

Escuela Técnica Superior de Ingeniería – ICAI Instituto de Investigación Tecnológica

Stochastic Unit Commitment Considering Uncertain Wind Production: Application to an isolated system

Kristin Dietrich, Andrés Ramos, Luis Olmos & Jesús M. Latorre

Enerday 2009 Dresden, 03 of april 2009

Contents Wind generation in Spain Problem Description Modeling Approach Case Study: Gran Canary

Institute of Research in Technology - IIT

Situation of wind production in Spain

- Mainland Spain:
 - Year 2008: 11.8 % wind energy, 15.576 MW (17 %) installed on Dec-19-2008
 - Forecasts and goal: 20000 MW in 2010 and 30000 MW in 2020, 20 % wind energy in 2020
 - Activation of "Plan de Acción E4 2008-2011" and others
- Canary Islands:
 - There are plans to substantially increment wind power generation

Institute of Research in Technology - IIT

Situation of wind production in Spain

- 05.03.2009: Instantaneous peak 11.203 MW at 11:09 h (29.5 %
 - of demand).

Valores de demanda (HW) a las 83:80 del 86/83/2889 🖡 Real = 24348 🚺 Prevista = 24217 🖡 Programada = 24115 (p RED ELECTRICA DE ESPAÑA - vvv.rea.es + Todos los derechos reservados

www.ree.es

100 años de

Institute of Research in Technology - IIT

Situation of wind production in Spain

- Wind power generation curtailment (Mar-4 2008)
- Instantaneous peak 10032 MW at 15:53 h (28 % of demand). Hourly peak 9803 MW between 15:00 and 16:00 h
- A reduction order of wind generation was sent

www.ree.es

100 años de

Institute of Research in Technology - IIT

Contents

- Wind generation in Spain
- Problem Description
- Modeling Approach
- Case Study: Gran Canary

Institute of Research in Technology - IIT

Problem Description

- Unit Commitment:
 - Planification of short-term generation
 - To know which generation units are turned on and shut-down in each hours taking into account cost-minimization under certain restrictions:
 - Demand must be balanced
 - Maintain system security (Reserves)
 - Other restrictions (regulatory, tecnical)
 - Weekly or daily approach
- Why?
 - Economic losses
 - Mathematical interesting particularities (non convex, entire variables, big size)

Problem Description

- Effects of intermittent generation:
 - In power
 - Balancing mechanisms, operating reserves.
 - Rapid short term adjustments needed to manage fluctuations over short periods of time (minutes to hours).
 - Reliability impact
 - Will there be enough generation to meet peak loads? Determine some adequacy reliability measures of the system. No dynamic or very short term effects.
 - Capacity credit is the contribution of intermittent generation to reliability (20-30 % are common numbers for wind power). Effective Load Carrying Capability (ELCC) measures this capacity credit.
 - In energy

- A whole week with no wind generation

Institute of Research in Technology - IIT

Contents

- Wind generation in Spain
- Problem Description
- Modeling Approach
- Case Study: Gran Canary

Institute of Research in Technology - IIT

- Objectives:
 - Analyze the impact of integrating a large-scale of intermittent generation (IG) in the medium and long term operation of Spanish electric system (2030 horizon)
 - Identify and evaluate possible operation actions or regulatory measures to allow increasing the amount of IG without compromising the security of supply
 - Estimate the maximum amount of IG incorporated into the system for a certain security criterion
- Application in case study to small isolated system with large wind generation (no solar/hydro considered)

Institute of Research in Technology - IIT

Model Approach • Hypothesis: • Time scope for case study:

100 años de Ingenieria

Institute of Research in Technology - IIT

• 1 day

Engineering School - ICAI Pontificia Comillas University

• Transmission/distribution network does not affect

managed by current transmission network

• Load flow profiles are going to change but they can be

- Input Data:
 - Demand + Spinning reserve upwards/downwards per hour:
 - Balancing reserves depend on each scenario and hour
 - Up: Wind power forecasting error + % of peak load + largest thermal unit
 - Down: Wind power forecasting error + % of peak load
 - Generation capacities (min/max)/ Up and down ramp rates
 - Technical characteristics of generation plants
 - Ramps up/down
 - Costs of generation plants
 - Fixed and variable heat rates and fuel price
 - Emission rate and CO₂ price
 - Start-up costs

Institute of Research in Technology - IIT

- Input Data II:
 - Wind: Penetration level given by indicative expansion plans (for example, 30 % in 2030)
 - Output forecasting at 14 h for every day to be used by the daily unit commitment
 - Prediction errors of previous forecasting in three scenarios
 - Extrapolation of current available data
 - New capacity inv.+ Future off-shore wind power generation
 - New ways for electricity consumption, storage and generation
 - Plug-in hybrid cars / Energy stored as hydrogen
 - Potential use of active demand management actions
 - Generalized use of load shedding contracts
 - Hourly meters and price responsive demand
 - Innovative electricity tariffs

Institute of Research in Technology - IIT

- Wind:
 - Three different wind prediction errors considered
 - 1st stage decision: Unit Commitment
 - 2nd-stage decision: Production, Non-served Energy

- Stochastic Unit Commitment
 - Cost Minimization
 - s.t.
 - Demand balance
 - Reserve up/down
 - Generation limits min/max
 - Ramping constraints up/down
 - Unit Commitment: logic coherence for start-up & shutdown ties
 - Output Data:
 - Hourly plan with start-up and shut-down decisions for each generation unit
 - Generation of each thermal unit
 - Non served EnergyTotal Cost

Institute of Research in Technology - IIT

Contents

- Wind generation in Spain
- Problem Description
- Modeling Approach
- Case Study: Gran Canaria

Institute of Research in Technology - IIT

Case Study: Gran Canaria

- Gran Canaria:
 - small island in Spanish territory
 - chosen as it has to cope with
 - demand coverage on its own
 - no interconections

www.ree.es

- Generation units
 - 20 thermal units (CCGT, Gas Turbines, Fueloil, Gasoil)
 - Installed capacity: ~930 MW
 - No hydro plants

Institute of Research in Technology - IIT

Case Study: Gran Canaria

- Data:
 - Generation data
 - Variable, fixed and start-up cost regulated und published in BOE (2006)
 - Wind data
 - Historic time series of wind production and error of wind forecast for Spain
 - Scaled to Gran Canaria

- Demand data

- Historic time series for Spain
- Scaled down to Gran Canaria
- Reserve 3%

BOE (2006): Boletín Oficial de Estado, BOE núm. 77, 31 of march 2006, pp. 12484-12556

Institute of Research in Technology - IIT

Case Study: Gran Canaria

• Comparison of stochastic and deterministic approach:

- Differences between stochastic and deterministic approach mainly in peak hours (peaking units gasoil and gas turbines)
- Stochastic approach taking into account all wind scenarios at once prefers gasoil plants instead of shutting them down and use gas turbines in low wind scenarios
- EVPI: ~ 34.000 \in in one day \rightarrow that is a cost advantage of 3%

Institute of Research in Technology - IIT

100 años de

Ingeniería

Case Study: Gran Canaria

- Comparison of medium to low and high to medium installed wind capacity:
 - Low = 70 MW
 - Medium = 140 MW
 - High = 210 MW

- Comparison: 140 MW to 70 MW → saving of conventional production (mostly gas turbines and in some hours gasoil units)
- Comparison: 210 MW to 140 MW → saving of conventional production in the case of gas turbines, but some gasoil units running on minimum to not shut-down plants (due to reserve)

Institute of Research in Technology - IIT

Conclusions

- Advantages of stochastic over deterministic optimization
 - Adequate treatment of wind characteristics
- Higher wind generation does save conventional energy (not capacity) only up to certain point
 - Problems might appear due to system stability (reserves)
- Currently working on:
 - Electric cars
- Further Research Work:
 - Demand Management
 - Further storage facilities

Institute of Research in Technology - IIT

Escuela Técnica Superior de Ingeniería – ICAI Instituto de Investigación Tecnológica

Stochastic Unit Commitment Considering Uncertain Wind Production: Application to an isolated system

Kristin Dietrich, Andrés Ramos, Luis Olmos & Jesús M. Latorre

Enerday 2009 Dresden, 03 of april 2009

