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Introduction
• Linear hydrothermal model

–Minimize total operating cost while satisfying demand for power
– Constant hydro production function

• Advantages
– Possibility of using LP-solvers
–Monotonically decreasing and convex water value function
– Solutions of large-scale stochastic models using decomposition 
techniques

• Disadvantage
–Multiplicity of solutions for reserve profiles
– Inadequate profiles
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Introduction
• A non linear hydrothermal model

– Non constant hydro production function
– Increases the production of the hydro plant with the head of the
reservoir

• The hydro production function
– Power (MW) = Water discharge (m3/s) ·

Head (m) ·
Efficiency of hydro unit (head)
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• A non linear hydrothermal model
– Non constant hydro production function
– Increases the production of the hydro plant with the head of the
reservoir

• The hydro production function
– Power (MW) = Water discharge (m3/s) ·

Head (m) ·
Efficiency of hydro unit (head)

Simplification as an affine function

Introduction

( )· ·P q h hη=

( )·P q hα β= +
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Introduction
• Bilinear relations for modeling hydro production functions

– Forces the use of nonlinear solvers
– Possibility of stacking in a local minima
–More computation time
– Nonconvex recourse function
– Difficulty of applying decompositions techniques
– Difficulty of solving the stochastic problem

• Example of nonconvex recourse function
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Cost

Reserve level

Introduction
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Introduction

¿How to extend the Stochastic Dual Dynamic Programming
decomposition technique to deal with this situation?
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• Reformulate the bilinear terms using McCormick reformulation

• Enables the use of LP solvers

Nonlinear constraints reformulation
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Nonlinear constraints reformulation
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Nonlinear constraints reformulation
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Nonlinear constraints reformulation
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Nonlinear constraints reformulation
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Nonlinear constraints reformulation
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Nonlinear constraints reformulation
• A single McCormick envelope can be insufficient
• Construction of a grid for the variables of the bilinear relation
• Construction of the McCormick envelope for each rectangle of 
the grid

• Disjunctive programming forces the model to select just one  
tetrahedron out of the total 

• Mathematical formulation using binary variables and a big-M
approach
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• We determine the most accurate big-M values that enter in 
above constraints

Nonlinear constraints reformulation
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Nonlinear constraints reformulation
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Nonlinear constraints reformulation
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Stochastic Dual Dynamic Programming
• Multiperiod
• Stochasticity given by means of a recombining tree
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Stochastic Dual Dynamic Programming
• Traditional decomposition in master problem and subproblem

Master Problem

Primal Proposals

Subproblem

Outer approximations
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Bilinear relations
Nonlinear subproblem
Non convex recourse function

MCormick refomulation
Linear subproblem
Convex recourse function
Slack approximation

MCormick surface
MIP subproblem
Non convex recourse function
Tight approximation

Stochastic Dual Dynamic Programming

( ) ( )

( )

( )

1 1 1

1

, min ,t

t t t t t t t t

t t

t t t

t t t

Q x c x E Q x

Ax b

B x d

Wx h Tx

ξ
ξ ξ

ξ

− − +

−

 = +   

≤

=

≤ −

( ) ( )

( )

1 1 1

1

, min ,t

t t t t t t t t

t t

t t t

t t t

Q x c x E Q x

Ax b

Mx Nu d

Wx h Tx

ξ
ξ ξ

ξ

− − +

−

 = +   

≤

+ =

≤ −

( ) ( )

( )

1 1 1

1

, min ,t

t t t t t t t t

t t

t t

t t t

Q x c x E Q x

Ax b

Mx d

Wx h Tx

ξ
ξ ξ

ξ

− − +

−

 = +   

≤

=

≤ −



22Stochastic Dual Dynamic Programming applied to Nonlinear Models

Stochastic Dual Dynamic Programming
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• Convexification of the recourse function using Lagrangean 
Relaxation

Nonlinear Subproblem

Local Minima

MIP Subproblem

Use the Best Bound
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Stochastic Dual Dynamic Programming
• We adopt the reformulation given by the McCormick Surface 
for the convexification routine

• We avoid the large number of Lagrangean Relaxation
iterations for the optimization of the dual function

• We chose a proper multiplier and perform just one evaluation
of the Lagrangean subproblem
– Heuristic 1. Solution of the McCormick envelope subproblem 
and obtain the dual variable of the coupling constraints. Set the 
optimal multiplier

– Heuristic 2. Combine the coefficients of previously computed 
Benders cuts to create the proper multiplier

t tλ π=−
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Stochastic Dual Dynamic Programming
• An example for a two stage situation
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Stochastic Dual Dynamic Programming
• An example for a two stage situation



26Stochastic Dual Dynamic Programming applied to Nonlinear Models

Stochastic Dual Dynamic Programming
• An example for a two stage situation
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Stochastic Dual Dynamic Programming
• An example for a two stage situation
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Stochastic Dual Dynamic Programming
• Description of the multistage situation
• Forward pass

– Sample a scenario (path from the root through the tree)
– Solve each node of the scenario (MIP subproblem)
– Store the primal solution and the coefficients of the active 
Benders cuts
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Stochastic Dual Dynamic Programming
• Description of the multistage situation
• Backward pass

– Solve each node of each period
– Create the proposed multiplier
– Evaluate the Lagrangean subproblem (MIP)
– Store the objective function and create a new Benders cut
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• Stopping criteria
– Lower Bound: solution of the root node
– Upper Bound: random variable. Estimation after n scenarios 
together with a confidence interval

– Stopping rule:
• Lower bound within the confidence interval
• Confidence interval with a given tolerance

Stochastic Dual Dynamic Programming
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Case Study
• Real size hydrothermal coordination problem
• One year planning horizon
• Weekly period representation
• 84 thermal units
• 24 hydro plants
• 3 basins and multiple cascade reservoirs
• Recombining scenario tree created with clustering techniques
• Approximation of the bilinear relation with the McCormick 
surface with different pieces for the hydro production variable 
and the water discharge variable
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Case Study
• Practical implementation of the decomposition method
• Phase1

– Forward and backward solution of the linear relaxation of the 
node subproblems

• Phase 2
– Forward solution of the linear relaxation of the node 
subproblems.

– Backward solution of Lagrangean subproblem evaluations. 
Multiplier proposed combining the coefficients of the active 
cuts in the forward pass (heuristic 2)

• Phase 3
– Forward solution of the MIP subproblems. 
– Backward solution of the Lagrangean subproblem evaluations 
using heuristic 1
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Case Study
• Convergence evolution

Iterations
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Case Study

0.0099[7791.7,7869.9
]

7830.87828.6312Every 4 weeks
0.0047[7831.6,7868.9

]
7850.37839.0251Every 1 week

0.0033[7826.4,7852.2
]

7839.37828.0225Every 2 weeks

0.0036[7803.5,7831.9
]

7817.77821.0212Every 4 weeks
ToleranceIntervalUpperLowerScBranching
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Case Study: Evolution of the reserve profiles
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Case Study: Evolution of the reserve profiles
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Case Study: Evolution of the reserve profiles
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Case Study: Evolution of the reserve profiles
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Case Study: Evolution of the reserve profiles
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Conclusions
• Extension of the Stochastic Dual Dynamic Programming 
algorithm for nonlinear subproblems reformulated as MIP 
subproblems

• Remarkable results for the hydrothermal coordination problem. 
Acceptable reserve profiles

• Future developments
– Sensitivity analysis for the uncertainty representation and the grid 
precision for the McCormick Surface
– Adjust the stopping rule criteria with the theory developments in 
literature
– Incorporate variance reduction techniques to reduce the 
computation time
– Explore the possibility of performing the algorithm by solving 
small recombining subtrees during the iterations
– Risk constraints for risk control of spillages
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