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Abstract—This paper presents a Mixed-Integer Linear Pro-
gramming (MILP) formulation of Start-Up (SU) & Shut-Down
(SD) power trajectories of thermal units. Multiple SU power-
trajectories and costs are modeled according to how long the
unit has been offline. The proposed formulation significantly
reduces the computational burden in comparison with others
commonly found in the literature. This is because the formulation
is i) tighter, i.e. the relaxed solution is nearer to the optimal
integer solution; and ii) more compact, i.e. it needs fewer
constraints, variables and nonzero elements in the constraint
matrix. For illustration, the self-Unit Commitment proble m faced
by a thermal unit is employed. We provide computational results
comparing the proposed formulation with others found in the
literature.

Index Terms—Mixed-integer linear programming, start-up &
shut-down ramps, thermal units, unit commitment.

NOMENCLATURE

The main definitions and notation used are presented in
this section for quick reference. Upper-case letters are used
for denoting parameters and sets; and lower-case letters for
variables and indexes.

A. Definitions

The following terminology is used in this paper to reference
the different unit operation states, see Fig. 1.
online the unit is synchronized with the system.
offline the unit is not synchronized with the system.
up the unit is producing above its minimum output.

During theup state, the unit output is controllable.
down the unit is producing below its minimum output, when

offline, starting up or shutting down.

B. Indexes and Sets

l ∈ L Start-up type, running from 1 (hottest) toNL (coldest).
t ∈ T Hourly periods, running from 1 toNT hours.

C. Variables

et Energy production during periodt [MWh].
pt Power output at the end of periodt, production above

the minimum output [MW].
ut Commitment of the unit during periodt {0, 1}. Binary

variable which is equal to 1 if the unit is up and 0 if
it is down, see Fig. 1.
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vt Start-Up in periodt [0, 1]. Continuous variable which
takes the value of 1 if the unit starts up in periodt
and 0 otherwise, see Fig. 1.

wt Shut-Down in periodt [0, 1]. Continuous variable
which takes the value of 1 if the unit shuts down in
periodt and 0 otherwise, see Fig. 1.

δt,l Start-Up typel in periodt [0, 1]. Continuous variable
which takes the value of 1 in the period where the
unit starts up for the start-up typel and 0 otherwise.

D. Parameters

EPt Forecasted price of energy in periodt [$/MWh].
CLV Linear variable production cost [$/MWh].
CNL No-load cost [$/h].
CSD Shut-down cost [$].
CSU

l Start-up cost for the start-up typel [$].
P Maximum power output [MW].
P Minimum power output [MW].
PSD
i Power output at the beginning of theith interval of

the shut-down ramp process [MW], see Fig. 1.
PSU
l,i Power output at the beginning of theith interval of

the start-up ramp process typel [MW], see Fig. 1.
P syn
l Power output at which the unit is synchronized for

start-up typel [MW], PSU
l,1 = P syn

l , see Fig. 1.
SDD Duration of the shut-down ramp process [h].
SUD

l Duration of the start-up typel ramp process [h].
RD Maximum ramp-down rate [MW/h].
RU Maximum ramp-up rate [MW/h].
TD Minimum down time [h].
TU Minimum up time [h].
T SU
l Minimum number of periods that the unit must be

down for the start-up typel [h].

I. I NTRODUCTION

T HE actual operation of power generation units must
be considered in detail in order to rigorously model

their generation schedules. Moreover, with the introduction of
competition, accurate modeling and solutions for Unit Com-
mitment (UC) problems are even more necessary to achieve
efficiency and feasibility in energy production [1].

Most of the literature about modeling constraints of thermal
units in UC problems deals with the unit operation above the
minimum output [2], [3]. Units are considered to start/end their
production at the minimum output while the Start-Up (SU) and
Shut-Down (SD) ramps (or power trajectories) are ignored.
Some papers are aware of the importance of considering these
ramps in the UC optimization problem. However, they do
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not include these ramps because the resulting model will be
considerably more complex, causing prohibitive solving times
[4]–[6]. In addition, due to the increasing penetration of wind
generation nowadays, thermal units are being shut down and
started up more often [7]; therefore, a detailed modeling of
the SU and SD processes in UC is required.

The application of direct Mixed-Integer Linear Program-
ming (MILP) to solving UC is becoming increasingly popular
due to improvements in MILP solvers. For example, PJM has
switched from Lagrangian Relaxation (LR) to MILP to solve
the UC-based problems [8]. LR was the dominant optimization
technique for solving UC problems through problem decom-
position, mainly because LR does not present a high memory
requirement as does MILP. However, this problem is being
overcome due to the breakthrough of MILP solvers. Currently,
combination of pure algorithmic speedup and the progress
in computing machinery has meant that solving MILPs has
become around 100 million times faster over the last 20 years
[9]. Furthermore, MILP provides significant advantages over
LR such as the fact that (i) there is a proven global optimal
solution and (ii) MILP models are easier to modify, which
enhances modeling capabilities and adaptability, among other
things [1], [10], [11].

The SU and SD ramps are explicitly modeled under the
LR approach in [12] and under the MILP framework in [13]
and [11]. In [12] and [13], only a single power trajectory for
the SU process is modeled, while [11] considers different SU
power trajectories depending on the unit’s prior down time.
Furthermore, [11] proposes a complete self-UC formulation
which takes into account different constraints (e.g. power
reserves and quadratic production costs) and is adapted to the
Greek market rules.

References [13] and [11] made the important contribution in
proposing the first MILP formulations for single and multiple
SU & SD ramps, respectively. However, their main drawback
is the creation of large models which greatly increase the
complexity of UC problems, thereby making them unattractive
for practical implementation. These models are large due to
the introduction of many constraints in order to deal with the
power trajectories above and below the minimum output of
generating units. Apart from this, [11] needs many binary
variables to model the different SU power trajectories.

The use of MILP-based UC formulations has increased
significantly over the last 50 years [14]. As computational
and algorithmic power increases, so does the complexity of
the MILP formulations, with the addition of features such
as ramping constraints, minimum up and down times and
exponential SU costs [2]. The computational burden of UC
problems needs to be further reduced, by improving the MILP
formulations, so that even more advanced and computationally
demanding problems can be implemented, such as stochastic
formulations [15], contingency-constrained models [16],and
generation expansion planning [17].

Improving an MILP formulation allows a faster search for
optimality by tightening (removing inefficient solutions from)
the original feasible region. Tightening requires strong lower
bounds for minimization problems [18]. This means formu-
lating the problem in such a way that the associated linear

programming (LP) relaxation provides a better approximation
of the value of the integer optimal solution. The time required
for providing optimality is often prohibitive because the gap
between the integer optimal solution and its associated LP
relaxation is very large. Furthermore, a poor lower bound
provided by the LP relaxation will not be adequate to guide
the search for good feasible solutions during the solving
phase (branch-and-cut) of standard MILP solvers [19]. MILP
formulations are frequently tightened by adding a huge num-
ber of constraints and (sometimes) variables. However, the
resulting expanded model must close the gap enough to be
worth the extra time taken to solve the LP relaxations during
the solving phase [20]. In other words, usually, tightening
an MILP formulation comes at the expense of expanding
the model which implies extra time consumption. Therefore,
creating tight and compact MILP formulations is a nontrivial
task because the obvious formulations are commonly either
very weak or very large.

Creating tight (or strong) MILP formulations has been
widely researched [21]. In the case of UC problems, there has
been work in a number of specific areas. In [22], a strong
formulation of the minimum up/down time constraints is
presented; in [23], a tighter linear approximation for quadratic
generation costs is proposed; and [24] presents a new class
of inequalities giving a tighter description of the feasible
operating schedules for generators.

The main contribution of this paper is two-fold:
1) A tighter MILP formulation of SU & SD ramps for UC

problems is proposed in order to reduce the computa-
tional burden of analogous existent MILP formulations.

2) This MILP formulation is also compact and hence
overcoming the main disadvantage of previous models
[11], [13]. If a single power trajectory is modeled for the
SU & SD ramps, then there is neither a need to increase
the number of constraints nor a necessity to increase
the number of variables in comparison to a formulation
without the SU & SD ramps. Furthermore, when consid-
ering different SU trajectories, the proposed formulation
requires the introduction of merely continuous variables
compared to [11].

Additionally, this formulation of SU & SD ramps is suitable
for any UC problem, whether under centralized or competitive
environments, and further model expansion will not requirethe
introduction of numerous terms in the constraints in order to
avoid conflicts between the up and down states, unlike [13]
and [11].

In order to illustrate the effectiveness of the proposed
formulation, the self-UC for a price-taker thermal generator
is used. The objective of a thermal generator, in the self-UC,
is to maximize the profits from selling energy in the day-ahead
market, while satisfying all the technical constraints.

The remainder of this paper is organized as follows: Sec-
tion II presents the formulation of the SU and SD constraintsin
detail. Section III provides and discusses results from several
case studies, where the impact of neglecting the SU and SD
ramps is shown and a comparison of the proposed formulation
with those in [13] and [11] is made. Finally, some relevant
conclusions are drawn in Section IV.
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Fig. 1: Operation states of a thermal unit, including SU & SD ramps

II. PROPOSEDAPPROACH

This section presents the mathematical formulation of the
SU & SD power trajectories. With the purpose of illustrat-
ing how this formulation works, the objective function is
formulated for the case of a price taker self-UC problem.
This section is divided into two parts: Section II-A details
the mathematical formulation and Section II-B shows how the
online and offline unit states can be obtained (see Fig. 1) after
the optimization problem has been solved.

Hourly time intervals are considered, but it should be noted
that the formulation can be easily adapted to handle shorter
time periods. For the sake of simplicity, reserve constraints are
not considered; however, they can be easily introduced in the
model. The interested reader is referred to [5], [11], [25].

A. Mathematical Formulation

The different operation states of a thermal unit are presented
in Fig. 1. The up and down states are distinguished from the
online and offline states. During the up period, the unit has the
flexibility to follow any trajectory being bounded between the
maximum and minimum output and by the ramping-rate limits.
On the other hand, the power output when the unit is starting
up or shutting down follows a predefined power trajectory.
Unlike the SD ramp, the SU ramp trajectory depends on the
unit’s previous down time.

1) Up/Down vs. Online/Offline States:By considering the
commitment variableut as up/down rather than offline/online
states, the generation output above and belowP can be man-
aged independently. This characteristic makes the proposed
formulation (i) compact, unlike [13] and [11], where most
of the constraints involvingpt contain summations of binary
variables in order to avoid conflicts between the power output
above and belowP ; and (ii) tight where, by considering the
generation output (pt) aboveP , the feasible region forpt is
betweenP and P , which is tighter than the region that is
usually considered, between0 andP .

The down times are a function of the offline times (see
Fig. 1). For example, the number of periods that the unit must
be down to activate the SU typel, T SU

l , is equal to the SU
& SD ramp durations (SUD

l andSDD) plus the offline time
required to activate the SU typel. Similarly, the down time
TD is expressed as a function of the minimum offline time
(see Section II-A3).

Fig. 2: Start-up costs as a function of the unit’s previous down time

2) Start-Up Type:Different SU types are modeled depend-
ing on how long the unit has been down. The SU typeδt,l
is selected if the unit has been previously down within the
interval

[
T SU
l , T SU

l+1

)
, see Fig. 2. Each SU type has a different

SU power trajectory associated to it, where the colder the SU
type, the longer the SU power trajectory duration (see example
shown in Fig. 3 in Section III-A). As in the case of [26] and
[11], new variables are introduced to select the SU type:

δt,l ≤
TSU
l+1−1∑

i=TSU
l

wt−i ∀t ∈
[
T SU
l+1, NT

]
, l ∈ [1, NL) (1)

where the right side of (1) is equal to 1 if the unit has been
down within the interval

[
T SU
l , T SU

l+1

)
before hourt. Therefore,

δt,l can only be activated (δt,l ≤ 1) if the unit has previously
been down within this interval.

Note that (1) is not defined for the first hours. Appendix A
details how the first SU typesδt,l are obtained depending on
the initial conditions of the unit.

The following constraint ensures that just one SU type is
selected when the unit starts up:

NL∑

l=1

δt,l = vt ∀t (2)

Equation (1) constrains all SU types except the coldest one
δt,NL . However, constraints (1) and (2) ensureδt,NL = 1 when
the unit starts up (vt = 1), and has been down for at leastT SU

NL

hours. This is because (1) makesδt,l = 0 for all l 6= NL and
then (2) forcesδt,NL = 1. In the event that more than one
SU type variable can be activated (δt,l ≤ 1) then (2) together
with the objective function ensure that the hottest, which is
the cheapest, possible option is always selected. Therefore,
just one of the variables is activated (equal to one). That
is, these variables take binary values even though they are
modeled as continuous variables. This is due to the convex
(monotonically increasing) characteristic of the exponential
SU costs of thermal units [2], see Fig. 2.

Constraint (1) is made even more compact by taking into ac-
count the minimum down time constraint (see Section II-A3).
The hottest SUδt,1 must be activated when the unit has been
down within the interval

[
0, T SU

2

)
. However, the minimum

down time constraint (4) ensures that the unit cannot be
down for less thanTD hours. Therefore, the hottest SU is
only possible within the interval

[
TD, T SU

2

)
. By defining



4 IEEE TRANSACTIONS ON POWER SYSTEMS (accepted version)

T SU
1 = TD, see Fig. 2, constraint (1) together with the

minimum down time constraint (4) ensure that the hottest SU
δt,1 can be activated only when the unit has been down less
thanT SU

2 hours.
3) Minimum Up/Down Times:Constraints (3) and (4) en-

sure the minimum up and down times respectively [22]. This
formulation has been compared with others and has shown a
better performance [22], [24].

t∑

i=t−TU+1

vi ≤ ut ∀t ∈ [TU,NT ] (3)

t∑

i=t−TD+1

wi ≤ 1− ut ∀t ∈ [TD,NT ] (4)

The minimum down timeTD in (4) is equal to (i) the SD
ramp duration (SDD), plus (ii) the hottest SU ramp duration
(SUD

1 ), plus (iii) the minimum time that the unit must be
offline. Therefore, (4) is needed to avoid overlapping between
the SU & SD ramps. Appendix A describes how the initial
conditions force the unit to remain up/down during the first
hours.

4) Commitment, Start-Up & Shut-Down:The following
constraint can be found in models published approximately
fifty years ago [14].

ut − ut−1 = vt − wt ∀t (5)

Onceut is defined as a binary variable, (5) forcesvt andwt

to take binary values.
5) Capacity Limits: The generation level in UC problems

is usually expressed as hourly energy blocks; however, it has
been demonstrated that taking a generation level schedule as
an energy delivery schedule may not be realizable [27], [28].
Therefore, a clear difference between power and energy is
made and all technical constraints are then imposed over the
power output variable. The power generation output of the unit
above its minimum output is modeled as:

0 ≤ pt ≤
(
P − P

)
(ut − wt+1) ∀t (6)

Constraint (6) ensures that the total power output is equal
to P (pt = 0) at the beginning and at the end of a continuous
up period. On the other hand, the SU (SD) trajectory ends
(begins), during the down period, atP level, thereby making
the connection with the up period that starts (ends) at this
level, see Fig. 1.

6) Operating Ramp Constraints:As mentioned in Sec-
tion II-A1, the proposed formulation avoids the introduction
of many variables in most of the equations, unlike [13] and
[11]. This is the case for the ramping constraints that only
depend on the generation variables between two consecutive
hours:

−RD ≤ pt − pt−1 ≤ RU ∀t (7)

7) Energy Production:The total unit’s energy production,
including the energy produced during the SU & SD processes,
is presented in (8). Note that the energy is obtained for
hourly periods and piecewise-linear power trajectories (see
Fig. 1). However, the conversion to shorter time periods is

straightforward.

et =Put +
pt+pt−1

2
+

SDD∑

i=1

PSD
i+1+PSD

i

2
wt−i+1

+

NL∑

l=1

SUD
l∑

i=1

PSU
l,i+1+PSU

l,i

2
δ(t−i+SUD

l +1),l ∀t (8)

The terms of the summations in (8) include the energy
produced during the SU & SD procedures.

Equation (8), together with (1) and (2), make a tight
description of the SU & SD ramps in the energy output
variableet. This could be observed from the fact that on the
one hand, when the unit is starting up (vt = 1), (1) and (2) will
choose the correct SU type (δt,l), and then the associated SU
energy trajectory is immediately fixed in (8), while on the other
hand, when the unit is not starting up (vt = 0) then (2) forces
all SU types to be zero (δt,l = 0) and thus the SU energy in (8)
is immediately fixed to zero. Similarly, the SD decision (wt)
will fix the SD energy trajectory in (8). Besides, the tightness
of the formulation is experimentally checked in Section III,
where the integrality gap of the proposed formulation is lower
than those in [13] and [11].

Note that when just a single SU power trajectory is modeled,
there is no need to introduce variablesδt,l. Therefore, con-
straints (1) and (2) are not needed and the scheduled energy
in (8) must be modified to be directly affected by the SU
variablevt instead ofδt,l.

8) Objective Function:The goal of a price-taker producer
in a self-UC is to maximize his profit during the planning
period, which is the difference between the revenue and the
total operating cost (9). For the sake of simplicity, a linear
production cost is used in this paper.

max

NT∑

t=1

[
EPtet −

(
CNLut + CLV et

+

NL∑

l=1

CSU ′
l δt,l + CSD′

wt

)]
(9)

Note that the no-load cost (CNL) considered in (9) ignores
the SU & SD periods. This is because theCNL only multiplies
the commitment during the up stateut. In order to consider
the no-load cost during the SU & SD periods,CSU ′

l andCSD′

are introduced in (9) and defined as:

CSU ′
l = CSU

l + CNLSUD
l ∀l (9a)

CSD′
= CSD + CNLSDD (9b)

B. Final Power Schedule

The complete energy profile, including SU & SD power
trajectories, was presented in (8). Nevertheless, the complete
power output as well as the unit states online/offline have not
yet been obtained. This information can be explicitly modeled
as variables in the optimization problem, which will create
a considerably larger formulation. However, these values can
be obtained after the optimization problem has been solved
without changing the optimal results and then with negligible
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Table I: Thermal Unit Data

Technical Information Cost Coefficients

P P RU /RD TU /TD SDD CNL CLV CSD

[MW] [MW] [MW/h] [h] [h] [$] [$/MWh] [$]

378.0 150.0 80 4 2 200 55 20

Start-Up Ramping Information

SU Typel CSU
l [$] P syn

l [MW] SUD
l [h] TSU

l [h]

01 16 50 1 4

02 28 50 2 6

03 36 50 3 8

04 40 50 4 11

05 41 50 5 14

computational cost. Furthermore, this also contributes tothe
compactness of the formulation. The total power outputPt,
and online/offline statesUON

t are presented as follows:

Pt =P (ut + vt+1) + pt +

SDD+1∑

i=2

PSD
i wt−i+2

+

NL∑

l=1

SUD
l∑

i=1

PSU
i δ(t−i+SUD

l +2),l ∀t (10)

UON
t =ut+

NL∑

l=1

SUD
l∑

i=1

δ(t−i+SUD+1),l+

SDD∑

i=1

wt−i+1 ∀t (11)

Furthermore, analogously to the SU and SD decisionsvt
and wt which represent the changes between the up and
down states, the turn-onV ON

t and turn-offWOFF
t decisions

representing the changes between the online and offline states
are now obtained with

V ON
t =

NL∑

l=1

δ(t+SUD
l ),l ∀t (12)

WOFF
t = wt−SDD ∀t (13)

III. T EST RESULTS

The proposed formulation is tested for the self-UC of a
price-taker producer. The technical and economic data for the
thermal unit, including five different SU ramps, are presented
in Table I, and the expected electricity prices for a 48-hour
time span are shown in Appendix B. These data are based on
information presented in [11]. The power outputsPSU

l (PSD)
for the SU (SD) power trajectories are obtained as an hourly
linear change fromP syn

l (P ) to P (0) for a duration ofSUD
l

(SDD) hours, see Fig. 1. With respect to initial conditions, the
unit has been up for 6 hours before the scheduling horizon and
its initial power output is 200 MW. All tests in this paper were
carried out using CPLEX 12.3 under GAMS [29] on an Intel
i7-2.4 GHz personal computer with 4 GB of RAM memory.
Problems are solved to optimality, more precisely to 1e-6 of
relative optimality tolerance.

This section is divided into two parts. The first part shows
the impact of SU & SD ramps on the unit commitment. The
second part presents a comparison of the proposed formulation
with those presented in [13] and [11].
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Fig. 3: Optimal generation scheduling for theTraditional and Improved
formulations in the up and bottom part of the figure respectively. The darker
gray area shows the SU & SD energy that the unit will produce inorder to
follow the optimal schedule that results from theTraditional formulation (this
extra energy is added after solving theTraditional problem)

Table II: Producer Costs and Profits

Costs ($) Revenues ($) Profits ($)

Traditional 576417 617252 40835

Improved 402201 461674 59473

% of change -30.22 -25.20 45.64

A. Scheduling and Economic Impact

In order to illustrate how the unit operation is affected if the
SU & SD ramps are considered, the case study has been solved
with and without the ramp trajectories. The formulation with
SU & SD ramps is labeled asImprovedand the formulation
considering just the exponential-SU & SD costs is labeled as
Traditional.

Unlike theTraditional formulation, considering the energy
produced during the SU & SD ramps makes theImproved
formulation perceive revenues during these ramping processes.
To make a fair comparison between both formulations, the
inherent energy produced during the SU & SD ramps is
introduced into theTraditional formulation after the problem
has been solved (see darker gray area in Fig. 3). That is,
even when theTraditional formulation ignores these ramps
in the scheduling stage, they are inevitably present duringthe
operation stage. Subsequently, this energy can be added to
the solution and this extra energy can also be sold. The total
revenues for theTraditional formulation are then obtained
by adding the revenues obtained from the UC solution to
the revenues obtained from the energy produced during the
SU & SD processes. These latter revenues are calculated by
multiplying the electricity price by the energy produced during
the SU & SD ramps.

Fig. 3 and Appendix B show the optimal power and energy
schedules for theTraditional andImprovedformulations. Note
the different duration of the SU power trajectories for the
Improved formulation in Fig. 3. SU durations of one, two
and three can be observed (starting at hours 16, 6 and 30
respectively) as a consequence of the different unit’s down
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(and thus offline) time durations.
The optimal scheduling decision taken by theTraditional

formulation around hours 15-17 and 39-41 was to produce at
minimum outputP (Pmin in Fig. 3) even when electricity
prices were lower than the unit’s linear variable production
costCLV (CLV in Fig. 3). This is a very common behavior,
where producing atP generates fewer losses than shutting
down and starting up the unit within a short period. On
the other hand, when SU & SD ramps are considered, the
optimal scheduling decision is to turn off the unit during
these hours. The reason is that the SU and SD costs are
offset by the revenues received from the energy produced
during the SU & SD ramping processes. In short, unlike
the Improved formulation, in theTraditional model, the SU
and SD processes are perceived as pure losses. Therefore, the
optimal decision of theTraditional UC formulation is to not
turn off the unit for short periods to avoid these losses.

The main problem affecting theTraditional formulation
is that revenues during the SU and SD processes are not
considered in the optimization problem. Therefore, there is
a tendency to produce at least at minimum output, even when
electricity prices are lower thanCLV , and thus obtain some
revenues that compensate for the losses. This drawback is
overcome by considering the SU & SD power production in
the formulation.

Table II shows the difference between costs, revenues and
profits for the solutions of both formulations. As mentioned
before, the total revenue for theTraditional model is obtained
by adding the revenues due to the ramping process ($ 14800)
to the revenues obtained from the optimal solution ($ 602452).
For this illustrative case, the profits when considering theSU
& SD ramps are around 46% higher than when these ramps
are not taken into account.

B. Comparing Different Formulations

The proposed formulation is compared with those available
in [13] and [11]. Reference [13] proposes a formulation to deal
with a single SU and SD ramp trajectory whereas [11] deals
with different SU trajectories depending on the unit’s prior
down time. The different SU types, their associated costs and
power-trajectories are inherent characteristics of thermal units
and these data are provided by the manufacturer. However,
in order to compare the different formulations, the proposed
formulation is implemented considering one, three and five
different SU ramp types, and these models are labeled as R1,
R3 and R5 respectively. The single ramp type model R1 can
be directly compared with the single-ramp formulation pro-
posed in [13]. The model presented in [11] was implemented
considering three SU ramp types, and hence it can be directly
compared with R3. Model R5 is presented in order to observe
the extra computational burden which results from considering
extra SU ramp trajectories.

In order to assess the impact of the problem size on the
computational performance of the models, several case studies
of different sizes were solved. The price profile of one day
(see Appendix B) has been replicated over different time spans
from 4 to 256 days (each case is solved in one step for the

complete time span). The unit data are presented in Table I,
where the information for the single-ramp models (R1 and
[13]) is the SU ramp type 02, the three-ramp models (R3 and
[11]) are the first three SU types, and the five-ramp model
(R5) are the five SU types.

1) Assumptions for the Formulations:In order to compare
all the formulations, [13] and [11] were implemented using
the same objective function and the same set of constraints
as the formulation presented in Section II. Therefore, all the
models are characterizing the same problem; the difference
between them is how the constraints are formulated. In other
words, two models considering the same SU types (R3 and
[11], or R1 and [13]) obtain the same optimal results, e.g.
commitments, generating outputs and profits.

The distinction between power and energy was made when
implementing [13] and [11]. Additionally, as modeled here,
the (usual) power variable is considered to be the power at the
end of the period; and the energy is obtained by applying a
piecewise-linear power profile. [11] was implemented with the
same minimum up/down constraints presented in Section II-A3
as those are the constraints they also use. The synchronization
time was set to zero in [11] as we believe this time does not
need to be explicitly modeled, thus making the formulation
simpler. That is to say, the synchronization time can be
considered as a part of the offline time and obtained after
the problem has been solved, without changing the optimal
results (similar to the turn-on state presented in Section II-B).
Finally, the other constraints presented in [11], which arenot
related to the SU & SD ramps, were not implemented (e.g.
quadratic production costs and different power reserves).

Table III presents the optimal solutions for all the models
for different time spans. As expected, the optimal solutionfor
models R1 and [13] are the same, as well as the solution for
models R3 and [11]. Interestingly, model R5, which considers
five ramp types, also presents the same solution as R3 and
[11]. This is because, in R5, ramp types 04 and 05 were
never activated for this example case because the unit was
not down for long enough. As in the case of the difference
between R1 and R3 (see Table III), if the five different
ramps had been activated in R5, this would have decreased
the operational costs in comparison with R3 because more
flexibility is possible (more SU ramp types).

2) Problem Size:Table III shows the dimension of all the
models for the different case studies. Models R1 and [13] have
the same number of variables, but [13] presents three times as
many binary variables as R1. This is because [13] defines the
SU & SD variables as binary; however, they can be considered
as continuous variables (see Section II-A4). The formulation in
[13] also requires more than twice the quantity of constraints
and nonzero elements than the proposed formulation R1.

As shown in Table III, [11] presents about 16 times more
binary variables than the proposed formulation R3. Models R3
and R5 have more real variables than [11]. However, the total
number of variables in R3 and R5 is smaller than the number
of binary variables in [11]. R3 and R5 also present less than
half the number of constraints than [11]. Furthermore, [11]
presents up to 4.3 and 3 times more nonzero elements than R3
and R5 respectively. Similarly to [13], [11] needs these extra
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Table III: Comparison of Different Formulations
Problem Size

Case # of Constraints # of Real Variables # of Binary Variables Nonzero elements

(# of days) R1 [13] R3 [11] R5 R1 [13] R3 [11] R5 R1 [13] R3&R5 [11] R1 [13] R3 [11] R5

4 668 1444 944 2395 1113 384 192 657 382 824 96 288 96 1540 3131 7515 4576 15050 6352

16 2684 5764 3824 9595 4569 1536 768 2673 1534 3416 384 1152 3846148 12635 30267 18688 75808 26512

64 10748 23044 15344 38395 18393 6144 3072 10737 6142 13784 1536 4608 1536 24580 50651 121275 75136 318880 107152

256 43004 92164 61424 153595 73689 24576 12288 42993 24574 55256 6144 18432 6144 98308 202715 485307 300928 1291168 429712

Computational Performance

Case Optimal Solution ($) Integrality Gap (%) # of Nodes CPU Time (s)

(# of days) R1&[13] R3,R5&[11] R1 [13] R3 [11] R5 R1 [13] R3 [11] R5 R1 [13] R3 [11] R5

4 120250.5 118899.5 15.61 29.06 16.18 27.56 15.97 0 64 14 453 21 0.047 0.234 0.125 1.264 0.109

16 486382.5 475459.4 14.76 28.71 16.53 29.78 16.48 0 550 477 473 604 0.156 3.494 1.545 6.474 2.013

64 1950910.5 1901699.2 14.56 28.62 16.62 30.33 16.60 0 496 508 498 488 0.998 16.255 7.956 37.908 8.565

256 7809022.5 7606658.5 14.50 28.60 16.64 30.47 16.63 0 483 467 490 494 10.405 84.599 48.422 268.665 53.181

variables and nonzero elements to deal with the different SU
ramp types and to avoid conflicts between the up and down
states.

Note that model R5 is slightly larger than R3, with respect to
the number of variables and constraints, because R5 considers
two more ramp types than R3. This also shows that the
compact formulation does not increase considerably when
considering more SU types.

3) Computational Performance:Apart from the compact-
ness of the proposed MILP formulation, the tightness has
a significant impact on the computational performance, as
mentioned in the Introduction. In fact, a compact formulation
usually presents a weak LP relaxation that can dramati-
cally increase the MILP resolution time. The tightness of an
MILP can be measured with the integrality gap [24]. The
integrality gap, for a maximization problem, is defined as
(ZLP−ZMILP )/ZMILP , whereZLP is the optimal value of the
relaxed LP problem, andZMILP is the best integer solution
found after the MILP problem is solved.

Table III shows the integrality gaps for the different formula-
tions. Compared to [13], the proposed single-ramp formulation
R1 has improved (reduced) the integrality gap between 46%
and 49%. Similarly, with respect to [11], R3 improves the
integrality gap between 41% and 45%. Table III also shows
the nodes explored during the branch-and-cut phase; these are
usually decreased with tighter formulations. Note that, for all
the different cases, CPLEX was able to solve R1 with the re-
quired optimality tolerance without needing to branch, because
the nodes were pruned earlier by the initial heuristics and cuts
applied. Apart from the number of nodes, the performance
of an MILP formulation is dramatically affected by the use
of heuristics and cuts, and all of these are influenced by the
tightness of the formulation [19]. Therefore, we will only
comment about CPU times which offer a more complete view
of the model’s performance.

The CPU times for the different case studies are presented
in Table III, where R1 and R3 are up to 22.4 and 10.1 times
faster than [13] and [11] respectively. This significant speed
up is due to the simultaneous tightness and compactness of
the proposed formulation. It is interesting to note that the
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Fig. 4: Convergence evolution until low optimality tolerances for the different
formulations

formulation in [13], which models a single ramp trajectory and
does not take into account exponential SU costs, is a larger
model (presents more constraints and nonzero elements) and
also requires more time to solve the problem than R5, which
considers five different SU ramps and also exponential SU
costs.

Finally, Fig. 4 shows the convergence evolution for the
different formulations to small optimality tolerances forthe
case study of 256 days. The proposed formulation converges
significantly faster than [13] and [11]. This is mainly due to
its tightness.

IV. CONCLUSIONS

This paper presented an Mixed-Integer Linear Programming
(MILP) formulation of the Start-Up (SU) and Shut-Down
(SD) power trajectories of thermal units. This formulation
is simultaneously tighter and more compact than equivalent
formulations found in the literature. Consequently, the com-
putation time is dramatically reduced. The proposed MILP
formulation was analyzed in the context of a price taker
self-unit commitment problem. However, its application to
any unit commitment problem is straightforward, either under
centralized or competitive environments. Several case studies
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were analyzed to show the improvements of this formulation
with respect to others available in the literature. Although SU
& SD ramps are usually not considered, mainly because of
the computation complexity, simulation results showed that
ignoring them changes the commitment decisions causing a
negative economic impact.

APPENDIX

A. Initial Conditions

The following parameters are needed to deal with the unit
state during the first periods:

u0 Initial commitment state{0, 1}.
TU0 Number of hours that the unit has been up before the

scheduling horizon.
TD0 Number of hours that the unit has been down before

the scheduling horizon.

1) Initial Minimum Up/Down Times:The following condi-
tion must be satisfied if(TUR + TDR) ≥ 1:

ut =u0 ∀t ∈ [1, TUR + TDR] (14)

whereTUR andTDR are the number of initial hours during
which the unit must remain up or down at the beginning of the
scheduling horizon.TUR andTDR are defined as follows:

TUR =max {0, (TU − TU0)u0} (14a)

TDR =max {0, (TD− TD0) (1− u0)} (14b)

2) Initial Start-Up Type: Equation (15a) complements (1)
taking into account the initial conditions ifTD0 ≥ 2:

δt,l = 0 ∀l ∈ [1, NL) , t ∈
(
T SU
l+1 − TD0, T

SU
l+1

)
(15a)

Finally, the following equation guarantees that the SUδt,l
is not activated before the SU ramp durationSUD

l :

δt,l = 0 ∀l, t ∈
[
1, SUD

l

]
(15b)

In other words, this condition ensures that if the unit is turned
on in the first hour, the power output aboveP is produced
after the ramp durationSUD

l .

B. Generator-Schedules and Price-Data

The expected electricity prices and optimal power schedules
mentioned in Section III are shown in Table IV, where
super-indexesT and I refer to theTraditional and Improved
formulations. The numbers in parentheses are the power and
energy that were included after the UC problem was solved.
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Table IV: Price Data and Optimal Generation Schedule

t EPt pI
t eIt pT

t eTt t EPt pI
t eIt pT

t eTt t EPt pI
t eIt pT

t eTt t EPt pI
t eIt pT

t eTt
$/MWh MW MWh MW MWh $/MWh MW MWh MW MWh $/MWh MW MWh MW MWh $/MWh M W MWh MW MWh

0 — 200 — 200 — — — — — — — — — — — — — — — — — — —
1 40 150 175 150 175 13 50 75 112.5 218 258 25 40 75 112.5 150 184 3750 150 190 218 258
2 31 75 112.5 (75) (112.5) 14 45 0 37.5 150 184 26 31 0 37.5 (75) (112.5) 38 45 75 112.5 150 184
3 27 0 37.5 (0) (37.5) 15 42 0 0 150 150 27 27 0 0 (0) (37.5) 39 42 0 37.5 150 150
4 25 0 0 0 0 16 41 50 0 150 150 28 25 0 0 0 0 40 41 0 0 150 150
5 26 0 0 (50) 0 17 43 150 100 150 150 29 26 0 0 (50) 0 41 43 50 0 150 150
6 29 50 0 150 (100) 18 47 218 184 218 184 30 29 50 0 150 (100) 42 47 150 100 218 184
7 35 100 75 150 150 19 51 298 258 298 258 31 35 83.33 66.67 150 150 43 51 230 190 298 258
8 43 150 125 218 184 20 65 378 338 378 338 32 43 116.67 100 218 184 44 65 310 270 378 338
9 54 230 190 298 258 21 96 378 378 378 378 33 54 150 133.33 298 258 45 96 378 344 378 378
10 68 310 270 378 338 22 102 310 344 378 378 34 68 230 190 378 338 46102 378 378 378 378
11 71 230 270 378 378 23 66 230 270 298 338 35 71 310 270 378 378 47 66 378 378 378 378
12 58 150 190 298 338 24 51 150 190 218 258 36 58 230 270 298 338 48 51 298 338 298 338

[21] L. Wolsey, “Strong formulations for mixed integer programs: valid
inequalities and extended formulations,”Mathematical programming,
vol. 97, no. 1, p. 423–447, 2003.

[22] D. Rajan and S. Takriti, “Minimum Up/Down polytopes of the unit
commitment problem with start-up costs,” IBM, Research Report
RC23628, Jun. 2005. [Online]. Available: http://domino.research.
ibm.com/library/cyberdig.nsf/1e4115aea78b6e7c85256b360066f0d4/
cdcb02a7c809d89e8525702300502ac0?OpenDocument

[23] A. Frangioni, C. Gentile, and F. Lacalandra, “Tighter approximated
MILP formulations for unit commitment problems,”IEEE Transactions
on Power Systems, vol. 24, no. 1, pp. 105–113, Feb. 2009.

[24] J. Ostrowski, M. F. Anjos, and A. Vannelli, “Tight mixedinteger linear
programming formulations for the unit commitment problem,” IEEE
Transactions on Power Systems, vol. 27, no. 1, pp. 39–46, Feb. 2012.

[25] G. Morales-España, A. Ramos, and J. García-Gonzáles, “A MIP
formulation for joint market-clearing of energy and reserves based on
power trajectories,”IEEE Transactions on Power Systems, 2012, paper
under Review (Manuscrit ID: TPWRS-00510-2012.R1), onlinepreprint.
[Online]. Available: http://www.iit.upcomillas.es/~aramos/papers/V3.4_
UC-based_MC.pdf

[26] J. A. Muckstadt and R. C. Wilson, “An application of mixed-integer
programming duality to scheduling thermal generating systems,” IEEE
Transactions on Power Apparatus and Systems, vol. PAS-87, no. 12, pp.
1968–1978, Dec. 1968.

[27] X. Guan, F. Gao, and A. Svoboda, “Energy delivery capacity and
generation scheduling in the deregulated electric power market,” IEEE
Transactions on Power Systems, vol. 15, no. 4, pp. 1275–1280, Nov.
2000.

[28] G. Morales-Espana, J. Garcia-Gonzalez, and A. Ramos, “Impact on
reserves and energy delivery of current UC-based market-clearing for-
mulations,” inEuropean Energy Market (EEM), 2012 9th International
Conference on the, Florence, Italy, May 2012, pp. 1 –7.

[29] “The GAMS development corporation website,” 2012, www.gams.com.

Germán Morales-España (S’ 2010) received the
B.Sc. degree in electrical engineering from the
Universidad Industrial de Santander, Bucaramanga,
Colombia, in 2007 and the M.Sc. degree from the
Delft University of Technology, Delft, The Nether-
lands, in 2010. He is now pursuing the (Ph.D.)
Erasmus Mundus Joint Doctorate in Sustainable En-
ergy Technologies and Strategies (SETS) hosted by
the Universidad Pontificia Comillas, Madrid, Spain;
the Royal Institute of Technology, Stockholm, Swe-
den; and Delft University of Technology, Delft, The

Netherlands.
He is currently an assistant researcher at the Institute forResearch in

Technology (IIT) at the Universidad Pontificia Comillas, and he is also a
member of the Research Group on Electric Power Systems (GISEL) at the
Universidad Industrial de Santander. His areas of interestare power systems
operation, economics and reliability, as well as power quality and protective
relaying.

Jesus M. Latorre (S’00-M’07) was born in Madrid,
Spain, in 1977. He received the degree of Electronic
Engineer in 2001 and the Ph.D. degree in November
2007, from Comillas Pontifical University, Madrid,
Spain.

He is currently a postdoctoral researcher at the
Institute for Research in Technology, of the Comillas
Pontifical University. His main interest areas in-
clude operations research and mathematical model-
ing, stochastic programming, parallel and distributed
computing, algorithms and numerical methods.

Andres Ramos received the degree of Electrical
Engineering from Universidad Pontificia Comillas,
Madrid, Spain, in 1982 and the Ph.D. degree in
Electrical Engineering from Universidad Politécnica
de Madrid, Madrid, Spain, in 1990.

He is a Research Fellow at Instituto de Investi-
gación Tecnológica, Madrid, Spain, and a Full Pro-
fessor at Comillas’ School of Engineering, Madrid,
Spain, where he has been the Head of the Depart-
ment of Industrial Organization. His areas of inter-
est include the operation, planning, and economy

of power systems and the application of operations researchto industrial
organization.


