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Risk management and stochastic optimization for
industrial consumers

Emilio Gómez-Villalva, Member, IEEE, and Andrés Ramos

Abstract—To encourage industrial consumers to partici-
pate more actively in deregulated energy markets, it is nec-
essary to provide them with optimization tools to manage
the risk derived from energy price uncertainty. In this pa-
per, we review several risk measures, formulate some of
them within stochastic programming models and discuss
those which better fit the risk attitude of industrial con-
sumers. With the measures selected, safety-first and value-
at-risk, two bi-objective mixed-integer linear stochastic
problems are implemented. These models obtain, through
a risk-aversion parameter, a tradeoff between the risk mea-
sure and the expected cost of the total energy supply cost of
industrial consumers. The efficient frontiers obtained with
the safety-first and value-at-risk models are compared in a
realistic case example.

Index Terms—risk management, stochastic optimization,
liberalized energy markets, contracts, industrial plants.

I. Introduction

DUE to the liberalization of energy markets, industrial
consumers nowadays have the possibility to negotiate

with retailers the price and format of the contracts they
sign for supplying their energy needs. These new contract-
ing options, together with energy price volatility, reveal the
necessity of new tools for supporting industrial consumers
in their energy management. Specifically, these tools must
be able to make optimal decisions concerning both contract
selection and energy supply system operation.

Energy supply systems, mainly composed of cogenera-
tion plants and boilers, have been broadly modeled in op-
timization problems [1], [2], [3], [4], [5]. However, very few
models optimize contracting and system operation deci-
sions simultaneously [1], [2], [3]. These two concepts have
to be considered in the optimization problem since con-
tracting decisions depend on the quantity of energy traded,
which is determined by the optimal operation of the plant.

Although deterministic optimization represents a pow-
erful technique to model the complexity of these types of
problems, its performance is very limited for treating the
uncertainty of the parameters. To overcome this obsta-
cle, stochastic programming plays a key role. In this field,
Paravan et al. [3] proposed a risk-neutral stochastic model
for the decision-making process concerning contracts and
energy supply system operation of cogeneration plants.

In this paper, we go one step beyond risk-neutral ap-
proaches proposing multi-objective stochastic optimization
models for the energy risk management of industrial con-
sumers. For this purpose, we construct stochastic models
from the deterministic approach presented in [1]. This ap-
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Fig. 1. Configuration of the energy supply system and types of
contracts to sign.

proach, characterized by the complexity and richness of
the contract modeling with respect to previous papers, is
briefly described in Section II. In Section III we formulate
a risk-neutral model and show its drawbacks. The dis-
cussion and formulation of risk-averse measures and their
corresponding models are described in Section IV. The
procedure carried out to determine efficient frontiers with
the chosen models is presented in Section V. To illustrate
the working of the models, we offer a numerical application
in Section VI. Finally, conclusions are presented in Section
VII.

II. Description of the Problem

For the formulation of the models, we consider an indus-
trial consumer with electric and thermal energy demands.
The consumer owns an energy supply system composed of
a cogeneration plant and a steam boiler. The main equip-
ment of the cogeneration plant is an engine fed by natural
gas, whereas the steam boiler is fed by fuel oil.

With this configuration, in each period of the time frame
of the problem, the electric demand is supplied by the co-
generation plant or the electric network, and the thermal
demand is covered by the cogeneration plant and/or the
boiler (Fig. 1). The surplus electricity produced by the
cogeneration plant and not consumed by the factory is ex-
ported to the electric grid and sold. This configuration is
quite flexible, since it is also valid for consumers without
a cogeneration system or thermal demand.
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An industrial consumer with an energy supply system of
these characteristics, negotiates with retailers the following
types of contracts (Fig. 1):

• Purchase of electricity for those periods in which the
cogeneration plant is shut down.

• Purchase of fuel oil for the boiler.
• Purchase of natural gas for the cogeneration plant.
• Sale of surplus electricity produced by the cogenera-

tion plant.
Retailers will bid contracts of the four above-mentioned

products to the industrial consumer, who will annually
choose one contract of each product among the proposed
ones. The time scope of the problem is one year, since this
is the most frequent duration of contracts between con-
sumers and retailers. Therefore, the industrial consumer
decides which contracts to sign before the beginning of the
planning year. For this purpose, in each period of the time
scope, the optimal operation of the energy supply system
of the consumer is taken into account.

This problem was formulated as a mixed-integer linear
optimization model in [1]. The objective of this determin-
istic model is to minimize the total energy supply cost.
This cost comprises the ones related to the energy con-
tracts signed as well as those related to the maintenance
of the cogeneration plant and the boiler. In this model,
three sets of constraints were basically formulated:

• Boiler and cogeneration plant operation: To determine
the economic dispatch and the unit commitment of the
energy supply system.

• Energy Balance: To satisfy the electric and thermal
demands of the factory.

• Contracts: To evaluate the contracts to choose and the
quantity of energy or fuel associated with each one.

In this formulation, binary variables are mainly used for
modeling the unit commitment of the boiler and cogener-
ation plant, the contracting decisions and some types of
contracts. A large set of contracts, which covers the range
of risk aversion that a consumer can show, was modeled.
These contracts range from spot to fixed prices and are
discussed in Section VI.

III. Risk-neutral stochastic formulation

In this section we extend the deterministic problem
stated in the previous section to a risk-neutral stochastic
model in order to consider the uncertainty of the parame-
ters of the problem.

To cope with contracting and energy system operation
decisions under conditions of uncertainty, we propose a
two-stage stochastic model. The contracts to sign are cho-
sen in the first stage. These are the so-called here-and-now
decisions, since they are made under uncertainty and be-
fore the first period of the time scope of the problem. In the
second stage, the boiler and cogeneration plant operation
are determined in each time period taking into account the
known stochastic parameters and the contracts that were
chosen in the first stage. These are the so-called wait-and-
see decisions, since they are made once the uncertainty has
been revealed.

First-stage decisions

Contracting decisions System operation decisions

Second-stage decisions

Root node

Fig. 2. Structure of the scenario tree.

The stochastic parameters of the problem are the elec-
tricity, natural gas and fuel oil prices, whereas electric and
thermal demands are considered deterministic since de-
mand volatility is insignificant compared to that of prices.
Price uncertainty is represented through a scenario tree.
Given the two-stage structure of the problem, scenarios
are represented as independent time series with only the
root node in common (Fig. 2).

The discrete probability function of the total annual en-
ergy cost cT ∈ RG, where G is the number of scenarios, is
defined as:

cT = f(β, er, go, fa, eoe) (1)

where f is a function of the following vectors of state
variables:
β contracts to sign (binary variables);
er electricity imported from the electric network;
go natural gas consumed by the cogeneration plant;
fa fuel oil consumed by the boiler;
eoe surplus electricity exported.

The first vector (β) corresponds to the first-stage vari-
ables, whereas the remaining are the second-stage random
variables. These latter variables are the energy or fuel as-
sociated with the chosen contract of acquisition of electric-
ity, natural gas, fuel oil and of sale of electricity. Natural
gas (go) and fuel oil (fa) consumption is also responsible
for determining the maintenance costs of the cogeneration
plant and the boiler, respectively.

The random variable cT is composed of the cost of each
scenario cg

T , with g = {1, ..,G} ∈ G. Then, if pg is the
probability of each scenario, the expected cost of cT can
be written as:

E[cT ] =
∑

g∈G

pgcg
T (2)

The problem constraints X are the same as in the
deterministic problem (system operation, energy balance
and contract formulation) but in their stochastic versions.
These are not shown in order to focus the analysis on the
risk management modeling and its interpretation.

Therefore, the risk-neutral stochastic model, which min-
imizes the expected cost, can be formulated as:
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min
cT ∈RG

E[cT ]

s.t.
x ∈ X

(3)

where x is the set of variables of the problem.
This model takes into account the uncertainty of the

parameters explicitly, although it does not perform risk
management. With this formulation, the model will select,
for example, a spot price contract instead of a fixed price
one if the former is slightly cheaper. This is not realistic.
In this case a consumer will prefer a fixed price contract
so as to hedge himself against the possibility of high costs
that can appear once the price uncertainty is revealed. As
shown in the next section, this limitation of the risk-neutral
model is resolved with the risk-averse formulation.

IV. Risk-averse stochastic formulation

Contract selection is greatly influenced by the price-risk
attitude of consumers. In general, an industrial consumer
is very risk averse. Usually, the core of its business is not
energy management and thus, he is reluctant to have sur-
prises in his energy costs.

Taking this into account, in this section we propose bi-
objective stochastic models. The industrial consumer will
obtain, through a risk-aversion parameter, a tradeoff be-
tween the expected cost and a risk measure of the total
energy supply cost function.

To choose adequate risk measures for consumers, we first
review some of the most commonly used in financial and
energy markets. These are the following:

Variance [6], [7]. It penalizes values quadratically to
both sides of the mean of the distribution.

Total absolute deviation [8], [9]. This is one of the
most popular approximations of the variance. The total
absolute deviation is usually linearized considering only
one-side deviations from the mean, due to the symmetry
of the deviations.

Reference cost. It is similar to the absolute deviation
approach, but it takes only positive deviations from a cost
or target [10] instead of from the mean (Fig. 3).

Utility function. This measure assigns a utility value
to each sample of the cost distribution, according to the in-
dustrial consumer’s risk aversion. This approach is equiva-
lent to the variance if the probability function is randomly
distributed and the utility function is exponential. Usu-
ally, this measure is formulated as an exponential [11] or
piecewise linear [12] function.

Fleten’s approach [13], [14]. Specifically conceived for
electricity markets, this measure penalizes values below or
above a target through a piecewise linear penalty function.
This approach is similar to the former in that an implicit
utility function can be derived from the penalty function.

Regret. It measures the performance of random vari-
ables against a benchmark. Linear [15] and nonlinear [16]
approaches are commonly used to model regret functions.
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Fig. 3. Discrete density function of energy supply costs.

Safety-first [17]. It consists of assuring a safety level of
costs for any possible contract portfolio. This is equivalent
to limiting the value of any scenario of the cost distribution
to a safety level or maximum allowed cost (Fig. 3).

Value-at-Risk (VaR) [18]. It corresponds to the maxi-
mum cost of the random distribution for a given confidence
level α. In other words, the VaR is the α100% percentile of
the cost distribution (Fig. 3). This is nowadays the most
extended measure. However, its main drawback is that it
cannot be linearly formulated.

Conditional Value-at-Risk (CVaR) [19], [20]. It
corresponds to the mean cost above VaR (Fig. 3). This
measure is especially convenient for dealing with positively
skewed cost distributions. In addition, and contrary to
VaR, CVaR can be linearly modeled.

To decide among the above-mentioned measures, two
items are considered: 1) the mathematical formulation of
the measures and 2) the definition of risk for consumers.
On the one hand, we have a mixed-integer linear model and
therefore this formulation does not admit nonlinear mea-
sures. On the other hand, according to our point of view,
an industrial consumer perceives the risk as the potential
of high costs and, thus, measures which penalize low costs
are inappropriate. As a consequence, the measures vari-
ance, total absolute deviation, regret and utility function
are not suitable for industrial consumers (see summary in
Table I).

We also reject Fleten’s approach [13], [14] in spite of
measuring the potential of high costs. Building a penalty
function may not be an easy task for consumers and there-
fore it may not reflect their risk attitude as well as other
measures.

The measure that we note as the reference cost follows
Fleten’s approach in that only penalizes values above a
target (reference cost), although it does not use a penalty
function. The stochastic model with this measure can be
formulated as:
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min
cT ,c+

T ∈RG

∑

g∈G

pgcg+

T

s.t. (4)
x ∈ X

E[cT ] ≤ Scr (4a)

cg+

T > cg
T −R ∀g ∈ G (4b)

cg+

T ≥ 0 ∀g ∈ G (4c)

The objective of this model is to minimize the risk mea-
sure while maintaining the expected cost below the risk-
aversion parameter Scr (constraint (4a)). This model only
penalizes costs above the reference R, being risk-neutral for
costs below R (Fig. 3). The penalization is done through
cg+

T , which computes the positive differences between the
cost cg

T of each scenario g and the reference cost R (con-
straints (4b) and (4c)).

Whether or not to use this model depends on the con-
sumer’s preferences. Particularly, we think that the refer-
ence cost R can be difficult to select for some consumers
and, thus, this model was not implemented. In addition,
a confidence level (provided by the safety-first, VaR and
CVaR models) seems to be a more intuitive risk mea-
sure than the linear penalization used in the reference cost
model. Specifically, the safety-first model is formulated as:

min
cT ∈RG

E[cT ]

s.t. (5)
x ∈ X

cg
T ≤ Ssl ∀g ∈ G (5a)

This model minimizes the expected cost while keeping
the cost of all the scenarios below a safety level or maxi-
mum allowed cost Ssl, which is the risk-aversion parameter
(constraint (5a)). Therefore, the risk measure, which is the
maximum cost, corresponds to the value of the cost distri-
bution with a confidence level equal to 1.

Among the other measures, VaR and CVaR models, the
former was selected. As previously stated, the CVaR has
the main advantage in that it can be modeled as a lin-
ear problem. However, a reduced number of scenarios was
considered due to the large size of the deterministic prob-
lem1 and, therefore, it does not make sense to analyze val-
ues above the VaR. On the other hand, the deterministic
model is formulated as a mixed-integer problem, so it is
feasible to use a risk measure with binary variables. The
VaR model with binary variables is formulated as:

1 5,883 constraints, 7,590 real variables, 1,087 binary variables and
32,887 non-zero coefficients of the constraint matrix.

TABLE I

Risk measure formulations and their suitability for

industrial consumers

Mathematical programming 

Risk 
measure 

Non 
linear
(NLP) 

Linear 
(LP) 

Mixed 
integer 
(MIP) 

Potential 
of high 
costs 

Variance [4][5]   No 
Absolute
deviation 

 [6][7]  No 

Regret [14] [13]  No 
Utility 
function 

[9] [10]  No 

Fleten’s 
approach 

 [11][12]  Yes 

Reference 
cost 

 [8]  Yes 

Safety-
first 

 [15]  Yes 

VaR   [16] Yes 
CVaR  [17][18]  Yes 

min
cT ∈RG,δ∈BG,ζ∈R

ζ

s.t. (6)
x ∈ X

E[cT ] ≤ SV aR (6a)
∑

g∈G

pgδg ≤ 1−α (6b)

cg
T ≤ ζ +Mδg ∀g ∈ G (6c)

where B = {0,1}, ζ is the VaR for the confidence level
α, M is a constant value above the highest cost among all
scenarios cg

T and δg are dummy binary variables for each
scenario g.

The VaR (ζ) is minimized in the objective function while
the expected cost, the other objective, is limited to the risk-
aversion parameter (SV aR) (constraint (6a)). To deter-
mine which scenario the VaR is, two equations are needed:
(6b), which limits the number of binary variables (δg) that
can have the value of 1 to the number of scenarios with
cost above the VaR; (6c), which forces the binary variables
(δg) of the cost scenarios above the VaR to have the value
of 1 and establishes the VaR in the scenario of the highest
cost with dummy variable δg equal to 0.

Comparing both of the chosen models, VaR and safety-
first, VaR is more flexible since it allows the user to analyze
solutions obtained with different confidence levels, whereas
the safety-first model only limits the highest cost (confi-
dence level 1). As a negative aspect of the VaR model,
including binary variables in the formulation increases the
computation time considerably, despite only one binary
variable is needed per scenario.

V. Determination of efficient frontiers

An efficient frontier refers to the set of optimal contract
portfolios obtained by varying the risk-aversion parameter
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[15]. These portfolios represent a tradeoff between the two
objectives: expected cost and risk measure.

The efficient frontier with the safety-first model is calcu-
lated as follows. First, the risk-neutral model (equations
(3)) is solved. The maximum value of the cost distribu-
tion obtained is used as a cap value for the safety level.
Next, while the problem remains feasible, the safety-first
model (equations (5)) is solved and the safety level is de-
creased iteratively. In this process, optimal solutions of the
two stages of the stochastic problem and different contract
portfolios are obtained in each iteration.

The same type of procedure cannot be applied when de-
termining efficient frontiers with the VaR model (equations
(6)). This model has as objective function the cost of the
scenario which corresponds to that of the VaR for a given
confidence level. Thus, for this scenario, the VaR model
obtains optimal solutions of the first-stage (contracts) and
second-stage (energy supply system operation) variables.
However, for the other scenarios, only first-stage variables
(common for all scenarios) are optimal. The reason for this
is that the cost of the scenarios different from the VaR are
not penalized in the objective function and, as a conse-
quence, the model does not obtain their optimal values.

To obtain the efficient frontier, the optimal VaR and ex-
pected cost are necessary, which cannot be achieved solely
with the VaR model. To overcome this problem we pro-
pose to obtain each value of the efficient frontier in two
phases:

1. In the first phase, the first-stage variables (contract
portfolio) are obtained from the resolution of the VaR
problem.

2. Next, a risk-neutral problem, in which the contracts
obtained in the previous phase are fixed, is solved.

The second problem determines the same VaR as the
first problem as well as the optimal second-stage variables.
The expected cost obtained with the risk-neutral model is
used as the threshold of the risk-aversion parameter of the
VaR model, below which contracting decisions change.

The results of one iteration of the method are depicted
in Fig. 4, which shows the distribution functions obtained
when solving the two phases with a stochastic problem of
15 scenarios and a confidence level of 0.9. The VaR model
obtains optimal VaR and contracts as well as an expected
cost, far from its optimal value, of 646 ke. Fixing the
contracts obtained and solving the risk-neutral model, the
optimal expected cost, which equals 564 ke, is determined
(solid line in Fig. 4). These numbers show how important
the boiler and cogeneration plant operation is for risk man-
agement. While contracts mainly hedge consumers against
price risk, energy supply system operation manages energy
and fuel volume uncertainty.

This proposed method is used for determining the effi-
cient frontier of the VaR model shown in the next section.

VI. Case Study

The models described in this paper were implemented
using data from a cellulose paper factory in Spain. Both
the cogeneration plant and the steam boiler, which con-
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Fig. 4. Distribution functions in one iteration of the two-phase
method proposed for obtaining the efficient frontier for the VaR
model.

stitute the energy supply system, have enough capacity to
supply 2 MW of peak thermal demand. The surplus ther-
mal energy produced by the supply system is dispelled into
the atmosphere. The cogeneration plant, with an electri-
cal production capacity of 2.76 MW, can satisfy the peak
electricity demand (1.22 MW) and sell the surplus.

The industrial consumer will annually sign one contract
among the proposed by retailers of each of the following
products: 1) electricity acquisition, 2) fuel oil acquisition
for the boiler, 3) natural gas acquisition for the cogener-
ation plant and 4) surplus electricity sale. The types of
contracts considered in the model, which in general can be
used for any product, are:

• Type 1: Fixed annual price.
• Type 2: Fixed annual price plus bonus or penalty by

consumption. The price of this contract varies accord-
ing to a stepwise linear function of the energy or fuel
annual consumption.

• Type 3: Fixed annual price indexed monthly to a vari-
able of interest for the consumer, such as raw material
costs or product sale prices.

• Type 4: Three-section time-of-use (TOU) rate. Typ-
ically these sections are: peak, plateau and off-peak.
This type of contract is only used for negotiating elec-
tricity.

• Type 5: Contract for differences. The price of this
contract varies in each time period according to the
following expression:

λ · Spot price + (1 − λ) · Contract fixed price (7)

where the parameter λ ∈ [0,1] typically has the value
of 0.5.

• Type 6: Spot price plus cap and floor (collar) prices.
The energy under negotiation is paid at a cap price
if this price is below the spot price, at a floor price if
this price is above the spot price, or at the spot price
if this price is between the cap and the floor ones.

• Type 7: Spot price plus bonus or penalty by consump-
tion. Analogous to type 2 but referenced to the spot
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TABLE II

Number of contracts of each type and product included in

the case example

 Acquisition Sale 
Type of 
Contract 

Electricity Fuel 
Oil

Natural 
Gas

Electricity 

1 1 1 1 1 
2 2    
3 2    
4 2   1 
5 2    
6 2 1 1  
7  1 1  
8 1 1 1 1 

Total 12 4 4 3 

price instead of to a fixed annual price.
• Type 8: Spot price.

Specifically, the number of contracts of each type and
product considered in this example is stated in Table II.

The time periods of the problem are grouped into 4 rep-
resentative days per month. These are the combination of
working and non-working days according to the Spanish
electricity tariffs and on and off production status of the
factory. Each representative day is composed of 3 periods
corresponding to peak, plateau and off-peak hours in work-
ing days and to 8 consecutive hours in non-working days.
The number of periods considered in the planning year is
90, since not all the months have 4 representative days.

Due to the lack of any significant correlation between
electricity and fuel prices in the Spanish energy markets,
price scenarios are generated independently. On the one
hand, 3 electricity price scenarios were obtained by sam-
pling from historical data distribution (Fig. 5). This
method is reasonable given the difficulties in forecasting
electricity prices in Spain with an annual scope [21], al-
though we are conscious that further research is needed
in this field. On the other hand, five fuel oil and natu-
ral gas price scenarios were generated with the algorithm
proposed in [22] (Fig. 5). Basically, this algorithm gener-
ates fuel prices through Brent spot prices, which are calcu-
lated from historical distributions of Brent spot and futures
prices.

The resulting MIP stochastic problem has 15 price sce-
narios, 90 periods and, as a result, a probability tree with
1350 nodes. This problem contains 88,035 constraints,
129,879 variables, 16,043 of which are binary and 492,818
non-zero coefficients of the constraint matrix. The model
was programmed in General Algebraic Modeling System
(GAMS) [23] and solved with the solver CPLEX 9.0.

The efficient frontier obtained with the safety-first model
is depicted by the solid line in Fig. 6. The solutions are
labeled in capital letter, whereas the crosses (×) are the
VaR values with a confidence level of 0.9 for each optimal
safety-first alternative. Contract portfolios above the effi-
cient frontier have higher values in at least one of the two
objectives: expected cost and risk measure, whereas there
is no feasible solutions below the efficient frontier.
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Fig. 5. Natural gas, fuel oil and electricity (buy and sale) price
scenarios for the case example.
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The types of contracts obtained for each product and
their cost or income are shown in Table III. The differ-
ence between the extreme solutions is significant. Option
A reduces the expected cost with respect to E in 9.25%,
although the latter increases the maximum cost in 6.30%.
The consumer will choose among these alternatives de-
pending on his risk aversion.

Three groups of solutions can be appreciated (A-B, C-D
and E), each one having the same contracts of acquisition
of natural gas and sale of surplus electricity. Solutions
within the same group have similar costs, since fuel oil and
electricity acquisition contracts are much cheaper than the
others. The reason for this is that the cogeneration plant
produces most of the periods because of the profitability
of selling surplus electricity.

The efficient frontier illustrates how contracts are cho-
sen for risk hedging. Thus, the contract portfolio with
the highest risk (alternative A) corresponds to spot price
contracts of the most expensive products (natural gas and
surplus electricity). On the opposite side is E, the most
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TABLE III

Solutions of the efficient frontier with the safety-first

model [ke]

 Alternative 
Contract A B C D E 

Acq. of Elec. Type 2 16.7  11.6  0.4 
Acq. of Elec. Type 6    21.9  
Acq. of Elec. Type 8  19.9    
Acq. of F. Oil Type 7 26.8 29.0 17.3 31.3  
Acq. of N. Gas Type 6   914.1 881.3 958.0 
Acq. of N. Gas Type 8 872.6 868.0    
Sale of Elec. Type 4     827.3 
Sale of Elec. Type 8 812.5 809.4 825.2 804.8  

Expected Cost 541.5 543.1 562.0 563.0 591.6 
Maximum Cost 702.2 700.1 667.6 664.8 658.0 

VaR 0.9
678.8 681.0 651.0 652.8 658.0 
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Fig. 7. Distribution functions of the solutions of the efficient frontier
calculated with the safety-first model.

risk-averse alternative, for which the model selects a three-
section TOU rate contract for the sale of surplus electricity
and a spot price contract with cap and floor prices for the
acquisition of natural gas.

The distribution functions of the five alternatives ob-
tained are depicted in Fig. 7. The spreading of the dis-
tributions is higher for solutions of higher risk and lower
expected cost. The difference of low cost scenarios is higher
than that of high cost scenarios; however, low cost scenar-
ios are not taken into account since the consumer perceives
the risk as the potential of high costs.

The other efficient frontier, determined with the risk-
neutral and VaR models as mentioned in the previous sec-
tion, is depicted by the doted line in Fig. 6. The points,
labeled with numbers, are the optimal VaR values with a
confidence level of 0.9, whereas the plus signs (+) repre-
sent the maximum cost of the distributions for the optimal
VaR. The types of contracts chosen for the VaR model and
their costs or income can be found in Table IV.

The solutions calculated when optimizing VaR are sim-
ilar to those generated with the safety-first model. Specif-
ically, solutions 1 and A on the one hand, and 3 and C on
the other hand, correspond to the same contract portfolio.
The other solutions of the VaR efficient frontier, 2 and 4,

TABLE IV

Solutions of the efficient frontier with the VaR model [ke]

 Alternative 
Contract 1 2 3 4 

Acq. of Elec. Type 2 16.7 17.4 11.6 12.5 
Acq. of F. Oil Type 6   30.0  21.5 
Acq. of F. Oil Type 7 26.8  17.3  
Acq. of N. Gas Type 6   914.1 910.8 
Acq. of N. Gas Type 8 872.6 867.9   
Sale of Elec. Type 8 812.5 809.4 825.2 823.8 

Expected Cost 541.5 542.8 562.0 564.3 
VaR 0.9

678.8 674.1 651.0 650.6 
Maximum Cost 702.2  702.3 667.6 670.7 

are similar to B and D, respectively. In fact, although 2
and 4 are not optimal solutions from a safety-first perspec-
tive, they are very close to the efficient frontier obtained
with the safety-first model.

The main difference between both efficient frontiers is
option E, whose maximum cost and VaR have the same
value (see Fig. 6). This alternative does not appear when
solving the VaR model since both the expected cost and
VaR of this option are higher than those of alternative 4
and, therefore, option E is not an efficient VaR solution.

Although the efficient frontiers obtained for both risk
measures are similar, the computation time is very differ-
ent. The VaR approach requires much more time because
of the implicit scenario selection involved in VaR evalua-
tion. Specifically, the VaR model is solved in around 22h,
whereas the safety-first model takes 6h2. In order to de-
crease these times, one area of future research will be fo-
cused on studying resolution methods based on problem
decomposition for mixed-integer stochastic models [24].

Lastly, it is worth noting that all of the portfolios ob-
tained contain contracts linked to spot prices. In this ex-
ample, portfolios without price uncertainty are not efficient
because the premium paid by the consumer for limiting
the price risk is too high. These types of portfolios have
a null variance, however, the risk associated with them,
measured as VaR or maximum cost, is high. Although the
parameters of the contracts of this example are realistic,
it is possible that other parameters provided by retailers
could lead to efficient fixed price contracts. Nevertheless,
this example shows the usefulness of the models developed
for contract evaluation and selection.

VII. Conclusions

In this paper we have presented multi-objective stochas-
tic optimization models for the energy management of in-
dustrial consumers working under liberalized energy mar-
kets. These original models optimize contracting and en-
ergy supply system operation decisions simultaneously tak-
ing into account a consumer’s risk attitude.

Starting from the deterministic problem stated in [1], we
have extended this problem to two-stage stochastic mod-
els. In the first stage, before the first time period of the

2 Models were executed on a Pentium IV 3GHz.
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problem, contracting decisions are made. Simultaneously,
in each period of the problem, the energy supply system
operation is determined once the uncertainty is revealed.

The first model presented, the risk-neutral approach,
does consider the price uncertainty explicitly, however, it
is incapable of performing risk management. To overcome
this drawback, the stochastic models formulated obtain
a tradeoff between a risk measure and the expected cost
through a risk-aversion parameter.

To formulate the stochastic problem, several risk mea-
sures have been reviewed and an original discussion con-
cerning their suitability for industrial consumers has been
carried out. Finally, the measures implemented are safety-
first and VaR. Both reflect the potential of high costs and
measure confidence levels and, therefore, represent the risk
attitude of consumers and are easy to interpret.

When determining efficient frontiers with VaR as the
risk measure, the problem encountered is that not all the
second-stage variables calculated are optimal, since they
are not penalized in the objective function. This prob-
lem can be solved with the proposed two-phase method for
obtaining each value of the efficient frontier. In the first
phase, first-stage variables (contracts) and VaR are calcu-
lated with the VaR model. Next, in a second phase, these
contracts are fixed in a risk-neutral model, which obtains
second-stage variables (boiler and cogeneration operation)
and the optimal expected cost.

Finally, we have illustrated the working of the models
with a realistic case example. The results show that the
models proposed can be valuable for reducing consumers’
energy costs while keeping control of price risk.
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[1] E. Gómez-Villalva and A. Ramos, “Optimal energy manage-
ment of an industrial consumer in liberalized markets,” IEEE
Transactions on Power Systems, vol. 18, no. 2, pp. 716–723,
May 2003.

[2] S.W. Illerhaus and J.F. Verstege, “Optimal operation of indus-
trial chp-based power systems in liberalized energy markets,”
IEEE Power Tech ’99 Conference, vol. BPT99-352-13, Aug 29-
Sept 2 1999.

[3] D. Paravan, H. Brand, R. Golob, J. Hlouskova, S. Kossomeier,
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[9] K. Ng and G. B. Sheblé, “Risk management and assessment
tools for an ESCO operation,” International Conference on
Probabilistic Methods Applied to Power Systems, Madeira (Por-
tugal), September 25-28, 2000.

[10] IEEE, Power Engineering Society, Risk Assessment and Fi-
nancial Management, TP-137-0 edition, Summer Meeting, July
1999.

[11] D. Lambert and B.A McCarl, “Risk modeling using direct solu-
tion of nonlinear approximations of the utility function,” Amer-
ican Journal of Agricultural economics, vol. 67, pp. 846–852,
1985.
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versidad Politécnica de Madrid, Spain in 1990.
He is a Full Professor at the Departamento de
Organización Industrial, ICAI.


