

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA INSTITUTO DE INVESTIGACIÓN TECNOLÓGICA

Decision support model for weekly operation of hydroelectric reservoirs by stochastic nonlinear optimization

A. Ramos, S. Cerisola, J.M. Latorre Universidad Pontificia Comillas

Contents

Introduction

- System modeling
- Model description
- Case study
- Conclusions

Instituto de Investigación Tecnológica

Renaissance of hydro scheduling models

- Nowadays, under a deregulated framework electric companies manage their own generation resources and need detailed operation planning tools
- In the next future, high penetration of intermittent generation is going to force the electric system operation
- Hydro and storage hydro plants are going to play a much more important role due to their flexibility and complementary use with intermittent generation

Instituto de Investigación Tecnológica

Medium term model (i)

- Hydroelectric model deals only with hydro plants
- Hydrothermal model manages simultaneously both hydro and thermal plants
- Thermal units considered individually. So rich marginal cost information for guiding hydro scheduling
- No aggregation or disaggregation process for hydro input and output is needed
- It is very difficult to obtain meaningful results for each hydro plant because it requires a huge amount of data and the complexity of hydro subsystems

Instituto de Investigación Tecnológica

Medium term model (ii)

- Determines:
 - the optimal yearly operation of all the thermal and hydro power plants
 - taking into account multiple basins and multiple cascaded reservoirs connected among them
- Cost minimization model because the main goal is medium term hydro operation

Instituto de Investigación Tecnológica

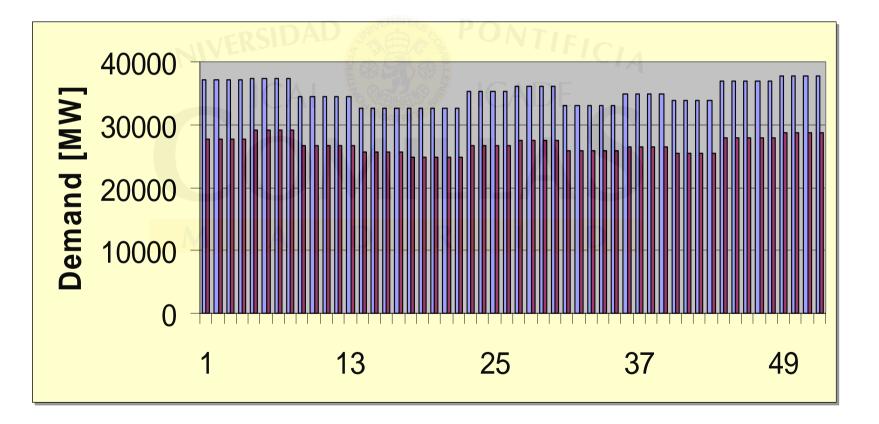
Contents

➤ Introduction

Case study

Conclusions

> System modeling


Model description

Instituto de Investigación Tecnológica

Demand

Weekly demand with two load levels (peak and off-peak each week)

Instituto de Investigación Tecnológica

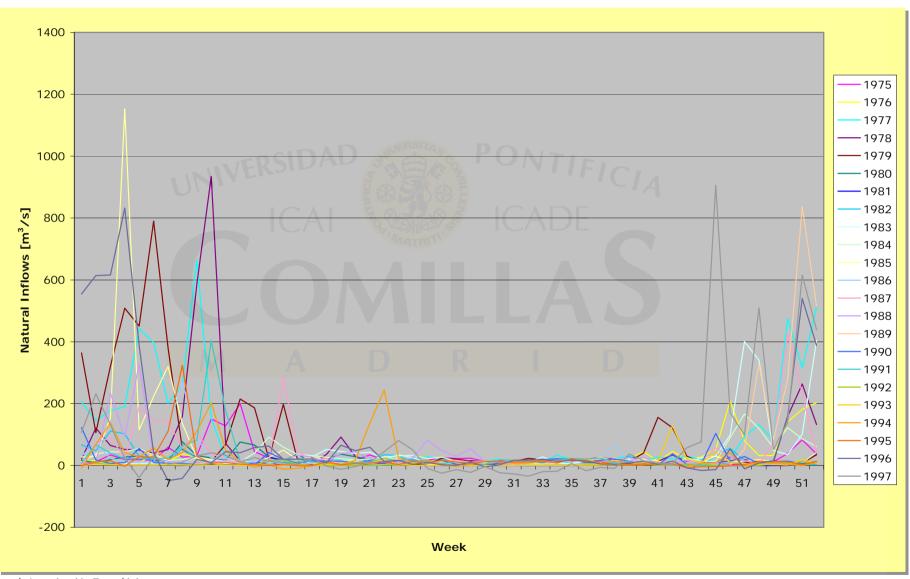
Hydro subsystem

- Different modeling approach for hydro reservoirs depending on:
 - Owner company
 - Relevance of the reservoir
- Reservoirs belonging to other companies modeled in energy units [GWh]
- Own reservoirs modeled in water units [hm³, m³/s]
- Important reservoirs modeled with water head effects
- Very diverse system:
 - Hydro reservoir volumes from 0.15 to 2433 hm³
 - Hydro plant capacity from 1.5 to 934 MW

Instituto de Investigación Tecnológica

Stochasticity sources

• Natural hydro inflows (clearly the most important factor in Spanish electric system)


Year	Hydro energy	Index	Probability of being
	Available [TWh]		exceeded [%]
2001	32.9	1.13	32
2002	20.9	0.72	87
2003	33.2	1.15	30
2004	22.7	0.79	80
2005	12.9	0.45	100
2006	24.0	0.83	70

- Changes in reservoir volumes are significant because of:
 - stochasticity in hydro inflows
 - chronological pattern of inflows and
 - capacity of the reservoir with respect to the inflows

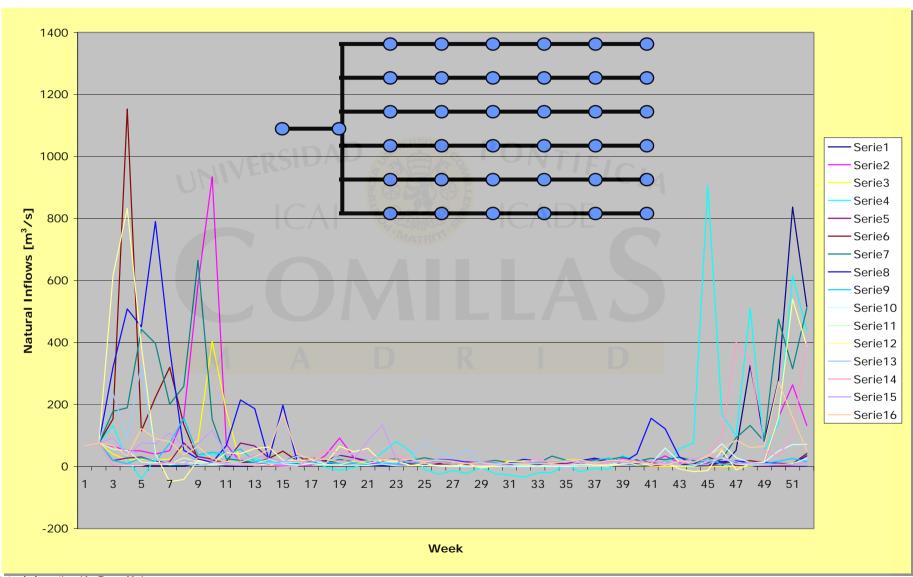
Instituto de Investigación Tecnológica

Historical natural inflows

Instituto de Investigación Tecnológica

Escuela Técnica Superior de Ingeniería (ICAI) Universidad Pontificia Comillas

11th Conference on Stochastic Programming (SPXI) - 10


Scenario tree generation

- A multivariate scenario tree is obtained by neural gas clustering technique that simultaneously takes into account the main stochastic series and their spatial and temporal dependencies.
- Very extreme scenarios can be artificially introduced with a very low probability
- Number of scenarios generated enough for yearly operation planning

Instituto de Investigación Tecnológica

Natural inflows: scenario tree

Instituto de Investigación Tecnológica

Escuela Técnica Superior de Ingeniería (ICAI) Universidad Pontificia Comillas

11th Conference on Stochastic Programming (SPXI) - 12

Instituto de Investigación Tecnológica

Contents

➤ Introduction

Case study

Conclusions

> System modeling

> Model description

Constraints: Generation and load balance

Generation of thermal units + Generation of hydro units - Consumption of storage hydro units = Demand

Instituto de Investigación Tecnológica

Constraints: Minimum and maximum operating hours of thermal units

- Introduced to model:
 - Unavailability of thermal units
 - Domestic coal subsidies
 - CO2 Emission allowances
 - Capacity payments
- They are not separable by period

 $minimum \leq Yearly \ operation \ hours \ of \ each \ thermal \ unit \ for \\ each \ scenario \leq maximum$

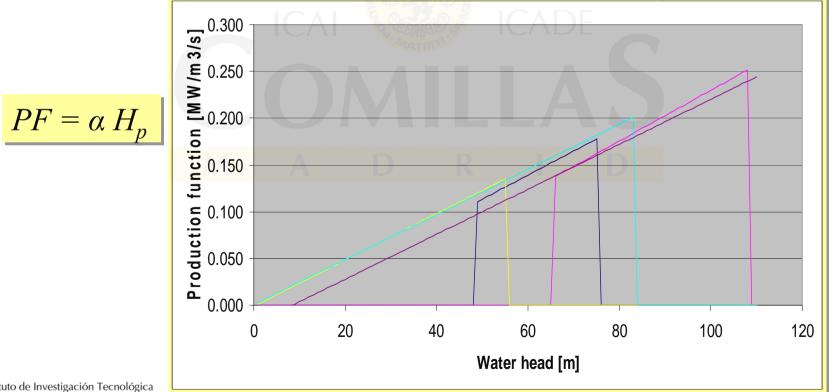
 $minimum \leq Average \ yearly \ operation \ hours \ of \ each \\ thermal \ unit \leq maximum$

Instituto de Investigación Tecnológica

Constraints: Water balance

Reservoir volume at the beginning of the period

+ Natural inflows

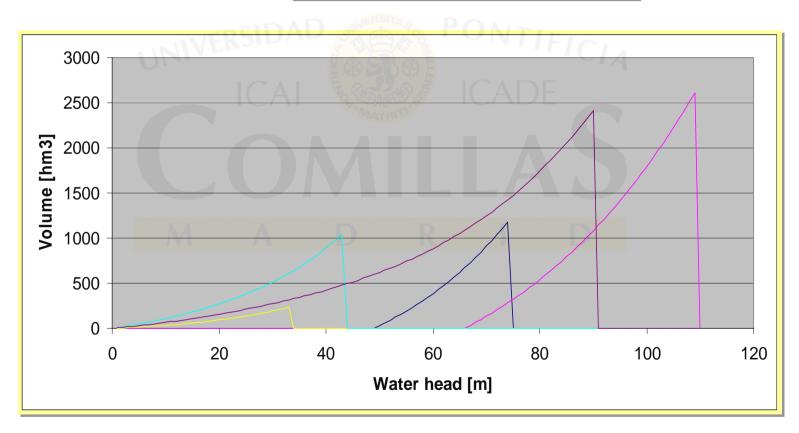

- Spills from the own reservoir
- + Spills from upstream reservoirs
- + Turbined water from upstream hydro plants
- + Pumped water from downstream hydro storage plants
- *Turbined and pumped water from the own reservoir*
- = Reservoir volume at the end of the period

Instituto de Investigación Tecnológica

Constraint: Water head effects

- Power generation is the product (nonlinear function) of the flow and the production function $P = Q \times PF$
- Production function *PF* depends linearly on water head

Instituto de Investigación Tecnológica


Escuela Técnica Superior de Ingeniería (ICAI) Universidad Pontificia Comillas

11th Conference on Stochastic Programming (SPXI) - 17

Constraint: Volume as a function of the head

Reservoir volume depends quadratically (nonlinearly)
on water head

$$V = \beta + \beta' H_r + \beta'' H_r^2$$

Instituto de Investigación Tecnológica

Water head of the reservoir = forebay level – reference level

Water head of the plant = forebay level of the reservoir – tailrace level of the plant

Tailrace level of the plant = max [*forebay level of downstream*] reservoir, reference tailrace level of the plant]

Instituto de Investigación Tecnológica

Constraint: operation limits

Reservoir volumes between limits for each hydro reservoir

Power operation between limits for each unit

Instituto de Investigación Tecnológica

Multiobjective function

- Thermal plant variable costs
- Penalties introduced in the objective function for softening several additional constraints:
 - Final reservoir volumes
 - Exceeding operating rule curves (minimum and maximum)
 - Minimum and maximum yearly operation hours of thermal units

Instituto de Investigación Tecnológica

Type of optimization problem

- Deterministic approaches:
 - Network Flows
 - LP
 - NLP
 - MILP
 - commitment of thermal or hydro units
 - piecewise linear approximation of water head effects
- Stochastic approaches:
 - Stochastic Dynamic Programming (SDP)
 - Stochastic Linear Programming. Decomposition approaches (Benders, Lagrangean Relaxation, Stochastic Dual Dynamic Programming)
 - Stochastic Nonlinear Programming

Instituto de Investigación Tecnológica

- Algorithm:
 - Successive LP
 - Direct solution by a NLP solver
- Very careful implementation
 - Scaling of variables
 - Use of simpler expressions
 - Initial values and bounds for all the nonlinear variables computed from the solution provided by linear solver CPLEX 10.2 IPM
 - Nonlinear solver CONOPT3

Instituto de Investigación Tecnológica

Model implementation

- General hydro topology
- Spreadsheet-based graphical interface
- GAMS-based optimization model

Instituto de Investigación Tecnológica

Contents

- ➤ Introduction
- > System modeling
- Model description
- Case study
- > Conclusions

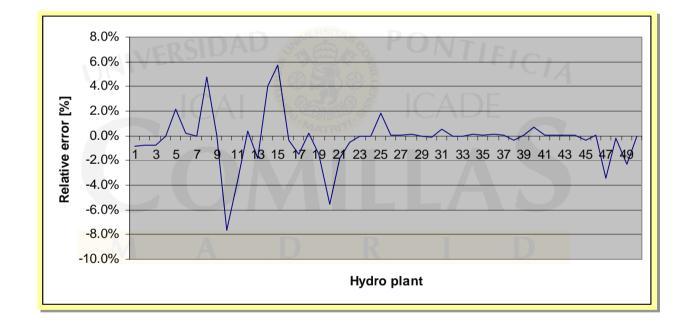
Instituto de Investigación Tecnológica

constraints

Instituto de Investigación Tecnológica

- 3 main basins with 50 hydro reservoirs/plants and 2 pumped storage hydro plants
- 130 thermal units
- 16 scenarios
- Problem size:

Case study

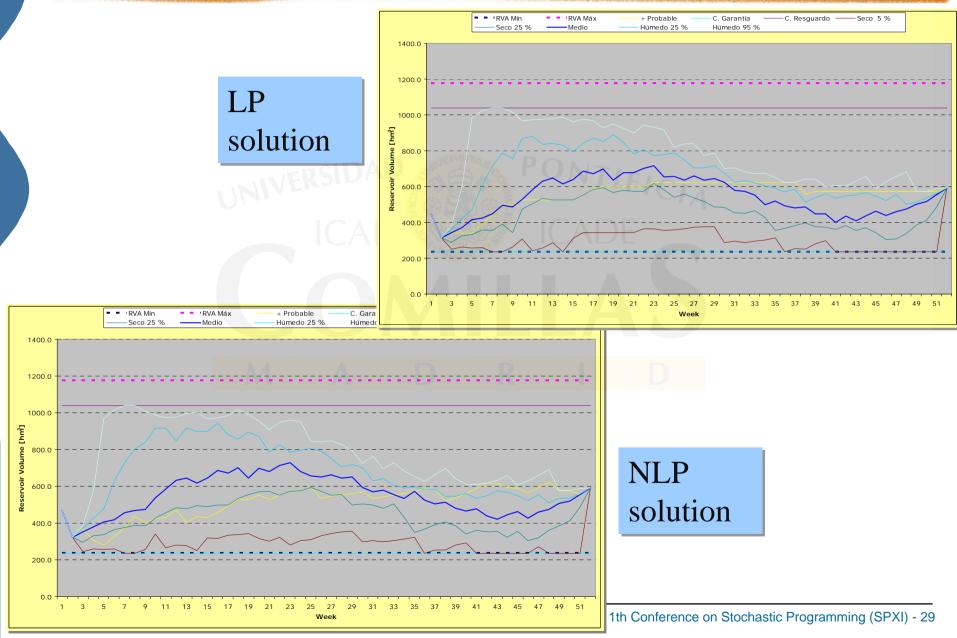

- 271887 constraints

Spanish electric system

- 442239 variables
- 1611184 non zero elements
- 12832 nonlinear variables
- 8020 nonlinear

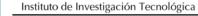
Hydro plant operation

• Relative error in the energy generated for each hydro plant between LP and NLP approaches



Instituto de Investigación Tecnológica

Hydro reservoir operation (i)


Hydro reservoir operation (ii)

Contents

- Introduction
- System modeling
- Model description
- Case study
- Conclusions

Summary

- Medium term hydrothermal model
- Nonlinear water head effects modeled for relevant reservoirs
- Stochastic nonlinear optimization problem solved directed by a nonlinear solver given a close initial solution provided by a linear solver

Escuela Técnica Superior de Ingeniería Instituto de Investigación Tecnológica

Decision support model for weekly operation of hydroelectric reservoirs by stochastic nonlinear optimization

A. Ramos, S. Cerisola, J.M. Latorre Universidad Pontificia Comillas

Instituto de Investigación Tecnológica