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Introduction

• Optimizing offer curves is still a challenge for 
generation companies taking part in spot markets
– A relevant part of their revenues stems directly from the spot 

market
– Operation costs also depend on the results of the spot 

market
– The spot market is a reference for longer-term transactions

• Offer curves derived with the optimization approaches 
proposed in the literature are in general not valid for real 
generation companies
– They may not comply with the technical and strategic 

constraints required by the generation companies or with 
formal limitations imposed by the market operator



Introduction

• We present a methodology to optimize offer curves 
considering a more practical approach
– We take valid offer curves as an initial point for the 

optimization
– We introduce modifications in these offer curves in order to 

maximize the expected profit of the generation company 
while complying with the constraints imposed by the user

• This assumption has evident advantages:
– Solution existence is guaranteed
– Modifications suggested by the model may provide valuable 

insight for the generation company strategy
– The resulting offer curves are valid to be submitted to the 

market operator
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Problem Description

• We consider a generation company that owns a mixture 
of generation technologies
– The aim of the company is to maximize its long-term profit

through the operation of the generation units

• We focus our attention on the Spanish Day-Ahead
Market
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• Revenue depends not only on the company’s offer curve 
but also on the offers submitted by other agents
– We represent this effect by means of residual demand

curves

– Uncertainty will be considered by means of different 
scenarios of residual demand functions for each hourly 
auction
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• Our method evaluates the impact of increasing/reducing
the amount of energy offered in each block of the initial
offer curves
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OBJECTIVE FUNCTION:

– Hourly piecewise-linear functions as approximations of 
residual demand functions and revenue functions

– Binary variables are needed to model these functions

Mathematical Programming Model
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Mathematical Programming Model

OBJECTIVE FUNCTION:

– Costs:
• O&M and Fuel consumption for Thermal units

• Hydro and nuclear costs are neglected
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Mathematical Programming Model

OBJECTIVE FUNCTION:

– Modelling uncertainty:
• Different scenarios of residual demand curves (and their 

corresponding revenue functions).
Residual Demand Curves in hour 14
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Mathematical Programming Model

CONSTRAINTS:

• Modeling the offer curves submitted by the company:
– Hourly stepwise curves consisting of blocks defined in 

energy and price.
– Modifications are introduced in existing blocks.
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Mathematical Programming Model

CONSTRAINTS:

• Modeling the Market clearing process:
– Two different situations are considered

– We explicitly consider the case of partially accepted 
blocks

– Some binary variables are needed to model the Market 
clearing process
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CONSTRAINTS:

• Modelling generation units:
– Modelling thermal units: 

• Operation Limits:

– Modelling hydro units:
• The total amount of energy offered at each price is forced to 

remain constant

• This constraint links the 24 hourly auctions 

Mathematical Programming Model
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MATRIX OF CONSTRAINTS:
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CONSTRAINTS:

• We re-formulate this complicating constraint in order to 
create a stair-case matrix structure:
– We introduce a new variable that represents the 

accumulated modifications in energy offered

– Now the previous constraint is formulated as:

Mathematical Programming Model
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Description of the Decomposition Algorithm

• Benders method is oriented to solve mathematical 
programming problems with a L-Shape structure
– This structure permits identifying two stages in the problem 

that are known as first and second stage
– Variables are usually identified as first-stage variables and 

second-stage variables
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Description of the Decomposition Algorithm

• Benders algorithm iterates between the resolution of both 
stages. 
– First-stage is denoted the master problem and incorporates 

the part of the objective function corresponding to first stage 
variables and a partial approximation of the recourse 
function.

– The recourse function represents second-stage objective 
function value as a function of first-stage decisions
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Description of the Decomposition Algorithm

• In case of multiple-stages problems, the decomposition 
method is extended in a natural manner for problems with 
a stair case structure

Pass 
Forward

Pass 
Backward



Description of the Decomposition Algorithm

• Binary variables complicates the construction of the 
recourse function approximation.
– This recourse function is nor convex neither continuous.
– Traditional Benders approximation needs to be revisited

• We follow the Generalized Benders Decomposition and 
approximates the recourse function by solving the 
Lagrangean Relaxation of the subproblem
– The relaxed constraints are those that connect different 

stages 



Contents

• Introduction

• Problem Description

• Mathematical Programming Model

• Description of the Decomposition Algorithm

• Numerical Application To The Spanish Electricity 
Market

• Conclusion



Numerical Application To The Spanish Electricity Market

• Fictitious power generation company owning a number 
of randomly chosen generation units present in the 
Spanish power system

• Initial offer curves are constructed by aggregating the 
offers corresponding to the selected generation units in a 
certain day of the past (July 29th 2005)

TOTAL Nuclear Hydro Pumping Fuel Gas Coal CCGT  
100 12.73 32.20 7.07 4.70 7.10 25.07 11.11 [%]



Numerical Application To The Spanish Electricity Market

• A number of sets of day-ahead market scenarios is 
constructed selecting different previous days similar to 
the day of study

Residual Demand Curves in hour 14
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Numerical Application To The Spanish Electricity Market

• Resulting optimization problems:

• Direct Resolution Vs. Decomposed Resolution 
(subproblems comprising 2 hourly auctions)

Number of Scenarios 1 5 10 20 

Number of Equations 18873 63082 125872 251692 

Number of Variables 12215 37615 73961 146485 

Number of Binary Variables 6211 18910 37874 75586 

Number of Scenarios 1 5 10 20
Direct Solution Time 10 secs 8 h 30 min > 1 day ???

Decomposed Solution Time 2 min 20 min 40 min 2 h 30 min



Numerical Application To The Spanish Electricity Market

• Results submitting the Original Offer-curves:

• Results Optimizing a hydro unit must-run energy:

– Results after optimization show a 1.5% increase in profits
while not modifying significantly market clearing results

Total Profit [€] 4782377 
Total Accepted Quantity [GWh] 90.233 

Weighted Average Price [€/MWh] 75.12 

Total Profit [€] 4854244 
Total Accepted Quantity [GWh] 90.366 

Weighted Average Price [€/MWh] 75.53 



Numerical Application To The Spanish Electricity Market

• Modifications in Hydro Production:
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Numerical Application To The Spanish Electricity Market

• Market Clearing Results comparison:
Hour 11

70

75

80

85

90

3500 4000 4500 5000 5500
MWh

€/
M

W
h

Hour 18

85

95

105

115

125

3500 4000 4500 5000 5500
MWh

€/
M

W
h

Hour 11

70

75

80

85

90

3500 4000 4500 5000 5500
MWh

€/
M

W
h

Hour 18

85

95

105

115

125

3500 4000 4500 5000 5500
MWh

€/
M

W
h

Original 
Offer-curve

Modified
Offer-curve



Contents

• Introduction

• Problem Description

• Mathematical Programming Model

• Description of the Decomposition Algorithm

• Numerical Application To The Spanish Electricity Market

• Conclusion



Conclusion

• Slight modifications introduced in the company’s 
original offer curves turn into an increment of company’s 
expected profit
– This seems to confirm the validity of our approach.

• The use of decomposition techniques allow us to apply 
our model in a realistic manner, obtaining optimal offer 
curves that can be directly submitted to a real electricity 
market
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Mathematical Programming Model

CONSTRAINTS:

• Modeling the Market clearing process:
– We explicitly consider the case of partially accepted 

blocks
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Mathematical Programming Model

CONSTRAINTS:

• Modeling the Market clearing process:
– Some binary variables are needed to model the Market 

clearing process
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Description of the Decomposition Algorithm

• Infeasibilities management
– The implemented decomposition algorithm takes two phases
– An initial phase in which the integrality requirements are 

removed and a solution of the LP relaxation is obtained by 
the use of the linear nested decomposition algorithm.

• Infeasible decisions are avoided with the construction of a 
feasibility cut. 

– A second phase in which
• Each stage subproblem is solved with MIP techniques in the 

forward pass
• Each subproblem is solved with the RL method in a backward 

pass. In case of infeasibility it is solve the RL of the 
minimization of infeasibilities subproblem.



Numerical Application To The Spanish Electricity Market

• Results comparison:
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• Our method evaluates the impact of increasing/reducing
the amount of energy offered in each block of the initial
offer curves
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