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Abstract—In this article, we present a simple deterministic
formulation for the unit commitment (UC) problem under the
adaptive robust optimization (ARO) approach for the case of wind
production uncertainty. We show that the worst-case wind power
scenario can be obtained before solving the UC then the ARO-
UC problem becomes a simple single-scenario deterministic UC.
This avoids the bilinear optimization problem associated with the
second-stage dispatch actions in traditional ARO formulations.

Index Terms—Adaptive robust optimization (ARO), unit com-
mitment (UC), wind power production, worst-case scenario.

I. INTRODUCTION

IN recent years, higher penetration of variable generation
(e.g., wind and solar power) has motivated developments

in unit commitment (UC) formulations in order to manage
these uncertainties. The adaptive robust optimization (ARO)
approach has been recently applied to UC formulations as
an alternative to the conventional stochastic optimization (SO)
approach, see [1], [2] and references therein for further details.

Traditional ARO-UC formulations require the solution of a
mixed-linear integer (MIP) problem together with a bilinear
program, which is nonconcave and NP-hard, to obtain the
worst-case scenario. In contrast, we show that by taking into
account the wind curtailment, the worst-case wind power
scenario can be obtained before solving the UC. Therefore, the
ARO-UC problem becomes a deterministic MIP. We present
two simple examples to illustrate that the commitment solu-
tions (first-stage) obtained with this deterministic UC guaran-
tee a feasible operation (second-stage) of the power system for
any realization of wind uncertainty within the uncertainty set.

II. OBTAINING THE WORST-CASE WIND SCENARIO

The two-stage adaptive robust UC seeks to minimize the
worst-case dispatch cost considering any possible realization
of wind nodal injection w within the uncertainty set W . Here,
we present a compact matrix formulation:

min
x

(
c>x+ max

w∈W
min
y(·)

b>y (w)

)
s.t. Fx ≤ f , x is binary (1)

Hy (w) ≤ h, ∀w ∈ W (2)
Ax+By (w) ≤ g, ∀w ∈ W (3)

where x, y and w are variables and bold letters are parameters.
The binary variable x is a vector of commitment related
decisions of each generation unit for each time interval over the
planning horizon. The continuous variable y is a vector of each
unit dispatch decision for each time interval. The continuous
variable w is a vector of each uncertain wind nodal injection
for each time interval, and the set of uncertainty W is defined
by the continuous interval [w,w].

The objective function is to minimize the sum of com-
mitment cost and worst-case dispatch cost (max-min ex-
pression) over the planning horizon. Constraint (1) involves
only commitment-related constraints, e.g., minimum up and
down. Constraint (2) contains dispatch-related constraints, e.g.,
energy balance, transmission limit constraints. Constraint (3)
couples the commitment and dispatch decisions. The reader is
refereed to [3] for a detailed UC formulation.

The above formulation can be rewritten in the following
stochastic equivalent form, which is suitable to obtain the
worst-case scenario:

min
x,z(·)

c>x+ z (ys)

s.t. z (ys) ≥ b>ys, ∀s ∈ S (4)
Fx ≤ f , x is binary (5)
Hy ≤ h, ∀s ∈ S (6)
Ax+Bys ≤ g, ∀s ∈ S (7)

ws = w + δ>s (w −w) , ∀s ∈ S (8)

where (4) guarantees that the continuous variable z takes
the worst-case dispatch cost from any possible scenario s
realization. Although there are infinite possible wind scenario
realizations within the interval [w,w], the worst-case wind
scenario lies on extreme values {w,w}, which are the possible
vertices of the uncertainty set, as also stated in [1], [2].
Constraint (8) takes into account all these possible vertices
by introducing the parameter δs, which is a vector containing
binary values of each node (where there is wind injection) for
each time interval. Therefore, the set S contains all different
binary combinations of δs, which is equal to 2T ·N , where T
is the number of periods over the planning horizon and N is
the number of nodes where there is wind injection.

Notice that ws does not have any flexibility because (8)
imposes that ws takes a fixed wind realization. However, wind
has some flexibility because it can be curtailed. Therefore,
what is uncertain is not the wind production range but rather
the upper bound of the possible wind dispatch. Consequently,
to correctly model this level of wind flexibility, Constraint (8)
must constrain the upper bound of ws instead of imposing a
fixed wind realization:

ws ≤ w + δs (w −w) , ∀s ∈ S (9)

Notice that in the formulation given by (4)-(7) and (9) there is a
unique scenario that is active for all the constraints. By finding
this worst-case scenario, we can remove all the others and their
associated constraints. Note in (9) that the constraint with the
lowest upper bound, δs=0, dominates all the others, hence
this is the unique scenario that will be active. Consequently,
the formulation (4)-(7) and (9) can be rewritten in function of
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Fig. 1: Demand balance deviations in function of expected wind production.
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Fig. 2: Demand and simulation results

the dominant scenario without changing its optimal solution:

min
x,y

c>x+ b>y

s.t. Fx ≤ f , x is binary (10)
Hy ≤ h (11)
Ax+By ≤ g (12)
w ≤ w (13)

It is important to highlight that this is a deterministic formu-
lation where the only scenario that is considered is the lowest
expected wind w within the uncertainty set. If this formulation
has a feasible optimal solution w∗ then it guarantees that all
other possible wind realizations within the uncertainty set are
feasible. That is, all scenarios can become w∗ by curtailment.
Consequently, all scenarios can be dispatched and, in the worst
case, the maximum quantity of wind that can be dispatched for
any scenario would be w∗.

In short, w is the worst-case scenario, which ensures feas-
ibility, but it is too conservative because it does not guarantee
that wind scenarios above w can be dispatched.

III. NUMERICAL RESULTS AND CONCLUSIONS

Not allowing wind curtailment in the ARO formulation leads
to misleading solutions. To illustrate this, consider the two
following examples. The ARO formulations considered here
are: 1) the traditional ARO-UC, presented in [1], [2], that
does not allows curtailment (4)-(8), and 2) the formulation
that allows curtailment (4)-(7) and (9), which are labelled as
NotCurt. and WithCurt., respectively.

1) One-period scheduling example: A fixed demand of 45
MWh needs to be supplied by one thermal and one wind gen-
erating units. The thermal unit has 20 and 40 MW as min and
max generation capacity, respectively. The wind production is
within the uncertainty range [40, 70] MWh. To provide the
demand, it is necessary to make an energy balance. Fig. 1
shows the demand deviations (shortage/surplus) for every value
of wind within its uncertainty range. Notice that for a given
value of wind, the deviations are always lower if the thermal
unit is offline. Following the ARO approach, where these

unbalances are highly penalized [1], [2], the objective is to
minimize the maximum penalization (the worst-case scenario).
Consequently, the thermal unit will always be offline for this
example. Therefore, following the NotCurt. formulation, there
will be non-suply energy when the wind production is bellow
45 MWh, which is not acceptable in the electricity sector.

However, it is easy to see that the optimal and satisfactory
solution for this example is that the thermal unit produces at its
minimum output 20 MWh and the wind production provides
25 MWh thus supplying the demand, the remaining possible
wind production would be spilled, thus always guaranteeing
the energy supply. In fact, this is the solution that would be
achieved by the WithCurt. formulation.

2) Six-bus system: The system in [4] is used for a time
span of six periods. Fig. 2a shows the demand and the total
wind uncertainty range. All possible vertices of the uncertainty
range are considered with 64 wind scenarios (26). Similarly to
[1], [2], we introduce a penalty cost of 5000 $/MWh for any
power unbalance or transmission capacity violation.

Fig. 2a shows the worst-case wind scenarios found by the
two ARO-UC formulations. Notice that, as expected, the worst-
case scenario found by WithCurt. was w. The commitment
solutions of these two formulations are tested by simulating
the possible dispatch of the 64 wind scenarios. Fig. 2b shows
the total operation costs of the formulations in a box-plot
fashion for all scenarios. Similarly to the previous example,
the operation costs of NotCurt. are significantly higher because
it committed insufficient units in order to dispatch the total
wind production of the worst-case scenario (dashed line in
Fig. 2a); therefore, this solution incurs in power unbalance
and transmission capacity violations in most of the scenarios.

In conclusion, to adequately model wind flexibility, the
ARO-UC formulations must take into account the wind cur-
tailment. Otherwise, the solutions may not commit sufficient
generating units to supply the demand. By modelling wind cur-
tailment, the worst-case wind power scenario can be obtained
before solving the UC. Therefore, the ARO-UC problem be-
comes a deterministic MIP, thus avoiding the bilinear problem
needed by common ARO-UC formulations.

Although the worst-case scenario ensures feasibility, it is
too conservative because it does not guarantee that other wind
scenarios can be dispatched. However, any UC with different
objective function can become more robust by adding it this
single-scenario set of constraints. Further research is needed
to obtain deterministic formulations, avoiding the bilinear
problem, that allows to control the level of conservatism of the
ARO solution (similarly to the “budget of uncertainty” [1]).
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