc) and existing lines (le)

la(   ni,nf ) $pX (ni,nf)  = yes ;
lc(   ni,nf ) $pFixedCost(ni,nf)  = yes ;
le(la(ni,nf)) $[not lc(ni,nf)] = yes ;

* if the production function of a hydro plant is 0, it is changed to 1 and scaled to 1000
* if the efficiency          of a hydro plant is 0, it is changed to 1

pProdFunct(h) $[pProdFunct(h) = 0] = 1e3 ;
pEffic (h) $[pEffic (h) = 0] =   1 ;
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StarNetLite_TEPM (ix)
* bounds on variables

vProduct.up (y,sc,p,s,n,g)    = pMaxProd(g)    ;
vConsump.up (y,sc,p,s,n,g)    = pMaxCons(g)    ;

vPNS.up (y,sc,p,s )   = sum[n1(n), [pDemand(sc,p,s,n) + pOperReserve(sc,p,s,n)] * pCumDemIncr(y)] ;
vENS.up (y,sc,p,s,n,nd)   =             pDemand(sc,p,s,n) * pDemShare(nd)           * pCumDemIncr(y)  ;

vWtReserve.up(y,sc,p,r)        = pMaxReserve(r) ;
vWtReserve.lo(y,sc,p,r)        = pMinReserve(r) ;
vWtReserve.fx(y,sc,p,r) $pn(p) = pIniReserve(r) ;

vFlow.lo (y,sc,p,s,n,la)   = - pTTC(la) ;
vFlow.up (y,sc,p,s,n,la)   =   pTTC(la) ;

* voltage angle of the reference node is fixed to 0

vTheta.fx (y,sc,p,s,n,nd) $[ord(nd) = 1] = 0 ;
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StarNetLite_TEPM (x)

* define the nodes of the scenario tree and determine ancestor sc2 of node (sc1 p) and descendant (sc2 p) of node sc1

scp (    sc,p ) $[ord(p) >= pScnTree(sc,'FirstPeriod')                                       ] = yes ;
scscp(scp(sc,p),scc) $[ord(p) >  pScnTree(sc,'FirstPeriod') and ord(scc) = ord(sc)                ] = yes ;
scscp(scp(sc,p),scc) $[ord(p)  = pScnTree(sc,'FirstPeriod') and ord(scc) = pScnTree(sc,'Ancestor')] = yes ;
scsch(sc,scp(scc,p)) $scscp(scc,p,sc)                                                               = yes ;

pProbSc(sc,pn(p)) = pScnTree(sc,'Prob')/sum[scc, pScnTree(scc,'Prob')] ;
loop (p $[not p1(p)],

pProbSc(scp(sc,p+lag(p))) = sum[scsch(sc,scc,p+(lag(p)+1)), pProbSc(scc,p+(lag(p)+1))] ;
) ;

* delete branches with probability 0 and define the active load levels

scp (    sc,p ) $[pProbSc(sc,p) = 0                        ] =  no ;
scscp(    sc,p ,scc) $[pProbSc(sc,p) = 0 or pProbSc(scc,p-1) = 0] =  no ;
scsch(sc,scc,p )                                              = yes $scscp(scc,p,sc) ;
spsn (scp(sc,p),s,n) $psn (p,s,n)                            = yes ;

* determine the representative sc2 of node (sc1 p) for non-existing scenarios in the tree

loop (sc $sum[p, pProbSc(sc,p)],
scaux = ord(sc) ;
loop (p,

scscr(sc,p+lag(p),scc) $[ord(scc) = scaux] = yes ;
SCA(scc)               $[ord(scc) = scaux] = yes ;
scaux = sum[scscp(sca,p+lag(p),scc), ord(scc)] ;
SCA(scc)                                   =  no ;

) ;
) ;
SCA(sc) $sum[p, pProbSc(sc,p)] = yes ;
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StarNetLite_TEPM (xi)
* solve transmission expansion planning model

solve mTEPM using MINLP minimizing vTotalTCost ;

* scaling of the results

pInstalCapT(lc,y)             =                                       vCumInstDc.l(y,          lc)                                                       + eps ;

pCommitt(y,sca,t,    p,s ) = sum[scscr(sca,p,scc)                , vCommitt.l (y,scc,p,s,  t )                                                 ]     + eps ;
pProduct(y,sca,g,psn(p,s,n) ) = sum[scscr(sca,p,scc)                , vProduct.l (y,scc,p,s,n,g )                                                 ]*1e3 + eps ;
pEnergy (y,sca,g,psn(p,s,n) ) = sum[scscr(sca,p,scc)                , vProduct.l (y,scc,p,s,n,g )                *pDuration(p,s,n)                ]*1e3 + eps ;
pReserve(y,sca,rs(r),p      ) = sum[scscr(sca,p,scc)                , vWtReserve.l(y,scc,p,    r )                                                 ]*1e3 + eps ;
pWValue (y,sca,rs(r),p      ) = sum[scscr(sca,p,scc) $pProbSc(scc,p), eWtReserve.m(y,scc,p,    r )/sum[psn(p,s,n), pDuration(p,s,n)]/pProbSc(scc,p)]*1e3 + eps ;
pFlow (y,sca,la,psn(p,s,n)) = sum[scscr(sca,p,scc)                , vFlow.l (y,scc,p,s,n,la)                                                 ]*1e3 + eps ;
pTheta (y,sca,nd,psn(p,s,n)) = sum[scscr(sca,p,scc)                , vTheta.l (y,scc,p,s,n,nd)                                                 ]     + eps ;
pLRMC (y,sca,nd,psn(p,s,n)) = sum[scscr(sca,p,scc) $pProbSc(scc,p), eBalance.m (y,scc,p,s,n,nd)                /pDuration(p,s,n) /pProbSc(scc,p)]*1e3 + eps ;

* data output to xls file

put TMP putclose 'par=pProduct rdim=3 rng=Output!a1' / 'par=pEnergy rdim=3 rng=Energy!a1' / 'par=pReserve rdim=3 rng=WtrReserve!a1' / 'par=pWValue rdim=3 rng=WtrValue!a1' / 'par=pLRMC rdim=3 
rng=LRMC!a1' / 'par=pCommitt rdim=3 rng=UC!a1' / 'par=pInstalCapT rdim=2 rng=InstalCapT!a1' / 'par=pFlow rdim=4 rng=Flow!a1' / 'par=pTheta rdim=3 rng=Angle!a1' /

'text="Year"         rng=Output!a1' / 'text="Year"        rng=Energy!a1' / 'text="Year"         rng=WtrReserve!a1' / 'text="Year"        rng=WtrValue!a1' / 'text="Year"      
rng=LRMC!a1' / 'text="Year"         rng=UC!a1' / 'text="Node"            rng=InstalCapT!a1' / 'text="Year"      rng=Flow!a1' / 'text="Year"       rng=Angle!a1' /

'text="Scen"         rng=Output!b1' / 'text="Scen"        rng=Energy!b1' / 'text="Scen"         rng=WtrReserve!b1' / 'text="Scen"        rng=WtrValue!b1' / 'text="Scen"      
rng=LRMC!b1' / 'text="Scen"         rng=UC!b1' / 'text="Node"            rng=InstalCapT!b1' / 'text="Scen"      rng=Flow!b1' / 'text="Scen"       rng=Angle!b1' /

'text="Unit"         rng=Output!c1' / 'text="Unit"        rng=Energy!c1' / 'text="Reservoir"    rng=WtrReserve!c1' / 'text="Reservoir"   rng=WtrValue!c1' / 'text="Node"      
rng=LRMC!c1' / 'text="Unit"         rng=UC!c1' /                                              'text="Node"      rng=Flow!c1' / 'text="Node"       rng=Angle!c1' /

'text="Node"      rng=Flow!d1' /
execute_unload 'tmp_%gams.user1%.gdx' pProduct pEnergy pReserve pWValue pLRMC pCommitt pInstalCapT pFlow pTheta
*$ifthen.OptSkipExcelOutput '%OptSkipExcelOutput%' == 0
execute 'gdxxrw tmp_"%gams.user1%".gdx SQ=n EpsOut=0 O=tmp_"%gams.user1%".xlsx @tmp_"%gams.user1%".txt'
execute 'del    tmp_"%gams.user1%".gdx '
*$else.OptSkipExcelOutput
*$  log Excel output skipped
*$endif.OptSkipExcelOutput
execute 'del                                                                    tmp_"%gams.user1%".txt'

$OnListing
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Output Data. Production for year 1
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Output Data. Energy for year 1
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Output Data. Reservoir level for year 1
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Output Data. Water value for year 1
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Output Data. Long Run Marginal Cost for year 1

If TEP model is solved with binary investment decisions no marginal impact of those decisions is considered
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1. Transmission Expansion Planning
2. Simple TEP models
3. Modeling issues
4. Prototype TEP. Mathematical formulation
5. Prototype TEP. Computer implementation
6. Takeaways
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Task assignment

• At what threshold of transmission investment (fixed) cost does the 
potential new transmission line become economically viable 
(breakeven) in the sample model for installing the line in year 3?

• Assume that the transmission investment decisions have been 
already made, introduce the computation of congestion rents in 
GAMS and compare these congestion rents with the investment cost 
of a candidate transmission line

• Based on this model, think about how to implement mathematically 
the decision of opening lines (switching) in any period

• Analyze the impact of the losses (with and without) in the expansion 
decisions
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Takeaways

• Main drivers to build transmission lines
• Some characteristics to be considered in this model
• Non-random and random uncertainties affecting the analysis
• Main criteria used to define the best alternatives
• Decision framed as an MCDM solved by the weighted-sum method
• Where to use a transmission expansion planning model
• Input data and output results
• Mathematical techniques used to solve the model
• A prototype transmission expansion planning model
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