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Tight and Compact MILP Formulation for the
Thermal Unit Commitment Problem

Germán Morales-España,Student Member, IEEE,Jesus M. Latorre,Member, IEEE,and Andres Ramos

Abstract—This paper presents a Mixed-Integer Linear Pro-
gramming (MILP) reformulation of the thermal Unit Com-
mitment (UC) problem. The proposed formulation is simultan-
eously tight and compact. The tighter characteristic reduces the
search space and the more compact characteristic increasesthe
searching speed with which solvers explore that reduced space.
Therefore, as a natural consequence, the proposed formulation
significantly reduces the computational burden in comparison
with analogous MILP-based UC formulations. We provide com-
putational results comparing the proposed formulation with two
others which have been recognized as computationally efficient
in the literature. The experiments were carried out on 40
different power system mixes and sizes, running from 28 to 1870
generating units.

Index Terms—Mixed-integer linear programming, strong lower
bounds, thermal units, unit commitment.

NOMENCLATURE

Upper-case letters are used for denoting parameters and sets.
Lower-case letters denote variables and indexes.

A. Indexes and Sets

g ∈ G Generating units, running from 1 toG.
s ∈ Sg Startup segments, running from 1 (hottest) toSg

(coldest), see Fig.1.
t ∈ T Hourly periods, running from 1 toT hours.

B. Parameters

CLV
g Linear variable cost of unitg [$/MWh].

CNL
g No-load cost of unitg [$/h].

CNSE Non-served energy cost [$/MWh].
CSD

g Shutdown cost of unitg [$].
CSU

gs Coefficients of the startup cost function of unitg, see
Fig. 1 [$].

Dt Load demand in hourt [MW].
P g Maximum power output of unitg [MW].
P g Minimum power output of unitg [MW].
Rt Spinning reserve requirement in hourt [MW].
RDg Ramp-down rate of unitg [MW/h].
RUg Ramp-up rate of unitg [MW/h].
SDg Shutdown capability of unitg [MW].
SUg Startup capability of unitg [MW].
TDg Minimum downtime of unitg [h].
TUg Minimum uptime of unitg [h].
T SU
gs Times defining the segments limits,

[
T SU
gs , T SU

g,s+1

)
,

of the startup cost function of unitg [h], see Fig.1.

The authors are with the Institute for Research in Technology (IIT) of
the School of Engineering (ICAI), Universidad Pontificia Comillas, Mad-
rid, España (e-mail: german.morales@iit.upcomillas.es;gmorales@kth.se; je-
sus.latorre@iit.upcomillas.es; andres.ramos@upcomillas.es).

C. Variables

1) Positive and Continuous Variables:

nset Non-served energy in hourt [MWh].
pgt Power output at hourt of unit g, production above

the minimum outputP g [MW].
rgt Spinning reserve provided by unitg in hour t [MW].

2) Binary Variables:

ugt Commitment status of the unitg for hour t, which is
equal to 1 if the unit is online and 0 offline.

vgt Startup status of unitg, which takes the value of 1 if
the unit starts up in hourt and 0 otherwise.

wgt Shutdown status of unitg, which takes the value of 1
if the unit shuts down in hourt and 0 otherwise.

δgst Startup-types of unit g, which takes the value of 1
in the hour where the unit starts up and has been
previously offline within

[
T SU
gs , T SU

g,s+1

)
hours, see

Fig. 1.

I. I NTRODUCTION

A. Motivation

EFFICIENT resource scheduling is necessary in power
systems to achieve an economical and reliable energy

production and system operation, either under centralizedor
competitive environments. This can be achieved by solving
the Unit Commitment (UC) problem, of which the main
objective is to minimize the total system operational costs
while operating the system and units within secure technical
limits [1]–[3].

Mixed-Integer Linear Programming (MILP) has become
a very popular approach to solving UC problems due to
significant improvements in off-the-shelf MILP solvers, based
on the branch-and-cut algorithm. The combination of pure
algorithmic speedup and the progress in computer machinery
has meant that solving MILPs has become 100 million times
faster over the last 20 years [4]. Recently, the world’s largest
competitive wholesale market, PJM, changed from Lagrangian
Relaxation to MILP to tackle its UC-based scheduling prob-
lems [5]. There is an extensive literature comparing the pros
and cons of MILP with its competitors [2], [6].

Despite the significant improvements in MILP solving,
the time required to solve UC problems continues to be a
critical limitation that restricts the size and scope of UC
models. Nevertheless, improving an MILP formulation can
dramatically reduce its computational burden and so allow
the implementation of more advanced and computationally
demanding problems, such as stochastic formulations [7],
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accurate modelling of different types of (online and offline)
reserves [8], or transmission switching [9].

B. Literature Review

1) Performance of MILP Formulations —Tightness vs.
Compactness:The branch-and-cut algorithm solves MILP by
solving a sequence of Linear Program (LP) relaxations. The
LP relaxation of a MILP problem is obtained by relaxing its in-
tegrality requirements. During the solving process (branching),
upper bounds (feasible integer solutions) and lower bounds
(LP relaxations) are computed. The quality of a feasible
integer solution is measured with the optimality tolerance,
which is the difference between upper and lower bounds. In
order to reduce this difference, upper bounds are decreased
by finding better integer solutions (e.g. heuristics) and lower
bounds are increased by strengthening the LP relaxation (e.g.
adding cutting planes) [10]. Providing an MILP formulation
with strong lower bounds (LP relaxation near to the optimal
integer solution) can dramatically reduce the length of the
search for optimality [11], [12]. In addition, strong lower
bounds effectively guide the search for better upper bounds
(i.e. heuristics explore the neighbourhood of the LP relaxation
to find potentially better integer solutions).

The computational performance of an MILP formulation is
mainly influenced by its tightness (distance between relaxed
and integer solutions) and compactness (quantity of data to
process when solving the problem). These two characteristics
are actually fully exploited by off-the-shelf MILP solvers.
Even though solvers’ breakthrough is due to the synergy
between different strategies (e.g. heuristics, cuts, nodepre-
solve), introducing cutting planes has been recognized as
the most effective strategy, followed by root presolve [13],
[14]. The former strategy dynamically tightens the formulation
around the integer feasible solution point. The latter makes
the initial problem formulation more compact (by removing
redundant variables and constraints) and also tighter (by
strengthening constraints and variable bounds).

The tightness of an MILP formulation defines the search
space (relaxed feasible region) that the solver needs to explore
in order to find the (optimal integer) solution. A given MILP
problem has many possible formulations. If F1 and F2 are two
formulations for the same MILP problem, and the feasible
region of F1 is contained inside the feasible region of F2,
then F1 is a tighter formulation than F2, and thus the lower
bound provided by the LP relaxation of F1 is always greater
than or equal to that provided by F2 [11], [15]. That is, F1
provides stronger lower bounds and the optimal solution of its
LP relaxation is nearer to the optimal integer solution.

The compactness of an MILP formulation refers to its
size and defines the searching speed that the solver takes to
find the optimal solution, since during the process, many LP
relaxations are repeatedly solved. Although, the number of
constraints is considered to be the best simple predictor of
the LP models’ difficulty [16], [17], the number of nonzeros
also has a significant impact on solution times [10]. Therefore,
formulation F1 is considered more compact than F2 if F1
presents simultaneously fewer constraints and nonzeros than
F2.

Research on improving MILP formulations is usually fo-
cused on tightening rather than on compacting. An MILP
formulation is typically tightened by adding a huge number
of constraints, which increases the problem size [18], [19].
Although this tightening reduces the search space, solversmay
take more time exploring it because they are now required to
repeatedly solve larger LPs. Consequently, when a formulation
is tightened while significantly affecting its compactness, a
more compact and less tight formulation may be solved faster,
because the solver is able to explore the larger feasible region
more rapidly [18]. On the other hand, compact formulations
usually provide weak (not strong) lower bounds. In conclusion,
creating tight or compact computationally efficient formula-
tions is a non trivial task because the obvious formulations
are very weak (not tight) or very large, and trying to improve
the tightness (compactness) usually means harming the com-
pactness (tightness).

2) Improving UC formulations:Improving MILP formula-
tions, especially the tightness, has been widely researched. In
fact, all the cutting plane theory, which has meant the break-
through in MILP solving, is about tightening the formulations
[4], [10], [14], [20]. In the case of UC problems, there have
been efforts affecting specific aspects. Ref. [21] reduced the
number of binary variables, claiming that this speeded up the
search process compared with the 3-binary models [2], [6].
In [22], a strong formulation of the minimum up/down time
constraints is proposed; in [23], a tighter linear approximation
for quadratic generation costs is described; Ref. [19] presents
a new class of inequalities giving a tighter description of the
feasible operating schedules for generators; and [24] proposes
a tight and compact formulation for the startup and shutdown
unit’s power trajectories.

From the aforementioned formulations, [21], [22] and [19]
have focused on improving the basic technical constraints
(e.g., ramping limits, generation limits, minimum up/down
times). As stated in [19], the main disadvantage of [21] is
that avoiding the startup and shutdown variables hinders the
possibility to generate and use strong valid inequalities,such
as the minimum up/down time constraints proposed in [22].
Ref. [19] overcomes this problem by using the 3-binary format
and thus introducing many additional inequalities (using all
the binaries) to tighten the UC formulation. However, the main
drawback of [19] is that it creates a huge model where, in order
to obtain a computational advantage, the additional inequalities
need to be appropriately introduced to the formulation during
the solving process (dynamically). Ref. [19] also presents the
additional disadvantage of implementation complexity, where
the modeller needs to make anad-hoc configuration of the
solving strategy of MILP solvers to dynamically introduce
these inequalities.

C. Contributions

This paper presents an alternative UC reformulation that
describes the same basic UC problem as in [21] and [19]. In
other words, we provide a formulation containing the same
feasible integer solutions as those in [21] and [19], and hence
obtaining the same optimal results.



G. MORALES-ESPAÑAet al.: TIGHT AND COMPACT MILP FORMULATION FOR THE THERMAL UNIT COMMITMENT PROBLEM 3

The main contribution of this paper is three-fold:

1) A tight MILP formulation for the thermal UC problem is
proposed in order to decrease the computational burden
of analogous MILP formulations [19], [21].

2) The formulation is tightened at the same time as it
is made more compact compared to both [21] and
[19], hence overcoming the main disadvantage of usual
tightening strategies [19]. The simultaneous tight and
compact characteristics reinforce the convergence speed
by reducing the search space and at the same time in-
creasing the searching speed with which solvers explore
that reduced space.

3) This reformulation can be used as the core of any UC
problem, whether under centralized or competitive en-
vironments, from self-scheduling to centralized auction-
based market clearing.

Furthermore, given the compactness of the formulation, addi-
tional extensions of the UC model will be less cumbersome.
For example, in the case of a stochastic formulation the
compactness and tightness can be fully exploited given the
size and computational complexity of solving a large-scale
stochastic UC problem. That is, a stochastic problem replicates
the original deterministic structure to represent uncertainty;
consequently, any reformulation will benefit from the charac-
teristics of the deterministic formulation.

D. Paper Organization

The remainder of this paper is organized as follows: Sec-
tion II details the UC reformulation. SectionIII provides and
discusses results from several case studies, where a compar-
ison with two other UC formulations is made. Finally, some
relevant conclusions are drawn in SectionIV.

II. M ATHEMATICAL FORMULATION

This section details the reformulation of a typical UC. The
constraints presented here characterize the same UC problem
as those in [21] and [19] (see [25]). Hourly time intervals are
considered, but it should be noted that the formulation can be
easily adapted to handle shorter time periods.

A. Objective Function

The UC problem seeks to minimize the power system
operation costs, which are defined as the sum of (i) the
production cost, (ii) startup cost and (iii) shutdown cost. In
addition, in order to take into account situations in which there
is a lack of energy, (iv) the non-served energy cost is also
included

min
∑

g∈G

∑

t∈T

[
CNL

g ugt+CLV
g

(
P gugt+pgt

)
︸ ︷︷ ︸

i

+
∑

s∈Sg

CSU
gs δgst

︸ ︷︷ ︸
ii

+CSD
g wgt︸ ︷︷ ︸
iii

+CNSE
t nset︸ ︷︷ ︸

iv

]
. (1)

Fig. 1: Startup costs as a function of the unit’s previous offline time.

1) Production Cost: The production cost is usually ex-
pressed as a quadratic function of the power output. Typically,
this cost is modelled as a piecewise-linear function [21]. A
tight formulation for this piecewise-linear approximation is
given in [23]. This paper focuses on the reformulation of
the unit’s technical constraints as well as of the exponential
startup cost. Therefore, for the sake of simplicity, we represent
the production cost as a linear function. Note in (1) that the
linear variable cost multiplies the total power output, which
is the minimum outputP gugt plus the production above that
minimum pgt.

2) Startup Cost:Fig. 1 shows a typical exponential startup
cost function [26], whereCSU

gs is the cost incurred when the
unit g has been offline within the interval

[
T SU
gs , T SU

g,s+1

)
.

This function is discrete since the time span has also been
discretized into hourly periods. Refs. [21] and [19] represent
this startup-cost function using the formulation proposedin
[27]. We represent the same cost function using (2) and (3). As
presented in our previous work [24], the startup-type variable
δgst that activates the costCSU

gs in the objective function is
selected by:

δgst ≤
TSU
g,s+1−1∑

i=TSU
gs

wg,t−i ∀g, t∈
[
T SU
g,s+1, T

]
, s∈ [1, Sg) (2)

∑

s∈Sg

δgst = vgt ∀g, t (3)

where (2) stands for the time passed since the last shutdown
and (3) ensures that only one startup cost value is selected
when the unit actually starts up.

Note that (2) does not bound the coldest startup-typeδg,Sg,t.
However, if the unit starts up at hourt and has been offline
for at leastT SU

Sg
hours then constraints (2) and (3) ensure

δg,Sg,t = 1. As discussed in [24], the variablesδgst take binary
values even if they are defined as continuous variables. This
is due to the convex (monotonically increasing) characteristic
of the exponential startup-cost function of thermal units [26]
(see Fig.1).

Due to the minimum downtime constraint (see Sec-
tion II-B2), the hottest startup-type is only possible within the
interval

[
TDg, T

SU
g,2

)
. Therefore, constraint (2) is made more

compact by definingT SU
g,1 = TDg, see Fig.1. Note that (2)

is not defined for the first hours. AppendixA details how to
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obtain δgst for the first hours depending on the unit’s initial
conditions.

An easy way to observe that this startup-cost formulation
is tighter than the formulation in [19], [21] and [27] is that
(2) and (3) provide upper bounds to the possible startup-cost
values. For example, if the unit does not start up (vgt=0) then
(3) forces the startup cost to be zero. This is in contrast to
[21], which does not provide upper bounds to the startup cost
variable and then the objective function always has to look
for the lowest feasible value. In addition, the computational
results in SectionIII shows that the integrality gap of the
UC formulation is significantly lowered when modelling the
startup costs using (2) and (3).

B. Power-System and Thermal-Unit Constraints

1) Power System Requirements:The following constraints
guarantee the balance between generation and load, and the
provision of spinning reserve:
∑

g∈G

[
P gugt + pgt

]
= Dt − nset ∀t (4)

∑

g∈G
rgt ≥ Rt ∀t (5)

where the non-served energy variablenset is included to
take into account situations of lack of energy. Note in (4)
that power (MW) and energy (MWh) units are mixed, which
is numerically correct in models with hourly time intervals.
However, the time-period duration must be included when
considering different time intervals.

2) Minimum Up and Downtime:The minimum number of
periods that the unit must be online and offline are ensured
with [22]:

t∑

i=t−TUg+1

vgi ≤ ugt ∀g, t ∈ [TUg, T ] (6)

t∑

i=t−TDg+1

wgi ≤ 1− ugt ∀g, t ∈ [TDg, T ] . (7)

This formulation provides strong lower bounds in compar-
ison with others [9], [19], [22], as also shown in SectionIII .
AppendixA describes how the initial conditions force the unit
to remain online or offline during the first hours.

3) Logical Constraint:Equation (8) guarantees thatvgt and
wgt take the appropriate values when the unit starts up or shuts
down.

ugt − ug,t−1 = vgt − wgt ∀g, t. (8)

The minimum up/down constraints ensure that a unit cannot
start up and shut down simultaneously: note that (6) and
(7) guarantee (dominate over) the inequalitiesvgt ≤ ugt

and ugt ≤ 1 − wgt, respectively, which combined become
vgt+wgt ≤ 1. In addition, ifugt is defined as a binary variable,
(8) forcesvgt andwgt to take binary values even if they are
defined as continuous.

4) Generation Limits:The total unit production is modelled
in two blocks: the minimum power outputP g that is gener-
ated just by being committed, and the generation over that
minimum pgt. The generation limits over the power output
and the spinning reserve contribution are set as follows:

pgt + rgt ≤
(
P g−P g

)
ugt −

(
P g−SUg

)
vgt

∀g∈G1, t (9)

pgt + rgt ≤
(
P g−P g

)
ugt −

(
P g−SDg

)
wg,t+1

∀g∈G1, t (10)

wherepgt andrgt are also constrained by the unit startup and
shutdown capabilities.

Note that (9) and (10) are only applied for the subsetG1,
which is defined as the units inG with TUg = 1. For the
cases in whichTUg ≥ 2, both constraints can be replaced by
a tighter and more compact formulation:

pgt + rgt ≤
(
P g−P g

)
ugt −

(
P g−SUg

)
vgt

−
(
P g−SDg

)
wg,t+1 ∀g /∈ G1, t. (11)

Constraint (11) is tighter than (9) and (10) because in the
event that the unit is online for just one period, the right side
of (11) can be negative. Consequently, (11) is not valid for
units with TUg = 1, because this constraint means that it is
not feasible to operate the unit for just one online period.
That is, (11) presents a tighter feasible region than (9) and
(10) together. In addition, constraint (11) is also more compact
because: 1) the two constraints (9) and (10) are lowered to one,
and 2) constraint (11) introduces five non-zero elements (per
unit and per period) in the constraint matrix in comparison
with the eight elements introduced by (9) and (10) together.

Note that (9) and (10) are valid in both cases wheng /∈G1

and wheng ∈ G1. However, if (11) is used forg /∈ G1, the
same solution is obtained at the same time as the formulation
is made more compact and tighter. Hence, the combination of
both groups of constraints is used in this model.

One simple way to observe that the proposed formulation
is tighter than those in [21] and [19] is by checking the
upper bound of the constraints. For example, note that the
upper bounds of (9)-(11) decrease when the binary variables
vgt and wgt are different from zero. This is in contrast to
[21] and [19], where the bounds of the constraints increase
if vgp, wgp 6= 0, see AppendixB for further details. In
fact, the set of constraints (6)-(11) are the tightest possible
representation (convex hull) for a unit operation without ramp
constraints, although the mathematical proof for this is outside
the scope of this paper.

5) Ramping Limits:The following constraints ensure that
the unit operates within the ramp rate limits:

(pgt + rgt)− pg,t−1 ≤ RUg ∀g, t (12)

−pgt + pg,t−1 ≤ RDg ∀g, t (13)

where (12) guarantees that the unit can provide spinning
reserve without violating the upwards ramp limit. The reader
is referred to [8] for a more accurately modelling of different
(online and offline) types of reserves.
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III. N UMERICAL RESULTS

This section is divided into four parts. The first part de-
scribes the different UC formulations that were implemented.
The different case studies are detailed in the second part.
The third part presents a comparison between all the UC
formulations, in terms of size and computational performance.
Finally, the last part assess the impact on computational
performance due to different number of binary variables in
the formulations.

A. UC Formulations

To assess the computational burden of the proposed model,
we compare it with those UC formulations in [21] and [19].
These two formulations have been recognized as computation-
ally efficient in the literature [9], [19], [21], [22], [28]. For the
sake of simplicity, the production costs are considered linear
for all the formulations.

The following four formulations are then implemented:

1bin: This formulation is presented in [21] and requires a
single set of binary variables (one per unit and per
period), i.e., the startup and shutdown decisions are
expressed as a function of the commitment decision
variable.

3bin: The minimum up/down time constraints proposed in
[22] (see SectionII-B2) are implemented with the 3-
binary equivalent formulation of [21]. This formulation
is presented in [19] (see also [25]). Unlike [19], 3bin is
implemented without the extra cuts.

P1: This formulation is the same as3bin; however, the
exponential startup-cost constraints presented in Sec-
tion II-A2 were used instead of that in [27], which is
the formulation used by [21] and [19].

P2: This is the complete formulation proposed in this paper.

It is important to note that all the formulations were im-
plemented using the same objective function and the same
set of constraints as the formulation presented in SectionII
(see also [25]). As a result, all of them describe the same
optimization problem. The difference between them is how the
constraints are formulated. In other words, for a given case
study, all the formulations obtain the same optimal results,
e.g., commitments, generating outputs and operation costs, as
numerically shown in SectionIII-D .

Note that we define four sets of variables as binary
ugt,vgt, wgt andδgst. Thus, reducing the computational burden
of the formulations, as discussed in SectionIII-D .

Although we focus the discussion on the performance of
the proposed formulationP2, P1 is implemented to observe
the improvements in the proposed startup-cost formulation(see
SectionII-A2). Furthermore, when comparingP2with P1, one
can clearly observe the additional improvements which result
from considering the generation output variable aboveP g.

B. Case Studies

1) Set of Experiments:The following case-study based on
the power system data in [21] is conducted to assess the
computational performance of the proposed UC formulation.

Table I: Number of generators per problem case

Small cases Large Cases
Generator Total Generator Total

Case 1 2 3 4 5 6 7 8 Gens Case 1 2 3 4 5 6 7 8 Gens
1 12 11 0 0 1 4 0 0 28 11 46 45 8 0 5 0 12 16 132
2 13 15 2 0 4 0 0 1 35 12 40 54 14 8 3 15 9 13 156
3 15 13 2 6 3 1 1 3 44 13 50 41 19 11 4 4 12 15 156
4 15 11 0 1 4 5 6 3 45 14 51 58 17 19 16 1 2 1 165
5 15 13 3 7 5 3 2 1 49 15 43 46 17 15 13 15 6 12 167
6 10 10 2 5 7 5 6 5 50 16 50 59 8 15 1 18 4 17 172
7 17 16 1 3 1 7 2 4 51 17 53 50 17 15 16 5 14 12 182
8 17 10 6 5 2 1 3 7 51 18 45 57 19 7 19 19 5 11 182
9 12 17 4 7 5 2 0 5 52 19 58 50 15 7 16 18 7 12 183
10 13 12 5 7 2 5 4 6 54 20 55 48 18 5 18 17 15 11 187

Table II: Sets of experiments

Small cases Large cases
Total gens Time span Total gens Time span

×7-day 28 to 54 7 days 132 to 187 7 days
×10-gen 280 to 540 1 day 1320 to 1870 1 day

As presented in [19], an eight-generator data set is replicated
to create larger instances and different power-systems mixes.
These generation mixes, also used in [19], are shown in
TableI. The replication introduces symmetry in the problems
which makes them harder to solve than usual. The spinning
reserve requirement of 10% of the power demand has to be
met for each hour. The non-served energy cost is considered
to be 1000 $/MWh. For quick reference, the generator data
and power demand can be found in AppendixC.

Two test-sets are created in order to obtain even larger
instances:

×7-day: For the first test-set, the problem is solved with all
the 20 instances presented in TableI for a time span
of 7 days. The demand for the last two days (the
weekend) is considered to be 80% of the demand
on a working day.

×10-gen: For the second test-set, the 20 different power-
system mixes in TableI are replicated 10 times with
a time span of one day. That is, the total number
of generators for this test-set goes from 280 up to
1870.

Table II shows the different groups for all 40 cases that are
considered here, where there are small and large cases for the
two previous test-sets.

All tests were carried out using CPLEX 12.4 under GAMS
[29] on a quad-core Intel-i7 2.4-GHz personal computer with
4 GB of RAM memory. The small and large cases, for both
×7-day and ×10-gen, are solved within 0.1% and 1.0% of
relative optimality tolerance and a CPU time limit of one hour
and 10 hours respectively. CPLEX defaults were used for all
the experiments.

2) Performance Metrics:In order to summarize comparison
results between formulations, geometric means of ratios are
used since arithmetic means can be quite misleading when
applied to a set of ratios [10], [14]. That is, a number of
model characteristics between two formulations, e.g. number
of constraints or runtimes, are compared using ratios, and the
geometric mean over a set of case studies is then used as a
performance metric. For example, when comparing solution
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Table III: Problem Size (selected instances)

Case
# of constraints # of nonzero elements # real var # binary var

(×103) (×106) (×103) (×103)
1bin 3bin P1 P2 1bin 3bin P1 P2 1bin 3bin P* 1bin 3bin P*

×
7

-d
a
y 1 104 104 51 37 0.74 0.75 0.25 0.22 19 14 10 5 14 24

10 177 177 99 73 1.13 1.15 0.44 0.39 36 27 18 9 27 45
11 454 453 241 178 3.09 3.13 1.11 0.98 89 67 45 22 67 111
20 639 637 342 250 4.22 4.28 1.56 1.37 126 94 63 31 94 157

×
1
0

-g
e

n 1 148 144 67 47 0.92 0.92 0.30 0.26 27 20 13 7 20 33
10 252 247 132 95 1.44 1.45 0.56 0.49 52 39 26 13 39 64
11 647 633 319 229 3.88 3.89 1.39 1.21 127 95 63 32 95 158
20 910 891 453 323 5.35 5.36 1.96 1.71 180 135 90 45 135 222

* P1 is equal to P2 for these cases

times betweenP1 and1bin, for each case study, two runtimes
are obtained, one forP1 and one for1bin. Given the set of
runtimes, ratios are computed dividing the runtimes ofP1
by the corresponding runtime of1bin. Finally, the geometric
mean is computed over these ratios and multiplied by 100 to
obtain percentages. Thus, a geometric mean of ratios lower
than 100% means thatP1 is faster. For the sake of brevity, the
summary of results is presented in this paper; however, the
different formulations and the set of statistics are presented in
[25].

The formulation1bin is used as a benchmark to obtain the
ratios. In other words, the formulationsP1, P2 and 3bin (in
the numerator) are compared with1bin (in the denominator)
unless otherwise specified.

C. Comparing Different Formulations

1) Problem Size:Table III shows the dimensions for all
the formulations for four selected instances. This sample is
composed of the smallest and largest instances for the small
cases (case 01 and 10) and large cases (case 11 and 20). There
are instances which consist of almost a million constraints,
present millions of nonzero elements in the constraint matrix,
and contain 100000+ real and binary variables.

Table IV summarizes the different model sizes for all 40
instances in comparison with1bin. This summary is obtained
as a geometric mean of ratios as described in SectionIII-B2.
Note that3bin has almost as many constraints and non-zero
elements as1bin. However,3bin presents three times more
binary variables due to the explicit modelling of the startup
and shutdown decisions as binary variables.

Although P1 and P2 present around five times as many
binary variables as1bin, the number of constraints and nonzero
elements was approximately reduced by two thirds. Con-
sequently,P2 is considerably more compact than1bin and
3bin with respect to the nonzero elements and constraints (as
mentioned in theIntroduction).

Note in TableIV that the main improvements in compact-
ness are due to the proposed startup-cost formulationP1.
Finally, P2 further reduces the formulation size by modelling
the power output variable aboveP g.

2) Computational Performance:Although the proposed
formulation is more compact than1bin and3bin, this does not
necessarily lead to a better computational performance. Infact,
a compact formulation usually presents a weak (not tight) LP
relaxation that can dramatically increase the MILP resolution

Table IV: Problem size summary compared with1bin (%)

Case
# constraints # nonzero elements # real var # binary var

3bin P1 P2 3bin P1 P2 3bin P* 3bin P*

Mean 98.8 51.0 36.9 100.8 36.1 31.7 75.0 50.1 300 497.3
min 98.6 47.1 33.7 100.4 32.8 28.8 75.0 50.0 300 495.9
max 98.9 54.8 39.9 101.1 39.8 34.9 75.1 50.2 300 498.9

* P1 is equal toP2 for these cases

time, as mentioned in theIntroduction. The tightness of an
MILP can be measured with the integrality gap [19]. The integ-
rality gap is defined as(ZMILP−ZLP )/ZMILP , whereZLP is the
optimal value of the (initial) relaxed LP problem, andZMILP

is the optimal integer solution. In practice, the problems are
not solved until optimality but within an optimality tolerance.
Therefore, for a given case study,ZMILP is considered to
be the best integer solution that was found among the four
formulations after that case study was solved.

Fig. 2 shows the CPU times and integrality gaps for all the
formulations and all the instances in comparison with1bin
(using ratios), where1bin always represents 100%. The CPU
times and the integrality gaps of1bin are shown within the
squares to give an idea of the different problem magnitudes.
The instances that took more than ten minutes to solve for
P2 can also be found within squares. The computational per-
formance summary for the different formulations is presented
in Table V for the small cases, large cases and all the cases
together. TableV also shows the final optimality tolerance
achieved as well as nodes explored and iterations.

In short, Fig. 2 and TableV shows that the proposed
formulationP2considerably reduces the computational burden
in comparison with1bin and 3bin while achieving better
solution qualities (lower final optimality tolerances) at the
same time. Nevertheless, several aspects are worth mentioning:

1) Relationship between integrality gap and runtime:Figs.
2b and 2d show thatP2 always presents the lowest
integrality gaps, followed byP1, 3bin and finally 1bin.
Table V shows that the average time taken by the
different formulations presents a similar pattern as to that
of the integrality gaps, with the exception of3bin for the
×7-day test-set, which presented a worse performance
than1bin (on average,3bin required more than 30% of
the time that1bin required to solve all the×7-day test-
set). This is an unexpected result which can be explained
as follows. In theory, lower integrality gaps lead to
faster solving times when two formulations have similar
sizes. However, in practice, MILP solvers use heuristics
and cuts (among others) that may also dramatically
influence performance. In addition, the enumeration tree
and branching strategies change completely when for-
mulations with different integer variables are compared.
1bin presents fewer binary variables than3bin, and this
is an advantage for finding integer feasible solutions. In
general, a high number of integer variables complicates
the search for feasible solutions. For the×10-gen test-
set, 3bin showed a significant improvement over1bin:
3bin required, on average, 40.6% of the CPU time
needed by1bin. Note that in overall,3bin performs
better for the small cases than for the large cases. A
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Fig. 2: Improvements in comparison with1bin (%). White areas correspond to small cases and gray to the large cases.

Table V: Computational Performance compared with1bin (%)

CPU Time Integrality Gap Opt. Tolerance Nodes Iterations
3bin P1 P2 3bin P1 P2 3bin P1 P2 3bin P1 P2 3bin P1 P2

×
7

-d
a
y Cases 01-10 120.9 33.7 9.7 73.3 59.8 45.8 97.3 59.9 47.0 88.9 105.6 57.7 42.9 33.0 14.5

Cases 11-20 140.6 15.4 4.9 75.3 58.1 38.5 130.1 5.1 5.4 169.8 69.1 96.2 72.4 21.4 11.7
Cases 01-20 130.4 22.8 6.9 74.3 59.0 42.0 112.5 17.4 16.0 122.8 85.4 74.5 55.7 26.6 13.0

×
1
0

-g
e

n Cases 01-10 36.3 22.0 12.2 64,0 47,6 34,7 71.2 8.0 11.1 136.5 122.6 121.7 56.2 45.8 35.7
Cases 11-20 45.4 8.4 4.2 74,5 55,2 42,1 57.0 0.6 0.7 189.7 99.1160.4 56.9 19.5 15.6
Cases 01-20 40.6 13.6 7.1 69,1 51,3 38,3 63.7 2.3 2.9 160.9 110.2 139.7 56.6 29.9 23.6

clearer performance dominance of3bin over 1bin was
observed when the experiments were carried out without
the exponential startup cost constraints (for the sake
of brevity, these results are not shown here but the
interested reader is referred to [25]).

2) Overall performance of P2:For 1bin, all the large cases
(gray area in Fig.2) took longer than one hour to solve
within the required optimality tolerance. Two of the
instances hit the ten hour time limit. On the other hand,
P2 solved all the tests in less than one hour and just
two of them took more than 20 minutes.P2 presented
shorter runtimes than1bin and3bin for all the instances,
being beaten just once byP1 (instance 17 for the×7-day

test-set, see Fig.2a). Note in Figs.2a and 2c that for
the instances where the proposed formulation showed
the worst performances,P2 required 57.1% and 19.5%
of the CPU time required by1bin for the ×7-day and
×10-gentest-sets respectively. Furthermore,P2obtained
better solution quality in general (i.e., converged to
smaller optimality tolerances) than1bin, especially for
the large cases. However,1bin obtained better solution
qualities for 5 of the 40 instances (3 for the×7-dayand
2 for the×10-gen).

3) Node enumeration vs. LP complexity:Table V shows
that for the×10-gen test-set, all the formulations enu-
merated more nodes than1bin to find a solution within
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Table VI: Overall Speedups

3bin over P1 over P2 over P1 over P2 over P2 over
1bin 1bin 1bin 3bin 3bin P1

Cases 01-10 1.5 3.7 9.2 2.4 6.1 2.5
Cases 11-20 1.3 8.8 22.1 7.0 17.7 2.5
Cases 01-20 1.4 5.7 14.3 4.1 10.4 2.5

the given optimality tolerance. As mentioned above,
formulations with different integer variables lead to
different enumeration tree and branching strategies. By
default, an MILP solver’s objective is to obtain satisfact-
ory feasible solutions quickly using different strategies,
such as branching, cuts and heuristics. The strategy
that proves to be more effective is used more often
(e.g. branching) and the others more seldom so that
they do as little harm as possible [10]. That being
said, larger enumerated nodes in one formulation do
not mean longer solving times. In fact, exploring few
nodes for long periods is an indication of the difficulty
of the linear relaxed formulation [30]. Therefore,P2 is
able to explore more nodes than1bin in even shorter
times mainly due to the compactness of the formulation.
Focusing on the number of nodes explored can lead to
misleading conclusions. That is why other works prefer
to look at the number of simplex iterations rather than
nodes in order to perform comparisons [15], [31].

Finally, TableVI presents the overall speedups of the formu-
lations compared with each other. For a given instance, the
speedup of, for example,3binover1bin is obtained by dividing
the runtime of1bin by the runtime of3bin, and the results
are summarized using the geometric mean on the speedups
of a group of instances. Both test-sets×7-day and×10-gen
are grouped together and now the instances are separated into
small, large and all cases (see TableII ). In general,3bin is 1.4
times faster than1bin and presented a better performance for
the small cases.P2 was around 14 and 10 times faster than
1bin and3bin, respectively.P2 presented the best performance
for the large cases, whereP2was around 22 and 18 times faster
than1bin and3bin, respectively. Note thatP1 already presents
significant improvements over1bin (5.7 times faster) and3bin
(4.1 times faster). In addition,P2 is a further improvement on
P1, being generally 2.5 times faster.

D. Difficulty of an MILP vs. its Number of Binary Variables

In this part, we present two sets of experiments to assess
the impact on the convergence evolution and solving times due
to the number of binary variables, and the simultaneous tight
and compact characteristic of the proposed formulation. The
UC is solved for the eight-generator power system by 1) pure
branch-and-bound method (BB), for one to three days, and
2) the solver defaults, which is the complete branch-and-cut
method including heuristics (BC+H), for three to five days.

The eight-generator data and power demand can be found
in AppendixC. The spinning reserve requirement of 5% of the
power demand has to be met for each hour; the non-served
energy is not considered (i.e., the variablenset is removed
from all formulations); and all UC problems are solved until

they hit the time limit of one hour or until they reach optimality
(more precisely to10−6 of relative optimality tolerance).

Five different formulations are now considered. Three of the
formulations described in SectionIII-A , 1bin, 3bin and P2.
The other two formulations are the relaxed versions of3bin
andP2 and they are denoted asR3binandRP2, respectively.
Similarly to 1bin, the commitment variableut is the only
variable that is defined as binary forR3bin and RP2. That
is, for R3bin and RP2, the set of variablesvgt, wgt and δgst
are defined as continuous variables within the interval[0, 1].
As discussed in SectionsII-A2 andII-B3, onceugt is defined
as binary, the formulations3bin and P2 allow relaxing the
integrality condition of variablesvgt, wgt andδgst because the
constraints guarantee that these variables always take binary
values.

The problem size for the different formulations, the op-
timal solutions and integrality gaps are shown in TableVII .
The computational performances are presented in TableVIII .
which includes runtimes, nodes explored, iterations and
memory required to solve the problems until optimality, other-
wise the final optimality tolerance is shown within parentheses.
TableVII shows that all formulations present the same optimal
solution for a given time span. As expected, all formulations
obtain the same integer solutions because they are character-
izing the same integer problem (see SectionII ).

1) Pure Branch and Bound (BB):To assess the impact
on the computational performance of formulations containing
different number of binary variables, the UC is solved by only
using the branch-and-bound method. The cutting planes and
heuristics were then disabled, and CPLEX defaults were used
for all remaining features. Therefore, the solver is forcedto
explore all the tree in order to prove optimality [11], [16].

TableVIII shows the computational performance for the 1-,
2- and 3-day cases that where solved by pure BB. TableIX
presents the optimal generation schedule, for the 1-day case,
obtained by all formulations, of which schedules were the
same. All formulations could prove optimality for the case of
one and two days. For the 3-day case, none of the formulations
could achieve optimality because they either exceeded the one-
hour time limit or the 4-GB memory limit.P2, 3bin, RP2and
R3binhit the time limit and the final optimality tolerances that
they achieved are shown between parentheses in TableVIII .
1bin hit the memory limit achieving the worst final optimality
tolerance of4.3× 10−3 after about 500 seconds.

AlthoughP2 is the formulation with the highest number of
binary variables,P2 explored the least number of nodes and
presented the best computational performance for the 2-day
case, in comparison with the other five formulations. On the
other extreme,1bin, with the least number of binary variables
(the same asR3bin and RP2), explored the highest number
of nodes and presented the worst computational performance,
followed by R3binandRP2, see TableVIII .

Fig. 3 shows the convergence evolution until optimality of
P2, 3bin and1bin, for the 2-day case. Note that the first value
of the lower bound ofP2, which is the LP relaxed solution,
was found sooner (due to the compactness) and nearer to the
final integer solution (due to the tightness) than3bin and1bin.
After 4 seconds,P2 presented a better evolution of both lower
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and upper bounds and hence faster convergence to optimality
in comparison with3bin and1bin.

If a model containingn binary variables is solved by the
pure BB algorithm, this algorithm could potentially enumerate
2n nodes to prove optimality. Consequently, one might expect
the solution time to increase exponentially with the number
of binary variables. However, the BB method cuts off large
sections of the potential tree because some expected solutions
may be infeasible or worse than solutions already known. For
example, for the 2-day case,P2 potentially presents21920−384

times more nodes to explore than1bin, but the BB algorithm
solvedP2 until optimality enumerating 42% of the number of
nodes required to solve1bin. This very surprising efficiency
that the BB method exhibits over the potential amount of
computation is due to the tightness of the formulation, hence
the number of binary variables is a very poor indicator of the
difficulty of an MILP model [11], [16]. In fact, the BB will
solve a problem exploring zero nodes if the whole model is
the tightest possible (convex hull); that is, the LP relaxation
solution will always be integer [11]. Furthermore, increasing
the number of binary variables is actually a tightening strategy
[32].

Increasing the number of binary variables can also provide
a further advantage in the tree search strategy. This is the case
of formulations involving variables that take binary values
even when these variables are defined as continuous, e.g.,
vgt, wgt and δgst. As also stated in [19], declaring all these
variables as binary does not cause extra complexity during the
enumeration process (branching), because when fixing some
of the variables, many others can be immediately obtained
due to the high correlation among each other. For example, if
the variablevgt is fixed to 1 then (6) fixes ugt to 1 for the
following TUg periods, then (8) (together with (7)) fixeswgt

andvgt to 0 for thoseTUg periods, and finally (3) fixes δgst,
for all s, for the same periods.

2) Branch-and-Cut + Heuristics (BC+H):The UC for the
8-generator system was solved for three, four and five days
using BC+H strategy, which are CPLEX defaults. Similarly,
as previously shown in SectionIII-D1, P2 generally requires
shorter runtimes to solve the problem until optimality thanthe
other four formulations, see TableVIII . P2 was up to 17 and
2.5 times faster than1bin and3bin, respectively. Note that, in
general, the relaxed versionsR3binandRP2present a higher
computational burden than their analogous formulations3bin
andP2, respectively.

Note that in TableVIII , the formulations with higher number
of binary variables may keep the tree considerably smaller in
size. For example, for the 5-day case,1bin required around
250 and 110 times more memory to deal with the branch-
and-bound tree thanP2 and 3bin, respectively. In order to
solve the 5-day case until optimality,P2 potentially presents
24800−960 times more nodes to explore than1bin, but the
BB+H algorithm solvedP2 and 3bin by just enumerating
around 3% of the number of nodes required to solve1bin. Sim-
ilarly, 3bin required around the 5% of the nodes enumerated
by 1bin, although3bin potentially presented22880−960 times
more nodes to explore. As mentioned before, the tightness and
the high correlation between binary variables of3bin andP2
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Fig. 3: Convergence evolution for the optimality toleranceand upper/lower
bounds in the up and bottom part of the figure, respectively. In the bottom
figure, black lines refer to upper bounds and gray lines to lower bounds.

considerably reduce the size of the tree.
In short, the computational burden of a MILP formulation

mainly depends on its tightness and compactness. A further
computational advantage can be obtained by defining as binary
those variables that either way take binary values, because
the constraints (and tightness of the model) force them to
do so. In addition, branching on different variables may be
more convenient [10], [19]. MILP solvers employ techniques
to exploit the integrality characteristic of integer variables
such as cutting planes and node presolve [10], [11], [20].
Consequently, declaring this type of variables as continuous
will not allow the solver to look for opportunities to exploit
their integrality characteristic.

IV. CONCLUSIONS

This paper presented an MILP reformulation for the thermal
UC problem. The formulation is simultaneously tighter and
more compact than equivalent formulations found in the liter-
ature. This simultaneous characteristic boosts the convergence
speed that solvers take to solve the MILP formulation. This
is done by reducing the search space (tightening) and at
the same time increasing the searching speed (compacting)
with which solvers explore that reduced space. Consequently,
the computation time is dramatically reduced. Several case
studies were analysed to show the improvements achieved
by this formulation with respect to others available in the
literature. Results showed that the proposed UC formula-
tion considerably reduced the computational burden while
achieving better solution qualities. While the formulation is
tested only on “standard” thermal UC problems, the tight and
compact formulation can be further extended to many other
variants of the UC problem, where analogous results should
be expected.
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Table VII: Problem Size, Optimum and Integrality Gap for the8-generator Case

days
# constraints # nonzero elements # binary var # total var Optimum Integrality Gap [×10−3]

P2* 3bin† 1bin P2* 3bin† 1bin P2* 3bin† 1bin‡ P2* 3bin† 1bin All⋄ P2* 3bin† 1bin

1 1480 4587 4647 7105 30103 29897 960 576 192 1344 1152 960 573630.655 10.21 12.07 17.86
2 3088 9243 9303 15097 66151 65513 1920 1152 384 2688 2304 19201142132.128 9.01 10.43 15.00
3 4696 13899 13959 23089 102199 101129 2880 1728 576 4032 34562880 1710633.601 8.61 9.88 14.04
4 6304 18555 18615 31081 138247 136745 3840 2304 768 5376 46083840 2279135.074 8.41 9.60 13.55
5 7912 23211 23271 39073 174295 172361 4800 2880 960 6720 57604800 2847636.547 8.29 9.43 13.27

* P2 is equal toRP2 for these cases
†

3bin is equal toR3bin for these cases
‡1bin, RP2 and R3binare equal for these cases

⋄
P2, 3bin, 1bin, RP2andR3binare equal for these cases

Table VIII: Computational Performance for the 8-generatorCase

days
Time [s] / (OptTol [×10−3]) Nodes [×103] Iterations [×103] Memory [MB] / (OptTol [×10−3])

P2 3bin 1bin RP2 R3bin P2 3bin 1bin RP2 R3bin P2 3bin 1bin RP2 R3bin P2 3bin 1bin RP2 R3bin

B
B

1 1.1 0.6 0.3 0.5 1.1 1.8 0.9 0.6 1.2 1.4 15.6 18.1 9.6 12.3 30.2 0.1 0.1 0.1 0.1 0.1
2 92.0 169.8 242.7 171.5 205.5 92.4 170.6 220.5 232.0 130.6 1278.2 2140.0 3952.9 3082.2 2733.2 23.0 46.9 48.1 44.9 373.5
3 (2.03) (1.04) 518.3 (3.12) (2.79) 3150.8 2692.7 248.7 3569.8 1552.3 49814.7 47095.2 5368.0 62240.6 51563.5 1349.2 1010.8 (4.3) 1079.2 1313.6

B
C

+
H 3 7.9 9.9 4.3 7.5 6.6 1.1 1.1 0.8 0.7 0.8 38.6 80.0 37.5 27.8 52.41.2 0.2 0.3 0.3 1.4

4 9.7 22.4 44.0 12.4 277.0 0.6 1.0 6.4 1.1 27.8 25.6 128.4 296.543.1 1884.8 0.7 1.7 4.4 5.5 7.8
5 12.9 33.4 218.7 39.2 1594.5 0.9 1.4 29.6 4.8 220.6 34.5 158.91157.3 172.1 11339.5 1.0 2.3 247.8 1.9 128.2

Table IX: Optimal Generation Scheduling for the 8-generator Case and 1-day Time Span [MW]

Gen
Hour

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 375 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455
2 375 418.45 455 451.2 420.16 420.16 443.26 418.67 444.28 455455 455 455 455 453.7 433.51 426.16 455 455 455 455 455 437.4 408.48
3 70 20 . . . . . 20 70 120 130 130 130 130 130 130 130 130 130 130 130 130 130 130
4 70 20 . . . . . 20 70 120 130 130 130 130 130 130 130 130 130 130 130 130 130 130
5 85 40.35 52.24 25 25 25 32.94 79.61 93.68 91.6 82.64 98.16 82.64 71.6 57.38 77.57 102 162 162 150.76 129.2 113.68 53.68 25
6 80 20 . . . . . . . . 20 20 20 . . . 20 55.32 39.8 20 20 20 20 .
7 25 25 . . . . . . . . . . . . . . 25 25 25 25 . . . .
8 21.92 10 . . . . . . . . . . . . . . . . . . . . . .
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APPENDIX

A. Initial Conditions

The initial behaviour of the units is bound by their initial
conditions. This is guaranteed by fixing the value of some
variables before running the optimization model. The follow-
ing parameters are needed to deal with the unit state during
the first periods:

u0
g Initial commitment status of unitg {0, 1}.

TU0
g Number of hours that the unitg has been online

before the scheduling horizon.
TD0

g Number of hours that the unitg has been offline
before the scheduling horizon.

a) Initial Minimum Up/Down Times:The number of
hours during which the units must be initially online (TUR

g )
or offline (TDR

g ) due to their minimum up/down constraints
are obtained as follows:

TUR
g =max

{
0,
(
TUg − TU0

g

)
u0
g

}
∀g (13a)

TDR
g =max

{
0,
(
TDg − TD0

g

) (
1− u0

g

)}
∀g (13b)

Now, the commitment variables for the initial periods where
the units must remain online or offline

(
TUR

g + TDR
g

)
≥ 1

must be fixed:

ugt =u0
g ∀g, t ∈

[
1, TUR

g + TDR
g

]
(14)

b) Initial Startup Type:The equation (15) complements
(2) and this means that an inappropriate startup type will not
be chosen when taking into account the initial conditions. If
TD0

g ≥ 2, thenδgst must be fixed for some initial periods as
follows:

δgst = 0 ∀g, s ∈ [1, Sg) , t ∈
(
T SU
g,s+1 − TD0

g, T
SU
g,s+1

)
.

(15)

Equations (14) and (15) can also be respectively written as
additional constraints in the optimization problem:

TUR
g +TDR

g∑

t=1

ugt = TUR
g u0

g ∀g (16)

Sg−1∑

s=1

TSU
g,s+1−1∑

t=TSU
g,s+1−TD0

g+1

δgst = 0 ∀g. (17)

However, equations (14) and (15) are preferred over (16)
and (17), because (14) and (15) turn the involved integer vari-
ables into constants before running the optimization problem,
thus decreasing the problem size. Nevertheless, solvers usually
provide the option to treat fixed variables as constants.

B. Comparing Feasible Regions of the Startup Capability
Constraints

This section compares the tightness of the startup capability
constraint of the proposed formulation with the one presented
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in [21]. Similar analysis and conclusions can be made for the
shutdown capability constraint. For notational simplicity, the
index g is dropped in this section.

For all the following analysis, we considerut−1 = 0.
Therefore, the constraint imposing the unit’s startup capability
(9) becomes

pt + rt ≤
(
P−P

)
ut −

(
P−SU

)
vt ∀t (18)

and (6) together with 8 imposes vt = ut. That is, (6)
guaranteesvt ≤ ut, and if ut−1=0 then (8) ensuresvt ≥ ut,
thus forcingvt=ut. Consequently, (18) can be rewritten as a
function ofut:

pt + rt ≤(SU−P )ut ∀t. (19)

The analogous constraint from [21, eq. (18)], imposing the
unit’s startup capability, becomes

pt ≤ SU · ut + P (1− ut) ∀t (20)

when ut−1 = 0. Wherept is the maximum available power
output at timet, which is the total power output plus the
spinning reserve. Thus, in terms of the nomenclature used in
this paper,pt is equal toP · ut + pt + rt. Hence, (20) can be
rewritten as

pt + rt ≤ (SU−P )ut + P (1− ut) ∀t. (21)

Now the tightness of inequalities (19) and (21) can be
directly compared. Note that if the unit starts up,ut = 1,
both (19) and (21) imposept + rt ≤ SU − P . Therefore, the
feasible integer region of both constraints is the same whenthe
unit starts up. Be aware, however, that their relaxed feasible
regions are completely different. Whereas the right side of
(19) takes its maximum value whenut = 1, the right side
of (21) actually takes its minimum value. That is, the term
involving P in (21) plays the role of the so-called big-M, so
that (21) becomes inactive whenut=1. The big-M inequalities
considerably harm the tightness of MILP formulations so they
must be avoided when possible [12], [16], [18].

Furthermore, ifSU=P , which is a very common case [19],
[21], [33], then (19) and (21) respectively become

pt + rt ≤ 0 ∀t (22)

pt + rt ≤ P (1− ut) ∀t. (23)

Although these two constraints imposept + rt ≤ 0, when
the unit starts uput=1, the right side of (23) provides a very
poor upper bound topt andrt whenut ∈ [0, 1).

C. Power System Data

The eight-unit system data used in [21] and [19] are shown
in Table X and the hourly demand (used in [19]) depending
on the power system’s total capacity is shown in TableXI.

The startup and shutdown rates are assumed equal to the
unit minimum output (SUg = SDg =P g). For the numerical
experiments in SectionIII-C, the initial power production of
units 1 and 2, prior to the first period of the time span, is
455MW and 245MW respectively. For the experiments in
SectionIII-D , the initial power production of all units is their
minimum outputP , hence the initial states Ste0 in TableX are
considered the same in magnitude but positive for all units.

Table X: Generator Data

Technical Information Cost Coefficients

Gen
P P TU/TD RU/RD Ste0* TSU

c CNL CLV CSU†
h CSU†

c

[MW] [MW] [h] [MW/h] [h] [h] [$/h] [$/MWh] [$] [$]
1 455 150 8 225 8 14 1000 16.19 4500 9000
2 455 150 8 225 8 14 970 17.26 5000 10000
3 130 20 5 50 -5 10 700 16.60 550 1100
4 130 20 5 50 -5 10 680 16.50 560 1120
5 162 25 6 60 -6 11 450 19.70 900 1800
6 80 20 3 60 -3 8 370 22.26 170 340
7 85 25 3 60 -3 6 480 27.74 260 520
8 55 10 1 135 -1 2 660 25.92 30 60

*Hours that the unit has been online (+) or offline (-) prior tothe first period of the time span.

†Subindexh refers to hot startups=1, and subindexc to cold startups=2

Table XI: Demand (% of Total Capacity)

Time 1 2 3 4 5 6 7 8 9 10 11 12
Demand 71% 65% 62% 60% 58% 58% 60% 64% 73% 80% 82% 83%

Time 13 14 15 16 17 18 19 20 21 22 23 24
Demand 82% 80% 79% 79% 83% 91% 90% 88% 85% 84% 79% 74%
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