
Analysis of the Performance of

Benders-based Distributed Decomposition Methods for

Linear Stochastic Programming

Jesus M. Latorre, Rafael Palacios, Andres Ramos
Institute for Research in Technology

ICAI School of Engineering
Comillas Pontifical University

Alberto Aguilera 23, 28015 Madrid, Spain

(Jesus.Latorre@iit.upcomillas.es)

In stochastic programming, the consideration of uncertainty might lead to large scale prob-

lems. In these problems, computational resources might fall short of the requirements for

solving these problems, especially concerning memory capacity. Decomposition techniques

help to clear this obstacle, by producing a set of smaller subproblems at the cost of addi-

tional computation time for coordination due to the iterative of the resolution algorithm.

However, one way to mitigate the effect of the increased computational time derived from

the decomposition is to solve the subproblems in parallel or distributed systems. This pa-

per compares the performance of two different Benders decomposition techniques for linear

stochastic problems when executed in two different computational grids (one using single-

core computers and the other using dual-core computers). Decomposition methods that

create less task-dependency take better advantage of computer resources available in the

grid, thus compensating a small increase in the overall computational weight. In particu-

lar, the proposed method called “complete-scenario decomposition” requires a larger total

CPU time (the sum of all individual CPU times in the grid) compared to traditional Ben-

ders decomposition; however, the computational overhead is compensated by a better grid

performance, so the proposed method yields shorter execution times as measured by the

user.

Keywords: linear stochastic programming; grid computing; Benders decomposition

1

1 Introduction

The representation of uncertainty in stochastic programming can be done through the use of

scenario trees. These scenario trees present a discretization of the underlying probability of

the uncertain data of the problem. The explicit consideration of the full scenario tree in the

problem is usually not practical, due to the large size of the resulting problem, the so-called

deterministic equivalent.

Generally, the solution of linear programming problems can be improved by taking ad-

vantage of the structure found in the constraints matrix. Problems are usually formulated

linking subsets of variables, resulting in a block structure like the one shown in figure 1.

This figure depicts part of the equation matrix of a multiperiod deterministic hydrothermal

scheduling problem (in fact, the first 8 periods of it), which is the deterministic version of

the problem employed in the results section of this paper. Individual blocks (framed in

the picture) represent the coefficients of the equations relating variables within each period,

whereas the top block is the objective function that links all periods. These period blocks

are scarcely linked among themselves by a small amount of equations that consider two con-

secutive periods (see the coefficients below boxes that link variables from one period with

variables from the next period). This characteristic structure (called staircase or L-shaped)

can be used by decomposition methods to solve each block separately. Furthermore, since

scenario trees in stochastic programming involve replicating the matrix structure for each

node of the tree, decomposition methods have been widely applied in this field with positive

results.

Decomposition methods break a large scale problem into a set of smaller subproblems

that may fit into the available resources, e.g. the memory of the computer employed. This

decomposition comes at the cost of an iterative solution algorithm needed to coordinate the

subproblem solutions in order to obtain the solution for the original complete problem.

In this point, distributed computing can be used to reduce total execution time experi-

enced by the user. By spreading the computation of subproblems over a set of computers,

the effect of the increased computation time can be mitigated. However, there are several

reasons that entail limitations to the efficiency of the distributed execution, that need to be

carefully examined when designing and implementing distributed algorithms:

• The most important limitations are task dependencies that imply unavoidable restric-

tions in the way in which subproblems can be distributed. The most extreme situation

2

Figure 1: Structure of the equation matrix of a deterministic hydrothermal coordination
problem.

would be a chain of dependencies that imposes sequential execution, regardless of the

number of computers available in the grid system.

• Task distribution also produces some overhead time due to sending input data and

retrieving results. Network latency, bandwidth, and the balance between data volume

and computing time, are characteristics that play a role in this aspect.

• Finally, non-deterministic execution times, typical in optimization algorithms, produce

load unbalancing in a more important and unpredictable fashion that unbalances pro-

duced by heterogeneous computer-power characteristic in the elements of grid systems.

Grid environments are Multiple Instruction Multiple Data (MIMD) distributed systems

comprising large amounts of heterogeneous resources that act as a virtual system providing

high computing power and storage capacity, not fully controlled by the user (Foster and

Kesselman 1998). This paper focuses on employing this kind of systems for the solution of

stochastic programming problems.

This paper compares two decomposition methods when solved in a grid environment.

The partial-scenario decomposition is a nested Benders decomposition, in which stage ag-

3

gregation is applied to increase the grain and obtain better distributed performance. The

second decomposition method, namely the complete-scenario decomposition, is proposed in

this paper and it is based on Benders decomposition break subproblem linkages at all the

stages. This makes the subproblems independently solvable without the need of the serial

solution of a master problem, as in the usual Benders decomposition and Lagrangian re-

laxation methods. Complete-scenario decomposition results in subproblems of homogeneous

size, and by eliminating subproblem dependencies, it increases the performance of the grid

environment. Since this method also means a higher computational load, it is not worth-

while for application on a single computer. Nevertheless, due to its increased distributed

performance, it might compensate the increased overall CPU time, as it will be shown later.

This paper is organized as follows: next section presents a review of previous works

found in the literature concerning stochastic programming and parallel computing; then, in

section 3 the two decomposition methods used in this paper are described, along with their

formulation; follows section 4, where a real case study is used to evaluate the performance of

both methods running on a prototype grid; and finally, section 5 presents conclusions that

can be extracted related to the work carried out.

2 Related work

When decomposing large-scale linear programming problems, two main methods can be

used: Benders decomposition and Lagrangian relaxation. They focus on eliminating respec-

tively the complicating variables and the complicating equations, and thus can be seen as

dual methods. Benders decomposition (Benders 1962) fixes complicating variables, which in

stochastic problems (Slyke and Wets 1969) correspond to the stages of the problem common

to several scenarios that link these scenarios together. Eliminating these variables allows

solving each scenario independently. The resolution of independent subproblems can be

then performed in parallel, increasing the overall performance of the method. Additionally,

a master problem needs to be formulated, in order to solve the first stages and to propose

values for their variables to the subproblems. The extension for multistage problems, where

one stage acts as parent for the following stage and as child for the previous one, can be

found in Birge (1985).

Lagrangian relaxation (Geoffrion 1970), on the other hand, eliminates the complicating

constraints that link several blocks of variables in the problem, thus enabling each block to

4

be solved independently. In a stochastic problem, these complicating constraints are usually

the non-anticipativity constraints that link those nodes common to several scenarios. To

achieve convergence, a master problem is needed to coordinate the subproblems, enforcing

relaxed equations to be fulfilled in the final solution.

Other decomposition methods can be thought as a derivation of these. For instance,

the Dantzig-Wolfe decomposition (Dantzig and Wolfe 1960) introduces a variation in the

main Lagrangian relaxation scheme, solving the primal formulation of the master problem

instead of its dual form. Another example is the cross decomposition (VanRoy 1983), which

employs both decomposition schemes to profit from the block structure of the problem, both

in variables and equations.

Generally, decomposition methods increase resolution times because they require iterating

between master problem and subproblems in order to reach the solution. Usually, the only

situation in which this approach pays off is when the original problem is so large that it

cannot be solved directly in one computer. Hence decomposition makes it possible to solve

such problems, but the total computing time will be larger than the expected execution time

of the original problem. If the decomposition is carefully designed, resulting subproblems

can be solved independently in parallel or distributed systems, thus mitigating the effect of

increased computational time.

Previous work on parallel and distributed systems was initially focused on parallelizing

basic mathematical programming methods. For instance, Forrest and Tomlin (1990) study

both the simplex and interior point methods on SIMD systems, while Shu and Wu (1993)

parallelizes key phases of the simplex method on a MIMD system, and Bisseling et al.

(1993) and Karypis et al. (1994) perform similar tasks for interior point methods on MIMD

machines. Later, branch and bound methods were solved by Iamnitchi and Foster (2000)

on distributed systems. Also Anstreicher et al.(2002) and Goux and Leyffer (2002) solved

nonlinear integer problems with branch and bound algorithms over grid systems.

Concerning stochastic programming methods, some work was derived from Rockafellar

and Wets (1991) where the augmented Lagrangian is proposed as a way of accelerating

convergence of Lagrangian relaxation at the cost of increasing problem complexity. Mulvey

and Ruszczynski (1995) approximate the quadratic penalty term in the objective function

(augmented lagrangian) that links all subproblems, so each problem is separable and can be

solved in parallel on a MIMD system.

Regarding Benders decomposition, which lies at the core of the methods presented in this

5

paper, two-stage stochastic problems are considered in Nielsen and Zenios (1997). There,

fixing the first stage solution allows the parallel solution of the multiple second stage sub-

problems. Since the structure of all second stages subproblems is similar, a SIMD machine

is used to solve the second stages simultaneously.

Nodal decomposition is employed in Birge et al. (1996) following nested Benders decom-

position in a serial mode, until a branch in the scenario tree is found. Then, the branching

scenarios are assigned to other processors to be computed in parallel, following this same

strategy. Dempster and Thompson (1998) improve the performance of this method by solv-

ing together in the same subproblem the contiguous stages that are not separated by any

branching point.

In distributed and especially grid environments, asynchrony is the most valuable property

in terms of performance. This is analyzed for linear problems in Moritsch et al.(2001) and

Linderoth and Wright (2005), where only a fraction of the subproblems needs to be fully

computed in order to proceed with the master problem resolution. Finally, Linderoth and

Wight (2003) and Linderoth and Wright (2005) use a bundle trust region method to limit

the range of variation of primal variables in each iteration, thus achieving faster convergence.

Ferris et al [2009] decomposes a scheduling problem that minimizes the makespan. The

MIP problem is decomposed using GAMS/grid over Condor middleware, by assigning subsets

of the search space to different machines further partitioning subsets that are found to be

harder to solve.

3 Complete-scenario and partial-scenario decomposi-

tion methods

In stochastic programming, a decomposition method proposes a partition of the scenario

tree nodes into subproblems, and the resolution method is highly influenced by this decision.

This partitioning strategy also limits the attainable level of parallelization and thus the

performance of each method in a parallel or distributed computing environment. For a

decomposition method to have good performance in a grid, this partition has to fulfill some

requirements:

• Due to the latency of the communication network, coarse grained decompositions

should be chosen. This means that computation time for each subproblem should

be increased, grouping nodes of the scenario tree, to compensate the communication

6

times. Besides, a smaller number of subproblems usually decreases the number of

decomposition iterations.

• Subproblems should be as independent as possible to allow their parallel resolution

without dependencies among them. For instance, if a subproblem needs to wait for an-

other subproblem from a previous stage to start its own resolution, overall performance

will suffer from this lack of parallelism.

• Additionally, if the iterative process starts with solutions that are closer to the optimal

one, it seems natural that convergence will be easier. This implies that the formulation

of subproblems that consider all stages will result in faster convergence. If this were not

the case, first stage problems might propose solutions far from the optimal to the rest

of subproblems, and even solutions that are infeasible when considering the whole time

scope in the iterations when the recourse approximation is not built yet. This leads to

a waste of time that can be avoided by including a complete scenario, comprised of at

least one node in every stage.

In this section two decomposition schemes are presented, along with their mathematical

formulation. In section 3.1, partial-scenario decomposition is briefly reviewed, and will be

further considered as the reference method. In section 3.2, complete-scenario decomposition

is presented, a method specifically designed to reach better performance in parallel and grid

computing systems.

3.1 Partial-scenario decomposition

Benders decomposition, as it has already been stated, focuses on eliminating complicating

variables in the problem, see Benders (1962) and Birge and Louveaux (1997). For this

description, the following problem notation will be used

min
x,y

cTx+ dTy

s.t. Ax = b
A′y = b′

Tx+Wy = h
x, y ≥ 0

where x and y are the first and second stage variables. Fixing variables x, the resulting

problem would be easily solved. In the stochastic case, where there are several second stages

(one for each scenario) linked to the single first stage, fixing the latter allows independent

7

and parallel resolution of all second stage subproblems. This can be achieved by formulating

the recourse problem (RP) which takes a fixed value of first stage variables x:

θ (x) = min
y

dTy

s.t. A′y = b′ (RP)
Wy = h− Tx : π
y ≥ 0

where π are the dual variables associated with the constraints linking the first and second

stages.

Additionally, a first stage master problem (MP) has to be formulated, which will propose

values of the first stages variables to reach the complete problem optimal solution:

min
x,θ

cTx+ θ

Ax = b (MP)

δiθ ≥ θi + πiTT (xi − x) ∀i ∈ I
x ≥ 0

where θ is the recourse function, I is the set of already computed Benders cuts and δiθ ≥

θi + πiTT (xi − x) are the Benders cuts, being δi an indicator variable for feasibility (δi = 0)

(see Dantzig (1963)) or optimality (δi = 1) cuts for iteration i, θi the value of the second

stage objective function, and πi the dual variables of the second stage constraints, all of

them for the current value of the first stage variables xi.

Alternative resolution of MP and RP builds the set of approximation cuts (indexed by i

in MP) that drives the solution iteratively to the complete problem solution. This approach

can be extended for multi-stage problems, where each problem acts both as a master problem

for the following stage, and as a subproblem for the previous stage.

This general framework needs to be adapted for its use in distributed environments,

in order to attain high grid performance and therefore to reduce overall execution time.

This can be done by aggregating scenario tree nodes in the same subproblem, increasing

subproblem size. A study of different node aggregation methods in the context of serial

solution of a stochastic optimization problem can be found in Cerisola and Ramos (2000).

In the present work aggregation is employed in a similar fashion to the method proposed

in Dempster and Thompson (1998), but instead of stopping at the branching stages of the

scenario tree, each subproblem will contain all the nodes of a scenario that are not assigned to

the parent scenario. This increases the size of the subproblems, favoring the coarse grain of

the algorithm. This method still suffers from the dependency among subtasks that lies in the

8

nature of the nested Benders decomposition, but it considers larger subproblems and even

one full scenario in all the stages, benefiting the grain and the convergence characteristics

of the method. Figure 2 shows an example of the partition of the nodes for a three-stage

binary tree. It can be seen that with this decomposition there are as many subproblems as

terminal nodes, and the subproblem sizes vary from as large as a node for each stage to as

small as one single terminal node.

Figure 2: Partial-scenario decomposition example applied to a three stage binary tree.

Partial-scenario decomposition is a shorthand for referring to a nested Benders decom-

position for multistage problems, which employs the already described scenario aggregation

technique. To present the formulation of this decomposition, some notation will be intro-

duced. The scenario tree is expressed as a set of scenarios
{

ωξ
}

, which are divided into nodes
{

ωξ
t ∈ ωξ

}

, with t being the stage and ξ the uncertainty realization. A node ωξ
t−1 is said to

be predecessor of node ωξ
t if it belongs to the same scenario in the previous stage, and it is

expressed as pred
(

ωξ
t

)

= ωξ
t−1. Hence, in this decomposition method a general expression of

a subproblem for realization ξ at stage t of a multistage stochastic problem is the following:

θξ
t

(

xξ

t−1

)

= min
x
ξ
t ,θ

ξ
t

∑

(ξ,t)∈S
cξt

T
xξ
t +

∑

(ξ,t)∈C
θξt

s.t. Aξ
tx

ξ
t = bξt ∀ (ξ, t) ∈ S

T ξ
t x

ξ
t−1 +W ξ

t x
ξ
t = hξ

t ∀ (ξ, t) ∈ S, (ξ, t− 1) ∈ S (SP1)

δξit θ
ξ
t ≥ θξit + πξi

t

T
T ξ
t

(

xξi
t−1 − xξ

t−1

)

∀ (ξ, t) ∈ C, i ∈ I

W ξ

t
xξ

t
= hξ

t
− T ξ

t
xξ

t−1
∀ (ξ, t− 1) ∈ P

xξ
t ≥ 0 ∀ (ξ, t) ∈ S

where I designates the set of previously computed cuts, t is the stage where scenario ωξ

branches from its parent scenario, and t denotes the stages where children scenarios branch

9

from ωξ. For a full understanding of the previous expression, there are several sets that

need to be defined, which determine the node partitioning of the stochastic problem into

subproblems:

• The set of nodes that are included in each subproblem is:

S =
{

(ξ, t) /ωξ
t ∈ ωξ, ∀t ≥ t

}

• The set of parent nodes, or nodes not belonging to the subproblem which are prede-

cessors of nodes in the subproblem, is:

P =
{

(ξ, t) : ωξ
t /∈ S, ωξ

t+1 ∈ S/ωξ
t = pred

(

ωξ
t+1

)}

• And the set of child nodes, or nodes not belonging to the subproblem whose parent do

belong, is:

C =
{

(ξ, t) /ωξ
t /∈ S, pred

(

ωξ
t

)

∈ S
}

It should be noted that these subsets define the partitioning of this decomposition

method, but also impose the order in which subproblems must be solved, that has to be

followed to ensure that the information required for each subproblem is available when it is

ready to be solved. The solution order for each iteration follows the forward and backward

passes of the usual nested Benders decomposition method: it starts by solving the subprob-

lem with no parent nodes, continues on with the subproblems having their parent nodes in

this first subproblem, and so on, reversing the order for the backward pass when the Ben-

ders cuts are transmitted back. These cuts are computed from the current solution, which

may not be the optimal one until the convergence of the complete problem is reached. The

dependency between parent and child nodes restricts the performance of this method when

executed in parallel, as it will be seen in the results section, because at any given moment

there may be idle resources that cannot be used because there are subproblems waiting from

other subproblems’ solution.

3.2 Complete-scenario decomposition

With the previous decomposition scheme, the dependencies among subproblems limit the

performance that can be achieved. It would be desirable to have a decomposition which

formulates subproblems as independent as possible, so that all subproblems can be solved in

10

parallel without having idle computing servers. As it has been seen, the main disadvantage

resides in breaking the links between scenario nodes, resulting in delays due to coordinating

the solution of the fragments of each scenario. Thus, a better approach would be to consider

complete scenarios for each subproblem.

In this section a new method is presented, the complete-scenario decomposition (Latorre

et al. 2009), which enforces the independency among subproblems by including a complete

scenario in each subproblem. Hence, in this method there are as many subproblems as

terminal nodes, and all subproblems have the same size, each comprising as many nodes as

the number of stages. An example of this decomposition can be seen in figure 3, applied to

a three-stage binary tree: four subproblems are defined, each one comprising one complete

scenario, from the first to the last stages. A side effect of this decomposition is that some of

the nodes from the scenario tree (those that are common to several scenarios) are considered

multiple times in different subproblems. As a consequence, coordination among scenarios is

needed to reach the same solution in these duplicated nodes. This is usually performed by

the non-anticipativity constraints, whose relaxation would lead to a Lagrangian relaxation

approach.

In linear problems, first stage subproblem can consider the recourse function of the fol-

lowing stage, either from the explicit equations of the nodes of that following stage or from

approximation cuts. In both cases, it will reach the same optimal solution as long as the ap-

proximation satisfies some “quality” requirements. This idea is the ground on which Benders

decomposition is developed. This can be further extended to the case of complete-scenario

decomposition, such that when formulating a subproblem the nodes common to other sub-

problems will receive a complete definition of the recourse function from the nodes of the

following stage:

• Nodes that belong to the same subproblem will provide an exact evaluation of the

recourse function on their scenario.

• Nodes coming from another subproblem will provide an approximate evaluation through

their Benders cuts.

Formally, the mathematical formulation of each subproblem, corresponding to scenario

11

Figure 3: Partial-scenario decomposition example applied to a three stage binary tree.

ωξ, is the following:

min
x
ξ
t ,θ

ξ
t

∑

(ξ,t)∈S
cξt

T
xξ
t +

∑

(ξ,t)∈Sb
θξt

s.t. Aξ
tx

ξ
t = bξt ∀ (ξ, t) ∈ S

T ξ
t x

ξ
t−1 +W ξ

t x
ξ
t = hξ

t ∀ (ξ, t) ∈ S, (ξ, t− 1) ∈ S (SP2)

δξit θ
ξ
t ≥ θξit + πξi

t

T
T ξ
t

(

xξi
t−1 − xξ

t−1

)

∀ (ξ, t) ∈ Sb, i ∈ I

xξ
t ≥ 0 ∀ (ξ, t) ∈ S

where I designates the set of cuts already generated (in the usual Benders decomposition

way), S =
{

(ξ, t) /ωξ
t ∈ ωξ

}

is the set of all the nodes of scenario ωξ, and Sb is the set of

branching nodes from sibling scenarios, that branch from scenario ωξ at each stage t:

Sb =
{

(ξ, t) /ωξ
t /∈ S, pred

(

ωξ
t

)

∈ S
}

When the recourse problem of scenario ωξ for a sibling scenario ωξ′ has to be solved, the

variables
{

xξ
t : ω

ξ
t ∈ ωξ, ωξ

t ∈ ωξ′
}

from common stages are fixed to the values proposed by

12

the sibling scenario ωξ′. Bearing this in mind, the recourse problem for stage t (where both

scenarios branch) can be formulated as follows:

θξ
t

(

xξ
1 = xξ′

1 , . . . , x
ξ

t−1
= xξ′

t−1

)

=

min
x
ξ
t ,θ

ξ
t

∑

t≥t

cξtx
ξ
t +

∑

t>t

θξt

s.t. Aξ
tx

ξ
t = bξt ∀ (ξ, t) ∈ S, t ≥ t (RP2)

T ξ
t x

ξ
t−1 +W ξ

t x
ξ
t = hξ

t ∀ (ξ, t) ∈ S, (ξ, t− 1) ∈ S

δξit θ
ξ
t ≥ θξit + πξi

t T
ξ
t

(

xξi
t−1 − xξ

t−1

)

∀ (ξ, t) ∈ Sb, t ≥ t, i ∈ I

W ξ

t
xξ

t
= hξ

t
− T ξ

t
xξ

t−1
∀ (ξ, t) ∈ S

xξ
t ≥ 0 ∀ (ξ, t) ∈ S, t ≥ t

The resolution method that derives from this complete-scenario partition scheme proceeds

iteratively solving at each iteration each subproblem separately in two different phases:

• In the first phase, each subproblem SP2 is solved, considering its scenario in all the

stages. This resolution takes into account the rest of the scenario tree by means

of the approximation cuts provided in earlier iterations by the rest of subproblems.

Furthermore, the solution obtained is a valid proposal for solving the other subproblems

in the second phase.

• In the second phase, each subproblem solves the recourse problems RP2 for each of it

sibling scenarios, i.e. it fixes the values of the variables that are common to the sibling

scenario with the proposal given by this sibling subproblem in the first phase of the

previous iteration. In this way, the recourse function for the sibling scenario is built,

and an approximation cut (a Benders cut) can be computed for the common variables

proposal provided.

These two phases are solved on each iteration of the solution algorithm, carrying out

both phases for each subproblem before consulting new information from other subproblems

(on the following iteration). This strategy allows solving the subproblems independently in

a distributed fashion, requiring synchronization only at the end of each iteration, when new

information is exchanged among subproblems. In this sense there is no forward and backward

pass, since all computations are performed together when a subproblem is considered for

solution.

When the approximation provided by the Benders cuts is good enough, the proposed

method will converge to the complete problem optimal solution. This can be proved by

13

considering this method as a multiple superimposed Benders decompositions, where each

scenario acts both as the master problem for himself and as a subproblem for the rest of

scenarios. Hence, the convergence proof of the basic Benders decomposition can also be

applied to this method, guaranteeing its convergence (Latorre 2007).

3.3 Practical implementation of the algorithms

As a final description, to clearly point out the differences between the two presented meth-

ods, their distributed algorithms are shown in figure 4 and figure 5. The first computation

that is performed is the determination of the solution order of subproblems to be followed

each iteration. For the partial-scenario decomposition, this order indexes subproblems first

for the forward pass and later for the backward pass, including a subproblem once its parent

subproblem (in the forward pass) or its children subproblem (in the backward pass) have al-

ready been included. This assures that when solving a subproblem, all the input information

it needs is already been sent for solution. For the complete-scenario decomposition, since

there are no dependencies between subproblems inside the iteration and there is no forward

and backward pass, the execution order is a mere enumeration of subproblems.

The key point that determines the performance of each algorithm is marked with an

asterisk in both figures. In partial-scenario decomposition, in order to solve a subproblem,

it needs to receive information from its parent or child scenarios (depending if it is being

solved in the forward or backward pass). In the complete-scenario decomposition method,

it just needs to wait for an idle computer to proceed with the computations. Besides,

partial-scenario is affected by additional time constraints since subproblems must wait for

information from previous executions: primal solutions from parent subproblems during the

forward pass, and approximation cuts from children subproblems during the backward pass.

It can be seen that, both decomposition schemes synchronize the execution at the end of

each execution, but since partial-scenario decomposition generates subproblems that depend

upon the solution of others to proceed with the computations in the same iteration, it limits

the performance more tightly than the complete-scenario decomposition method, which is

more likely to make use of all available grid resources. On the other hand, comparing

the computation tasks carried out on the servers, shown in figure 6 and figure 7, partial-

scenario decomposition means a lighter total computational load than complete-scenario

decomposition. This can be seen in the fact that partial-scenario decomposition has to solve

SP1, which is usually smaller than SP2 since it does not consider the whole scenario, while

14

begin
Compute the subproblem solution order
Iteration = 0
repeat
ProblemsSent = ProblemsReceived = 0
while ProblemsSent < ProblemCount do
if (There is an idle computer) and

(Subproblem has the information) then (*)
Send next subproblem SP1 to the grid
ProblemsSent = ProblemsSent + 1

else
Wait for subproblem completion
Share the new information resulting from the resolution
ProblemsReceived = ProblemsReceived + 1

end if
end while
while ProbReceived < ProblemCount do
Wait for subproblem completion
Share the new information resulting from the resolution
ProblemsReceived = ProblemsReceived + 1

while end
until (Iteration > IterationLimit) or (Convergence achieved)

end

Figure 4: Algorithm for the partial-scenario decomposition algorithm

15

begin
Compute the subproblem solution order
Iteration = 0
repeat
ProblemsSent = ProblemsReceived = 0
while ProblemsSent < ProblemCount do
if (There is an idle computer) then (*)
Send next subproblem (SP2 and RP2) to the grid
ProblemsSent = ProblemsSent + 1

else
Wait for subproblem completion
Share the new information resulting from the resolution
ProblemsReceived = ProblemsReceived + 1

end if
end while
while ProbReceived < ProblemCount do
Wait for subproblem completion
Share the new information resulting from the resolution
ProblemsReceived = ProblemsReceived + 1

while end
until (Iteration > IterationLimit) or (Convergence achieved)

end

Figure 5: Algorithm for the complete-scenario decomposition algorithm

16

complete-scenario decomposition does not only need to solve SP2 (usually larger) but also

needs to solve RP2 for each sibling subproblem. The balance between the two factors (grid

efficiency and total computational load) can lead to different performances and provides the

key for tuning the complete-scenario method.

begin
Receive subproblem
Formulate and solve subproblem SP1
Wait to send back the results

end

Figure 6: Algorithm for the distributed task of the partial-scenario decomposition algorithm

begin
Receive subproblem
Formulate and solve complete scenario subproblem SP2
for each sibling scenario do
Formulate and solve recourse problem RP2

end for each
Wait to send back the results

end

Figure 7: Algorithm for the distributed task of the complete-scenario decomposition algo-
rithm

4 Experimental results

This section presents the results of applying the previous decomposition methods to a real

problem. The application case selected is a medium-term hydrothermal coordination prob-

lem, which is the problem that computes the amount of electricity that must be produced by

all hydroelectric and thermal power plants during several time periods minimizing variable

operation costs, and subject to meeting the demand and to diverse technical constraints. The

example case considers an electric power system of real size, with 45 hydroelectric plants and

129 thermal plants. The problem considers a time horizon of one year with weekly decisions,

and represents uncertainty in water inflows at key reservoirs by means of a binary scenario

tree comprising 16 scenarios branching at weeks 5, 10, 15 and 20.

17

The solution of this problem has been carried out in two prototype grid systems, each

made up of 10 individual PCs (comprising single-core or dual-core CPUs) and a manager

computer. This number of PCs is big enough to compare the performance of both methods

and matches the “small-department” license limit of CPLEX (ILOG 2009), the solver used

to solve individual LP problems in each grid computer. The methods will perform in larger

systems similarly to what is presented here, as it will be shown. The grid is managed with

NetSolve (Seymour et al. 2005), a middleware that offers an easy access to the grid resources

with a simple programming interface. The basic structure of a NetSolve system is organized

around three main components:

• Server component, which performs the computing tasks that are distributed to the

grid, and is executed in all PCs that are grouped in the grid.

• Client component, which provides the user an entry point to the grid resources, and

thus it is linked into the user application.

• Agent component, that constitutes the core of the matching system, tracking each

available resource and assigning those resources to the requests from the users.

In the prototype grids used in this paper, one computer runs the agent and the client

application, while the remaining CPUs are devoted to computing tasks as servers in the grid.

The precise configuration of the prototype grids are as follows:

• Grid1, the first grid prototype, is composed of 10 different computers as computing

servers. Among these computers, 8 of them have slightly faster CPUs (2.4 GHz Intel

Pentium 4 processors, instead of 1.8 GHz), which contributes to produce a mixture

of capabilities that might be found in general grids. All of them have 1 GB of RAM

memory. And finally, the manager computer has the same capabilities as the fastest

computing servers.

• In Grid2, the second grid prototype, there are 5 computer servers each with a dual-core

CPU (3.40 GHz Intel Pentium D processors) and 1 GB of RAM memory, making a

10 cores grid. In this case, each individual core is faster than in Grid1, but since the

access to RAM memory is shared by both cores, it will affect the performance. The

manager computer is another dual-core CPU like the computing servers.

18

Although grid systems are usually geographically disperse and not totally controlled by

the user, this work shows results for these two prototype grids where the focus is brought

into the decomposition methods performance. Hence, no analysis about system availability

is performed. The results shown in this section are divided into two subsections, according

to the grid prototype in which they were obtained: section 4.1 presents results for Grid1 and

section 4.2 presents the respective results for Grid2. Results are shown for the partial-scenario

and complete-scenario decomposition algorithms, while other non node-aggregating methods

(like the Benders nested decomposition) are not considered because of the communication

penalty imposed due to their high number of subproblems.

4.1 Results in the grid prototype with single-core CPUs

As a first step, to test the performance of the methods in the presence of a non-limiting

grid, the 16 scenarios are grouped in pairs to make 8 subproblems. This way, the amount

of computers in the grid is larger than the number of subproblems, and thus the grid is

more realistic and will not hinder the top performance of the methods. In Table 1 the main

metrics for each method are shown. These metrics include:

• The number of iterations needed by each method to achieve convergence.

• The wall clock time seen by the user to obtain the solution.

• The CPU or computing time, addition of all CPU times of the computers in the grid,

which is mainly spent on solving the LP problem, but also includes ancillary tasks like

processing input information in each server.

• And the performance of the grid system with each method, computed as the ratio:

Performance =
CPU time

Wall clock ·Number of computers

Decomposition method Iterations Wall clock [sec] CPU time [sec] Performance
Partial-scenario 7 736 1064 18.1 %
Complete-scenario 8 716 4100 71.5 %

Table 1: Experimental results in Grid1 with 8 subproblems

In this experiment, it can be seen that the complete-scenario decomposition needs more

iterations to converge, and more CPU time because of the extra resolutions it performs for

19

0 10 20 30 40 50 60 70 80 90 100 110

1

2

3

Time (s)

C
P

U
 #

Figure 8: Chronogram of one iteration of the partial-scenario decomposition with 8 subprob-
lems

the siblings of each subproblem. However, it achieves better performance in the grid, and as a

consequence, the total user time (wall clock) is shorter than in the partial-scenario decompo-

sition. The difference in performance can be explained because the complete-scenario method

does not create any high task dependency that might force some machines to wait for others

to conclude their computations. In fact, as it has been previously noted, complete-scenario

decomposition can send all the subproblems simultaneously to the grid. To further analyze

this fact, figure 8 and figure 9 show, for one iteration, the chronograms of both decomposi-

tion methods executed in Grid1. It can be seen that, although there are 10 computers in the

grid, partial-scenario decomposition uses just 3 of them, because of the dependencies among

subproblems, thus reducing the performance achievable by this method. On the other hand,

the complete-scenario decomposition method reaches a better performance because it does

not suffer from this execution constraint and makes full use of the 8 computers from the

beginning.

Trying to find a situation in which complete-scenario decomposition does not beat partial-

scenario decomposition, it was decided to decompose the problem in a number of subproblems

that exceeds the size of the grid. Decomposing the problem into 16 subproblems leads to

longer solution times in both approaches (see table 2). As the grid consists of 10 computers,

in both methods there are more subproblems than computers in the grid and the subproblems

cannot be solved simultaneously: at most 10 subproblems can begin their execution while

the remaining 6 must wait until more resources become available. This simulates a congested

or limited grid, as opposed to the previous case when there were no restrictions.

In this situation, it can be seen that the number of iterations increases due to the larger

number of subproblems to be coordinated in the resolution, although the ratio in the itera-

tion count between the two methods is similar to the previous case. For complete-scenario

decomposition, the main drawback of having a number of subproblems larger than the com-

20

0 10 20 30 40 50 60 70 80 90

1

2

3

4

5

6

7

8

Time (s)

C
P

U
 #

Figure 9: Chronogram of one iteration of the complete-scenario decomposition with 8 sub-
problems

Decomposition method Iterations Wall clock [sec] CPU time [sec] Performance
Partial-scenario 11 919 1732 18.9 %
Complete-scenario 13 1461 8474 58.0 %

Table 2: Experimental results in Grid1 with 16 subproblems

puting servers in the grid is that these subproblems cannot be solved simultaneously. This

increases the wall clock time when compared with partial-scenario decomposition, whose sub-

problems are easier to solve. Complete-scenario decomposition solves the 16 subproblems in

two batches: the first set of 10 subproblems and the remaining 6 subproblems. Having to

perform several consecutive batches of resolutions of subproblems for each iteration increases

the total user time. Furthermore, the second set of 6 subproblems does not use all the com-

puters in the grid, and this explains the performance decrease from the previous case to this

one, from 71.5% to 58.0%.

4.2 Results in the prototype grid with dual-core CPUs

In this section, the same problem is solved using Grid2, made up of 5 computers with dual-

core CPUs. This test shows the effect of RAM bottleneck and cache efficiency over the

performance. For this purpose, two tests are executed:

• In case C1 the 16 scenarios are grouped into 4 subproblems, and the solution procedure

is allowed to solve one subproblem at a time in each CPU. Hence, only one of the

21

cores of each CPU is used, and there is no interference in the access to the memory.

Consequently, four computers are used, each running one task.

• In case C2 the 16 scenarios are also grouped into 4 subproblems, but this time each

CPU is allowed to use both of its cores. This employs the default task scheduling

strategy of NetSolve, which schedules all the tasks that are permitted at one CPU (in

this case two tasks) before sending any task to the next idle CPU. In this case, two

computers are used, each running two tasks.

Table 3 shows the results from the execution of these cases in the second grid prototype,

Grid2. These results include the amount of iterations needed to achieve convergence, the total

wall clock time measured from the user point of view, the CPU time spent on calculations

with CPLEX, and the performance obtained in the grid as described in the previous section

(but taking into account the number of cores actually used).

Case
Decomposition

method Iterations
Wall clock

[sec]
CPU time

[sec]
Performance

per core

C1
Partial-scenario 6 514 555 27.0 %
Complete-scenario 6 428 1149 67.2 %

C2
Partial-scenario 6 556 639 28.7 %
Complete-scenario 6 581 1608 69.2 %

Table 3: Experimental results in Grid1 with 16 subproblems

Comparing the results from cases C1 and C2, it can be seen the effect of the collision in the

access to the RAMmemory that increases CPU time. In C1 there are no memory collisions as

there is only one core at work at each CPU. On the other hand, case C2 gives the grid access

to two cores per CPU, which will share the bandwidth of the memory bus and may block each

other, or may cause the cache memory to be less effective due to the increased RAM range

(two subproblems instead of one) that is being accessed. This affects in a different degree

the partial-scenario decomposition and the complete-scenario decomposition, as can be seen

in Table 3. Although the performance of the methods is kept similar in both cases, because

it mainly depends on the decomposition strategy, the increase in CPU time from C1 to C2 is

quite different for each method: a 15% for partial-scenario decomposition against a 40% for

complete-scenario decomposition. As the subproblems considered in the complete-scenario

decomposition are larger, this effect in RAM access is more noticeable in this method. The

CPU time increase forces the wall clock time to increase, thus reaching the limit in which a

better grid performance does not compensate the longer CPU time.

22

5 Conclusions

This paper analyzes critical features of stochastic programming decomposition when dis-

tributed computing environments are used, especially when the amount of resources available

is uncertain like in grid computing systems. Decomposition methods that require larger CPU

times would be ignored from a classical (single-computer) point of view, but it may pay off

the increased total computing time by obtaining better grid performance if the subproblems

can be solved more independently in parallel.

This paper describes two methods (partial-scenario decomposition and complete-scenario

decomposition) that stem from Benders decomposition, describing how they partition the

scenario tree into subproblems as well as the algorithms for solving those subproblems in

a grid environment. In a nutshell, partial-scenario decomposition relies upon conventional

nested Benders decomposition with node level aggregation, whereas complete-scenario de-

composition employs scenario level aggregation to obtain more independent subproblems.

To evaluate the capabilities of these methods, this paper presents results for solving real-

sized stochastic linear programming problems and analyzes their performance when executed

on two different grid systems. Two different aspects have been tested: first the effects of

resource availability and task dependency, and second the effectiveness of new multiple-core

CPU architectures.

The complete-scenario decomposition generates independent subproblems that can be

solved in parallel from the beginning (as long as resources are available). This method has

attained its best results in the presence of a large-enough grid (with a number of computers

that exceeds the amount of subproblems that can be launched at the same time) and high

throughput CPUs (which provide the computing power and memory needed by this method).

Otherwise, it can be outperformed by the partial-scenario decomposition, which resembles

the classical Benders decomposition with stage aggregation and inherits parallelization con-

straints, but requires less computing time due to the lower size of the subproblems.

References

Anstreicher, K., N. Brixius , J.-P. Goux, J.T. Linderoth. 2002. Solving Large Quadratic

Assignment Problems on Computational Grids. Mathematical Programming Series B 91

563–588.

23

Benders, J. F. 1962. Partitioning procedures for solving mixed-variables programming prob-

lems. Numerische Mathematik 4 238–252.

Birge, J. R. 1985. Decomposition and Partitioning Methods for Multistage Stochastic Linear

Programs. Operations Research 33 no 5 989-1007.

Birge, J.R., C.J. Donohue, D.F. Holmes, O.G. Svintsitski. 1996. A Parallel Implementa-

tion of the Nested Decomposition Algorithm for Multistage Stochastic Linear Programs.

Mathematical Programming 75 327–352.

Birge, J.R., F. Louveaux. 1997. Introduction to stochastic programming. Springer Verlag.

Bisseling, R.H., T.M. Doup, L.D.J.C. Loyens. 1993. A Parallel Interior Point Algorithm for

Linear Programming on a Network of Transputers. Annals of Operations Research 43

51–86.

Cerisola, S., A. Ramos. 2000. Node Aggregation in Stochastic Nested Benders Decompo-

sition Applied to Hydrothermal Coordination. 6th International Conference on Prob-

abilistic Methods Applied to Power Systems (PMAPS), Madeira, Portugal, September

2000.

Dantzig, G.B., P. Wolfe. 1960. Decomposition principle for linear programs. Operations

Research 8 no 1 101–111.

Dantzig, G.B. 1963. Linear Programming and Extensions. Princeton University Press.

Princeton, USA.

Dempster, M.A.H., R.T. Thompson. 1998. Parallelization and Aggregation of Nested Ben-

ders Decomposition. Annals of Operations Research 81 163–188.

Ferris, M.C., C.T. Maravelias, A. Sundaramoorthy. 2009. Simultaneous Batching and

Scheduling Using Dynamic Decomposition on a Grid. INFORMS Journal on Computing

21 no 3 398410

Forrest, J.J.H., J.A. Tomlin. 1990. Vector Processing in Simplex and Interior Methods for

Linear Programming. Annals of Operations Research 22 71–100.

Foster, I., C. Kesselman. 1998. The Grid: Blueprint for a New Computing Infrastructure.

Morgan Kaufmann.

Geoffrion, A.M. 1970. Elements of Large Scale Mathematical Programming: Part I: Con-

cepts. Management Science 16 no 11 652–691.

24

Goux, J.-P., S. Leyffer. 2002. Solving Large MINLPs on Computational Grids. Optimization

and Engineering 3 no 3 327–346.

Iamnitchi, A., I.T. Foster. 2000. A Problem-Specific Fault-Tolerance Mechanism for Asyn-

chronous, Distributed Systems. International Conference on Parallel Processing, 4–14.

ILOG. 2009. ILOG CPLEX: High-performance software for mathematical programming and

optimization, http://www.ilog.com/products/cplex/, accessed on Nov 2009.

Karypis, G., A. Gupta, V. Kumar. 1994. A Parallel Formulation of Interior Point Algo-

rithms. Proceedings Supercomputing (IEEE Computer Society, ed.). New York, NY,

USA. 204–213.

Latorre, J.M. 2007. Resolución Distribuida de Problemas de Optimización Estocástica. Apli-

cación al problema de coordinación hidrotérmica (Distributed Resolution of Stochastic

Programming Problems. Application to the Hydrothermal Coordination Problem), Ph.D.

Thesis, Universidad Pontificia Comillas. Madrid, Spain.

Latorre, J.M., S. Cerisola, A. Ramos, R. Palacios. 2009. Analysis of stochastic problem

decomposition algorithms in computational grids. Annals of Operations Research 166

no 1, 355–373.

Linderoth, J.T., S.J. Wright. 2003. Decomposition Algorithms for Stochastic Programming

on a Computational Grid. Computational Optimization and Applications 24 no 2-3 207–

250.

Linderoth, J.T., S.J. Wright. 2005. Computational Grids for Stochastic Programming.

Applications of Stochastic Programming (S. Wallace, y W. Ziemba, eds.), SIAM, SIAM

Mathematical Series on Optimization. 61–77.

Moritsch, H., G.Ch. Pflug, M. Siomak. 2001. Asynchronous Nested Optimization Algo-

rithms and Their Parallel Implementation. Proceedings of the International Software

Engineering Symposium, Wuhan, China, 2001.

Mulvey, J.M., A. Ruszczynski. 1995. A New Scenario Decomposition Method for Large-Scale

Stochastic Optimization. Operations Research 43 no 3 477–490.

Nielsen, S.S., S.A. Zenios. 1997. Scalable Parallel Benders Decomposition for Stochastic

Linear Programming. Parallel Computing 23 no 8 1069–1088.

Rockafellar, R.T., R.J.-B. Wets. 1991. Scenarios and Policy Aggregation in Optimization

under Uncertainty. Mathematics of Operations Research 16 119–147.

25

Ruszczynski, A. 1986. A regularized decomposition method for minimizing a sum of poly-

hedral functions. Mathematical Programming no 35 309–333.

Seymour, K., A. Yarkhan, S. Agrawal, J. Dongarra. 2005. NetSolve: Grid Enabling Scientific

Computing Environments. Grid Computing and New Frontiers of High Performance

Processing (L. Grandinetti, ed.), Elsevier, Volume 14 of Advances in Parallel Computing.

Shu, W., M.-Y. Wu. 1993. Sparse Implementation of Revised Simplex Algorithms on Parallel

Computers. The Sixth SIAM Conference on Parallel Processing for Scientific Computing,

1993, 501–509.

Slyke, R. Van, R. J-B. Wets. 1969. L-shaped linear programs with applications to control

and stochastic programming. SIAM Journal on Applied Mathematics 17 638663.

Van Roy, T.J. 1983. Cross decomposition for mixed integer programming. Mathematical

programming 25 46–63.

26

List of Figures

1 Structure of the equation matrix of a deterministic hydrothermal coordination

problem. 3

2 Partial-scenario decomposition example applied to a three stage binary tree. 9

3 Partial-scenario decomposition example applied to a three stage binary tree. 12

4 Algorithm for the partial-scenario decomposition algorithm 15

5 Algorithm for the complete-scenario decomposition algorithm 16

6 Algorithm for the distributed task of the partial-scenario decomposition algo-

rithm . 17

7 Algorithm for the distributed task of the complete-scenario decomposition

algorithm . 17

8 Chronogram of one iteration of the partial-scenario decomposition with 8 sub-

problems . 20

9 Chronogram of one iteration of the complete-scenario decomposition with 8

subproblems . 21

27

