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Tight and Compact MILP Formulation for the
Thermal Unit Commitment Problem

German Morales-Espafi8tudent Member, IEEBesus M. LatorreMember, IEEEand Andres Ramos

Abstract—This paper presents a Mixed-Integer Linear Pro-
gramming (MILP) reformulation of the thermal Unit Com-
mitment (UC) problem. The proposed formulation is simultan-
eously tight and compact. The tighter characteristic redues the
search space and the more compact characteristic increaséise
searching speed with which solvers explore that reduced spa.
Therefore, as a natural consequence, the proposed formuian
significantly reduces the computational burden in comparisn
with analogous MILP-based UC formulations. We provide com-
putational results comparing the proposed formulation with two
others which have been recognized as computationally effamt
in the literature. The experiments were carried out on 40
different power system mixes and sizes, running from 28 to I8
generating units.

Index Terms—Mixed-integer linear programming, strong lower
bounds, thermal units, unit commitment.

NOMENCLATURE

Upper-case letters are used for denoting parameters and set

Lower-case letters denote variables and indexes.

A. Indexes and Sets

g € G Generating units, running from 1 @.

s €S, Startup segments, running from 1 (hottest) $9
(coldest), see Figl.

t € T Hourly periods, running from 1 t@" hours.

B. Parameters
CLEV'  Linear variable cost of uniy [$/MWh].

C%VL No-load cost of unity [$/h].

ONSE Non-served energy cost [$/MWh].

C5P shutdown cost of uniy [$].

Cﬁ? Coefficients of the startup cost function of upjtsee
Fig. 1 [$].

Dy Load demand in hout [MW].

P, Maximum power output of uniy [MW].

P, Minimum power output of uniy [MW].

Ry Spinning reserve requirement in haufMW].

RD, Ramp-down rate of uniy [MW/h].

RU, Ramp-up rate of unig [MW/h].

SD,  Shutdown capability of uniy [MW].

SU,  Startup capability of uniy [MW].

TD, Minimum downtime of unitg [h].

TU,  Minimum uptime of unitg [h].

TV Times defining the segmentlimits, [TV, TV, ),

of the startup cost function of unit [h], see Fig.1.

The authors are with the Institute for Research in Technol@tr) of
the School of Engineering (ICAI), Universidad Pontificia r@itas, Mad-
rid, Espafia (e-mail: german.morales@iit.upcomillasgesorales@kth.se; je-
sus.latorre@iit.upcomillas.es; andres.ramos@upcasnds).

C. Variables

1) Positive and Continuous Variables:

nse;  Non-served energy in hodr[MWh].

Dyt Power output at hout of unit g, production above
the minimum output?, [MW].

Tgt Spinning reserve provided by unjtin hourt [MW].

2) Binary Variables:

Ugt Commitment status of the ungtfor hour¢, which is
equal to 1 if the unit is online and 0 offline.

Vgt Startup status of uni, which takes the value of 1 if
the unit starts up in hour and O otherwise.

Wt Shutdown status of unig, which takes the value of 1
if the unit shuts down in hout and O otherwise.

Ogst Startup-types of unit g, which takes the value of 1

in the hour where the unit starts up and has been
previously offline within [T;7V, 757, ,) hours, see
Fig. 1. ' '

I. INTRODUCTION
A. Motivation

FFICIENT resource scheduling is necessary in power

systems to achieve an economical and reliable energy
production and system operation, either under centralaed
competitive environments. This can be achieved by solving
the Unit Commitment (UC) problem, of which the main
objective is to minimize the total system operational costs
while operating the system and units within secure technica
limits [1]-[3].

Mixed-Integer Linear Programming (MILP) has become
a very popular approach to solving UC problems due to
significant improvements in off-the-shelf MILP solverssbd
on the branch-and-cut algorithm. The combination of pure
algorithmic speedup and the progress in computer machinery
has meant that solving MILPs has become 100 million times
faster over the last 20 yeard]] Recently, the world’s largest
competitive wholesale market, PJM, changed from Lagrangia
Relaxation to MILP to tackle its UC-based scheduling prob-
lems B]. There is an extensive literature comparing the pros
and cons of MILP with its competitor2], [6].

Despite the significant improvements in MILP solving,
the time required to solve UC problems continues to be a
critical limitation that restricts the size and scope of UC
models. Nevertheless, improving an MILP formulation can
dramatically reduce its computational burden and so allow
the implementation of more advanced and computationally
demanding problems, such as stochastic formulatiofis [
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accurate modelling of different types of (online and offine Research on improving MILP formulations is usually fo-

reserves§|, or transmission switching9]. cused on tightening rather than on compacting. An MILP
_ _ formulation is typically tightened by adding a huge number
B. Literature Review of constraints, which increases the problem si8],[[19].

1) Performance of MILP Formulations —Tightness vdlthough this tightening reduces the search space, soineys
CompactnessThe branch-and-cut algorithm solves MILP bytake more time exploring it because they are now required to
solving a sequence of Linear Program (LP) relaxations. Thepeatedly solve larger LPs. Consequently, when a forimonlat
LP relaxation of a MILP problem is obtained by relaxing its inis tightened while significantly affecting its compactneas
tegrality requirements. During the solving process (bhamg), Mmore compact and less tight formulation may be solved faster
upper bounds (feasible integer solutions) and lower boundgcause the solver is able to explore the larger feasiblerreg
(LP relaxations) are computed. The quality of a feasiblore rapidly L8]. On the other hand, compact formulations
integer solution is measured with the optimality tolergncgsually provide weak (not strong) lower bounds. In conduosi
which is the difference between upper and lower bounds. ¢reating tight or compact computationally efficient foraeul
order to reduce this difference, upper bounds are decreafieds is a non trivial task because the obvious formulations
by finding better integer solutions (e.g. heuristics) anslelo are very weak (not tight) or very large, and trying to improve
bounds are increased by strengthening the LP relaxatign (¢he tightness (compactness) usually means harming the com-
adding cutting planes)1p]. Providing an MILP formulation pactness (tightness).
with strong lower bounds (LP relaxation near to the optimal 2) Improving UC formulations:improving MILP formula-
integer solution) can dramatically reduce the length of thH®ns, especially the tightness, has been widely resedrdhe
search for optimality 11], [12]. In addition, strong lower fact, all the cutting plane theory, which has meant the break
bounds effectively guide the search for better upper bounidisough in MILP solving, is about tightening the formulat®
(i.e. heuristics explore the neighbourhood of the LP reiaxa [4], [10], [14], [2Q. In the case of UC problems, there have
to find potentially better integer solutions). been efforts affecting specific aspects. R&fl][reduced the

The computational performance of an MILP formulation isumber of binary variables, claiming that this speeded &p th
mainly influenced by its tightness (distance between relaxsearch process compared with the 3-binary mod&ls[p].
and integer solutions) and compactness (quantity of datalio[22], a strong formulation of the minimum up/down time
process when solving the problem). These two charactegistconstraints is proposed; i8], a tighter linear approximation
are actually fully exploited by off-the-shelf MILP solvers for quadratic generation costs is described; REJ presents
Even though solvers’ breakthrough is due to the synergynew class of inequalities giving a tighter description o t
between different strategies (e.g. heuristics, cuts, ruae feasible operating schedules for generators; @4fijroposes
solve), introducing cutting planes has been recognized asight and compact formulation for the startup and shutdown
the most effective strategy, followed by root presole][ unit’s power trajectories.

[14]. The former strategy dynamically tightens the formulatio From the aforementioned formulationg1], [22] and [19]
around the integer feasible solution point. The latter ,sakbave focused on improving the basic technical constraints
the initial problem formulation more compact (by removinge.g., ramping limits, generation limits, minimum up/down
redundant variables and constraints) and also tighter (tiynes). As stated in19, the main disadvantage oR]] is
strengthening constraints and variable bounds). that avoiding the startup and shutdown variables hindegs th

The tightness of an MILP formulation defines the seargiossibility to generate and use strong valid inequalitesh
space (relaxed feasible region) that the solver needs torexp as the minimum up/down time constraints proposed2. [
in order to find the (optimal integer) solution. A given MILPRef. [19 overcomes this problem by using the 3-binary format
problem has many possible formulations. If F1 and F2 are tvemd thus introducing many additional inequalities (usitig a
formulations for the same MILP problem, and the feasiblgae binaries) to tighten the UC formulation. However, thérma
region of F1 is contained inside the feasible region of Farawback of L9 is that it creates a huge model where, in order
then F1 is a tighter formulation than F2, and thus the lowés obtain a computational advantage, the additional inkttrs
bound provided by the LP relaxation of F1 is always greateeed to be appropriately introduced to the formulation ryri
than or equal to that provided by F21], [15]. That is, F1 the solving process (dynamically). Rel9 also presents the
provides stronger lower bounds and the optimal solutiorisof iadditional disadvantage of implementation complexityeveh
LP relaxation is nearer to the optimal integer solution. the modeller needs to make au-hoc configuration of the

The compactness of an MILP formulation refers to itsolving strategy of MILP solvers to dynamically introduce
size and defines the searching speed that the solver takethése inequalities.
find the optimal solution, since during the process, many LP
relaxations are repeatedly solved. Although, the number of
constraints is considered to be the best simple predictor G
the LP models’ difficulty 16], [17], the number of nonzeros This paper presents an alternative UC reformulation that
also has a significant impact on solution tim&6][ Therefore, describes the same basic UC problem as2ifj fnd [19]. In
formulation F1 is considered more compact than F2 if Fdther words, we provide a formulation containing the same
presents simultaneously fewer constraints and nonzeess tlfieasible integer solutions as those #i]and [19], and hence
F2. obtaining the same optimal results.

Contributions
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The main contribution of this paper is three-fold: gtanug A
t
1) Atight MILP formulation for the thermal UC problem is ost B3l «— 01— it 0> 0 b i« 5>

proposed in order to decrease the computational burdenCsdt — — — — £ — —— - —— — -
of analogous MILP formulationsi], [21]. [6r5e i s -

2) The formulation is tightened at the same time as it s
is made more compact compared to bof1][and ?
[19], hence overcoming the main disadvantage of usual
tightening strategies1B]. The simultaneous tight and  Ci%
compact characteristics reinforce the convergence speed e
by reducing the search space and at the same time in- 0 7%V T,°Y 7591 Y T35 178 Pr;ﬁ;gf[?,ﬁne
creasing the searching speed with which solvers explore
that reduced space.

3) This reformulation can be used as the core of any UC

problem, whether under centralized or competitive en- 1) Production Cost: The production cost is usually ex-

vironments, from sglf-schedullng to centralized aUCt'O'b'ressed as a quadratic function of the power output. Tylgical

based market clearing. this cost is modelled as a piecewise-linear functigd].[ A
Furthermore, given the compactness of the formulationi-ad€ight formulation for this piecewise-linear approximatids
tional extensions of the UC model will be less Cumbersomgiven in [23] This paper focuses on the reformulation of
For example, in the case of a stochastic formulation thRe unit's technical constraints as well as of the expoaénti
compactness and tightness can be fully exploited given téRrtup cost. Therefore, for the sake of simplicity, we esent
size and computational complexity of solving a large-scaifie production cost as a linear function. Note 1) that the
stochastic UC problem. That is, a stochastic problem raf@& |inear variable cost multiplies the total power output, g¥hi
the original deterministic structure to represent un@eiya s the minimum output®,u, plus the production above that
consequently, any reformulation will benefit from the clzara minimum py;.
teristics of the deterministic formulation. 2) Startup Cost:Fig. 1 shows a typical exponential startup
cost function 6], where C’gSsU is the cost incurred when the
unit g has been offline within the intervalT;)", 777, ).
) ) ) ) This function is discrete since the time span has also been
~ The remainder of this paper is organized as follows: Segjscretized into hourly periods. Ref21] and [19] represent
tion Il details the UC reformulation. SectidH provides and ihis startup-cost function using the formulation propoged
discusses results from several case studies, where a COMPRS \We represent the same cost function usi?lgand @). As
ison with two other UC formulations is made. Finally, SOMBresented in our previous work4], the startup-type variable

Fig. 1: Startup costs as a function of the unit's previousraftime.

D. Paper Organization

relevant conclusions are drawn in Sectidh d4s that activates the cosE>U in the objective function is
selected by:
Il. MATHEMATICAL FORMULATION .
Tg,s-%—l_l
This ;ecuon details the reformulatlgn of a typical UC. Thggst < Z Wotoi Vg, te [T;:gﬂ,T],se [1,5,) (2)
constraints presented here characterize the same UC proble St
as those in21] and [19] (see R5]). Hourly time intervals are .
considered, but it should be noted that the formulation @an b _ Jgst = Vgt Vg,t (3)

easily adapted to handle shorter time periods. s€Sy

where @) stands for the time passed since the last shutdown
A. Obijective Function and @) ensures that only one startup cost value is selected
o when the uni I r .
The UC problem seeks to minimize the power system en the unit actually starts up
: . . . Note that ) does not bound the coldest startup-type, .
operation costs, which are defined as the sum ipftlfe . : >
. .. L However, if the unit starts up at howrand has been offline
production cost, i) startup cost andi{i) shutdown cost. In for at leastTSU hours then constraint2f and @) ensure
addition, in order to take into account situations in whicére _ 1 Assijiscussed irdi4], the variables, ., take binar
is a lack of energy,i() the non-served energy cost is alségg’sg’t T LD o Ugst . y_
values even if they are defined as continuous variables. This

included . . : . o
is due to the convex (monotonically increasing) charastieri
of the exponential startup-cost function of thermal un6] [

: NL LV
i Z Z [Cg ugi+Cy" (Pyugi+por) (see Fig.1).
geGteT

i Due to the minimum downtime constraint (see Sec-
tion 11-B2), the hottest startup-type is only possible within the
SU SD NSE
+ Y O 8gut Cg P+ O nsey |- (D) interval [TD,, T5Y). Therefore, constraingj is made more
sES — ) 917 9,2 SU .
N , i iv compact by defining’ )’y =T D,, see Fig.1. Note that @)
i is not defined for the first hours. Appendi details how to
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obtain d,,; for the first hours depending on the unit’s initial 4) Generation Limits:The total unit production is modelled
conditions. in two blocks: the minimum power output, that is gener-

An easy way to observe that this startup-cost formulatigied just by being committed, and the generation over that
is tighter than the formulation in1pB], [21] and [27] is that minimum p,.. The generation limits over the power output
(2) and @) provide upper bounds to the possible startup-coand the spinning reserve contribution are set as follows:
values. For example, if the unit does not start up £ 0) then _ _

(3) forces the startup cost to be zero. This is in contrast fgt T 79t = (Pg—Py) ugt — (Pg—SUs) vyt

[21], which does not provide upper bounds to the startup cost YgegGht (9)
variable and then t'he objective funcFif)n always has to Io%t + g S(ﬁg—ﬂg) Ugt —(?Q—SDQ) Wy.t1

for the lowest feasible value. In addition, the computadion 1

results in Sectionll shows that the integrality gap of the vgeg .t (10)

UC formulation is significantly lowered when modelling th%herepgt andr,, are also constrained by the unit startup and
startup costs using) and @). shutdown capabilities.

Note that ) and (L0) are only applied for the subsét',
which is defined as the units ig with TU, = 1. For the
cases in whicl'U, > 2, both constraints can be replaced by

1) Power System RequiremeniBhe following constraints a tighter and more compact formulation:
guarantee the balance between generation and load, and the

B. Power-System and Thermal-Unit Constraints

provision of spinning reserve: Pyt +7g1 < (Pg—Py) ugs — (Pg—SUg) v
— (Py=SDy) wy t11 Vg ¢ Gt (11)
Z [Egugt +pgt] = Dy — nsey vt (4)
geg Constraint 11) is tighter than 9) and @L0) because in the
Z r. >R vt (5) event that the unit is online for just one period, the rigltesi
gt — t . . .
= of (11) can be negative. Consequentlgl) is not valid for

units with TU, = 1, because this constraint means that it is
where the non-served energy variabige; is included to not feasible to operate the unit for just one online period.
take into account situations of lack of energy. Note #) ( That is, (1) presents a tighter feasible region the&) and
that power (MW) and energy (MWh) units are mixed, whiclj10) together. In addition, constrairit) is also more compact
is numerically correct in models with hourly time intervalshbecause: 1) the two constrain® and (L0) are lowered to one,
However, the time-period duration must be included wheind 2) constraintl(l) introduces five non-zero elements (per
considering different time intervals. unit and per period) in the constraint matrix in comparison
2) Minimum Up and DowntimeThe minimum number of with the eight elements introduced b9) (@and @0) together.
periods that the unit must be online and offline are ensuredNote that @) and (L0) are valid in both cases when G*

with [22: and wheng € G'. However, if (11) is used forg ¢ G, the
. same solution is obtained at the same time as the formulation
Z Vi < gt Vg.t € [TU,,T] (6) is made more compact and tighter. Hence, the combination of
=t TU,y 41 both groups of constraints is used in this model.

. One simple way to observe that the proposed formulation
Z wyi <1 — g Vg,t € [TD,,T]. (7) is tighter than those in2[] gnd [L9 is by checking the
upper bound of the constraints. For example, note that the
upper bounds 0f9)-(11) decrease when the binary variables
This formulation provides strong lower bounds in compaw,; and wy, are different from zero. This is in contrast to
ison with others 9], [19], [22], as also shown in Sectioll. [21] and [19], where the bounds of the constraints increase
AppendixA describes how the initial conditions force the uniif v,,,wy, # 0, see AppendixB for further details. In
to remain online or offline during the first hours. fact, the set of constraint®6)-(11) are the tightest possible
3) Logical Constraint:Equation 8) guarantees that,; and representation (convex hull) for a unit operation withcarnp
w,: take the appropriate values when the unit starts up or sha@nstraints, although the mathematical proof for this itsiole

i=t—TD,+1

down. the scope of this paper.
5) Ramping Limits: The following constraints ensure that
Ugt — Ug,t—1 = Vgt — Wyt Vg,t. (8) the unit operates within the ramp rate limits:
The minimum up/down constraints ensure that a unit cann@t,; + ;) — pg.:—1 < RU, Vg,t (12)
start up and shut down simultaneously: note th@t gnd —Pgt + Pat_1 < RD, Vg, t (13)

(7) guarantee (dominate over) the inequalities < wug

andug, < 1 — wgy, respectively, which combined becomevhere (12) guarantees that the unit can provide spinning
vgr+wg: < 1. In addition, ifu,, is defined as a binary variable,reserve without violating the upwards ramp limit. The reade
(8) forcesv,, andwy; to take binary values even if they ares referred to §] for a more accurately modelling of different
defined as continuous. (online and offline) types of reserves.
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I1l. NUMERICAL RESULTS Table I: Number of generators per problem case

. . . L . . Small cases Large Cases |
Thls secthn is divided into fo.ur parts. The flrst part d Senerator Tora Sonerator Tolal
scribes the different UC formulations that were implemeénte/casd T 2 3 4 56 7 B Gefs Cdse 1 2 3 4 5 6 7|8 Gens
The different case studies are detailed in the second part. |12 11 0014 0 ¢ 28y 11 46 45 8 0 5 0 1216 182

: - 1315204001 35 12 4054 14 8 3 15 9 13 156
The thlr_d par_t presents a comparison be_tween all the UC% 1513263114 42/l 19 50 41 19 11 4 4 12 hs 1ks
formulations, in terms of size and computational perforogan | 4 |15 11 0 1 4 5 6 3 45| 14 5158 17 19 16 1 2 |1 165
Finally, the last part assess the impact on computationa$ |15 13 3 7 53 2 1 49)| 15 43 46 17 15 13 15 6 (12 167
. . . 6 |10 10 2 57 56 % 50 16| 50 59 8 15 1 18 4 (17 172
performance_ due to different number of binary variables |n, |1, o7 31721 sl 11 23 50 17 15 16 5 14|12 182
the formulations. 8 |17 10 6 52 1 3 7 51|| 18 45 57 19 7 19 19 5 |11 182
9 (12 17 4 752 0 % 52 190 58 50 15 7 16 18 7 |12 183
. 10 (13 12 57 2 5 4 54 20 55 48 18 5 18 17 15|11 187
A. UC Formulations
To assess the computational burden of the proposed model, Table II: Sets of experiments
we compare it with those UC formulations i@1] and [19]. Small cases Large cases
These two formulations have been recognized as computation Total gens[ Time spap _ Total geng _ Time spian
H R ; X 7-day 28 to 54 7 days 132 to 187 7 days|
ally efficient in the literatureq], [19], [21], [22], [2§]. For the Siogen | 2800540 Lday | 13200 1870 1 day

sake of simplicity, the production costs are considereddin
for all the formulations.

The following four formulations are then implemented: As presented in19], an eight-generator data set is replicated

1bin: This formulation is presented ir2]] and requires a to create larger instances and different power-systemssnix
single set of binary variables (one per unit and perhese generation mixes, also used k9] are shown in
period), i.e., the startup and shutdown decisions argplel. The replication introduces symmetry in the problems
expressed as a function of the commitment decisiqfhich makes them harder to solve than usual. The spinning
variable. reserve requirement of 10% of the power demand has to be

3bin: The minimum up/down time constraints proposed ifhet for each hour. The non-served energy cost is considered
[22] (see Sectionil-B2) are implemented with the 3-to be 1000 $/MWh. For quick reference, the generator data
binary equivalent formulation of2[l]. This formulation and power demand can be found in Appen@ix

is presented in19] (see also 29]). Unlike [19], 3binis  Two test-sets are created in order to obtain even larger
implemented without the extra cuts. instances:

P1. This formulatlon is the same a$b|n; however, .the x7-day. For the first test-set, the problem is solved with all
exponential startup-cost constraints presented in Sec- the 20 instances presented in Tabfer a time span
tion 11-A2 were used instead of that i”27], which is of 7 days. The dr:emand for the last two dayps (the

] thg f(_)rmulatlon used by2[] apd 9. S weekend) is considered to be 80% of the demand

P2: This is the complete formulation proposed in this paper. on a working day

It is importan_t to note that aII. thg formulgtions were im'xl()-gen For the second test-set, the 20 different power-
plemented using the same objective function and the same system mixes in Tableare replicated 10 times with

set of constraints as the formulation presented in Sedtion a time span of one day. That is, the total number
(see also 25]). As a result, all of them describe the same of generators for this test-set goes from 280 up to
optimization problem. The difference between them is haosv th 1870.

constraints are formulated. In other words, for a given ca ebI Il sh the diff t f Il 40 that
study, all the formulations obtain the same optimal result ablell snows the dilferent groups for a cases that are

e.g., commitments, generating outputs and operation,castsfons'der?d he:re,twhtere there are small and large casesfor th
numerically shown in Sectiofl-D. WZ”pI’eVIOUS es -se.s.d ing CPLEX 12.4 under GAMS
Note that we define four sets of variables as binarll])é tests were carried out using 4 unaer
4

Ugt Vg1, Wy, AN, Thus, reducing the computational burde 9] on a quad-core Intel-i7 2.4-GHz personal computer with
of the formulations. as discussed in SectldeD GB of RAM memory. The small and large cases, for both

Although we focus the discussion on the performance 6<f7'd.ay anql le-gen are solved within 01% a_nd 1.0% of
the proposed formulatioP2, P1 is implemented to observe relative optimality tolerance and a CPU time limit of one hou

the improvements in the proposed startup-cost formuldtiea and 10 hours respectively. CPLEX defaults were used for all

Sectionll-A2). Furthermore, when comparif® with P1, one the experiments. ) ) )
can clearly observe the additional improvements whichltesu 2) Performance Metricsin order to summarize comparison

from considering the generation output variable abBye results between formulations, geometric means of raties ar
- used since arithmetic means can be quite misleading when

) applied to a set of ratioslf], [14]. That is, a number of
B. Case Studies model characteristics between two formulations, e.g. rermb
1) Set of ExperimentsThe following case-study based onof constraints or runtimes, are compared using ratios, hed t
the power system data irR]] is conducted to assess thegeometric mean over a set of case studies is then used as a
computational performance of the proposed UC formulatioperformance metric. For example, when comparing solution
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Table IlI: Problem Size (selected instances) Table IV: Problem size summary compared within (%)

# of constraints | # of nonzero elements  # real var # binary yar Case # constraints # nonzero elements  # real viar  # binary [var
Caseg (x10%) (x10°%) (x10%) (x10%) 3bin] P1 [ P2| 3bin| PI] P2 3bij P* 3bij P*
1bin| 3bin] P1] P2 1bih 3bih P PZ 1bjn 3in p* 1in 3bin P*  FycanT oss] 51.0 369 100p 36]L 317 730 5p1 400 497.3
»[ 1 [104] 104 51 37 0.7¢ 045 0.%5 02 19 14 [10 [5 14 |24 | min | 986] 47.1] 337 1004 32 28[8 750 500 300 4959
©| 10177/ 177 69 73 143 115 0414 0BS $6 p7 18 [0 |27 |45 [‘max | 98.9] 548 39.9 10L| 398 349 791 5p2 300 4989
% [ 11 [ 454] 453 24} 17B 3.09 3.3 1Ji11 008 B9 [67 |45 |22 |67 |111 T PLis cqual P2 for these cases
20 | 639| 637 340 25D 4.42 4.8 156 187 126 [94 |63 |31 |94 |157
o[ 1 [148] 144 67 47 092 0.92 0.30 06 27 PO [13 [7 [20 |33
(710 | 252| 247 132 9% 1.44 1.45 0.56 09 b2 B9 |26 |13 |39 | 64 ,. . . . .
3 1T 6471 633 316 226 388 389 1Bo 1bl 1o o563 135 To5 | 156iMe, as mentioned in th_mtrodl_Jctlon The tlghtnes§ of an
20 | 910| 891] 458 328 545 586 196 1J7/1 180 §35| 90 45 |135| 222MILP can be measured with the integrality gd§]l The integ-

* P1 is equal to P2 for these cases

rality gap is defined a§srcr=2cr)/ 7, p, WhereZy, p is the
optimal value of the (initial) relaxed LP problem, aid; . p

is the optimal integer solution. In practice, the problems a
%ot solved until optimality but within an optimality toleree.
Therefore, for a given case stud¥,,;.p is considered to

Luntlhmes, ratios 3r_e Coth.)Uteddjg.'v'd;r_'g Itlhetr:untlmesF?f be the best integer solution that was found among the four
y the corresponding runtime dibin. Finally, the geometric ¢, ations after that case study was solved.

mean is computed over these ratios and multiplied by 100 tOFig. 2 shows the CPU times and integrality gaps for all the
obtain percentages. Thus, a geometric mean of ratios IOV\(glrmulations and all the instances in comparison within
than 100% means th&l is faster. For the sake of brevity, the using ratios), wherdbin always represents 100%. The CPU
summary of resu_lts is presented in thi? baper, howevgr, (Si]reﬁes and thé integrality gaps dhbin are shown within the
different formulations and the set of statistics are preestim squares to give an idea of the different problem magnitudes.
[29]. The instances that took more than ten minutes to solve for

times betweerP1 and 1bin, for each case study, two runtime
are obtained, one foP1 and one forlbin. Given the set of

The formulationlbinis used as a benchmark to obtain th
ratios. In other words, the formulatiori®l, P2 and 3bin (in
the numerator) are compared witlin (in the denominator)
unless otherwise specified.

B2 can also be found within squares. The computational per-
formance summary for the different formulations is preednt
in TableV for the small cases, large cases and all the cases
together. TableV also shows the final optimality tolerance

achieved as well as nodes explored and iterations.

C. Comparing Different Formulations

In short, Fig.2 and TableV shows that the proposed

1) Problem Size:Table Il shows the dimensions for all formulationP2 considerably reduces the computational burden
the formulations for four selected instances. This sampleif comparison withlbin and 3bin while achieving better
composed of the smallest and largest instances for the sn$@lution qualities (lower final optimality tolerances) dtet
cases (case 01 and 10) and large cases (case 11 and 20). ¥R time. Nevertheless, several aspects are worth mirgion
are instances which consist of almost a million constraints 1) Relationship between integrality gap and runtinfégs.

present millions of nonzero elements in the constraint imatr
and contain 100000+ real and binary variables.

Table IV summarizes the different model sizes for all 40
instances in comparison wittbin. This summary is obtained
as a geometric mean of ratios as described in SettieBPR .
Note that3bin has almost as many constraints and non-zero
elements aslbin. However,3bin presents three times more
binary variables due to the explicit modelling of the stprtu
and shutdown decisions as binary variables.

Although P1 and P2 present around five times as many
binary variables abin, the number of constraints and nonzero
elements was approximately reduced by two thirds. Con-
sequently,P2 is considerably more compact thdmin and
3bin with respect to the nonzero elements and constraints (as
mentioned in thdntroductior).

Note in TablelV that the main improvements in compact-
ness are due to the proposed startup-cost formulafin
Finally, P2 further reduces the formulation size by modelling
the power output variable above, .

2) Computational PerformanceAlthough the proposed
formulation is more compact thdtbin and3bin, this does not
necessarily lead to a better computational performandeaci
a compact formulation usually presents a weak (not tight) LP
relaxation that can dramatically increase the MILP resotut

2b and 2d show thatP2 always presents the lowest
integrality gaps, followed by1, 3bin and finally 1bin.
Table V shows that the average time taken by the
different formulations presents a similar pattern as to tha
of the integrality gaps, with the exception 8iin for the

x 7-day test-set, which presented a worse performance
than 1bin (on average3bin required more than 30% of
the time thatlbin required to solve all thex7-day test-
set). This is an unexpected result which can be explained
as follows. In theory, lower integrality gaps lead to
faster solving times when two formulations have similar
sizes. However, in practice, MILP solvers use heuristics
and cuts (among others) that may also dramatically
influence performance. In addition, the enumeration tree
and branching strategies change completely when for-
mulations with different integer variables are compared.
1bin presents fewer binary variables thahin, and this

is an advantage for finding integer feasible solutions. In
general, a high number of integer variables complicates
the search for feasible solutions. For tké0-gentest-

set, 3bin showed a significant improvement ovébin:

3bin required, on average, 40.6% of the CPU time
needed bylbin. Note that in overall,3bin performs
better for the small cases than for the large cases. A
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Fig. 2: Improvements in comparison wiftbin (%). White areas correspond to small cases and gray to the ases.

Table V: Computational Performance compared wilithin (%)

2)

CPU Time Integrality Gap Opt. Tolerance Nodes Iterations
3bin [ P1 | P2 3bin| P1[ P2 3bin]  P1] P2 3bin| P1] P2 3bjn PIL PR
= | Cases 01-10 1209 337 9f 73]3 598 4%.38 9r.3 §9.9 47.0 B8.05.61 57.7| 429| 33.0 1475
E Cases 11-20] 140.4 154 4p 7513 581 335 13p.1 5.1 54 169.89.1 |6 96.2 | 72.4| 21.4 11.1
X | Cases 01-20| 130.4 22.8 6.0 74[3 590 420 115 174 16.0 8122854 745| 55.7| 26.4 13.
21;:) Cases 01-10 36.3 22. 12.p 64[0 476 34,7 7.2 8.0 111 1?6.52.6] 121.7| 56.2| 458 35.1
& | Cases 11-20 454 8.4 4p 745 552 431 57.0 0.6 0.7 189.7 Pa60.4 | 56.9| 19.5 15.§
% | Cases 01-20 40.4 13. 7L 691 513 383 68.7 R.3 29 1609 211039.7| 56.6] 29.9] 23.6

clearer performance dominance 8lbin over 1bin was
observed when the experiments were carried out without
the exponential startup cost constraints (for the sake
of brevity, these results are not shown here but the
interested reader is referred 185).

Overall performance of P2For 1bin, all the large cases
(gray area in Fig2) took longer than one hour to solve
within the required optimality tolerance. Two of the
instances hit the ten hour time limit. On the other hand,
P2 solved all the tests in less than one hour and just
two of them took more than 20 minuteB2 presented
shorter runtimes thahbin and3bin for all the instances,
being beaten just once IR (instance 17 for thex7-day

3)

test-set, see FigRa). Note in Figs.2a and 2c that for
the instances where the proposed formulation showed
the worst performance®2 required 57.1% and 19.5%
of the CPU time required bybin for the x7-day and

x 10-gentest-sets respectively. FurthermoP,obtained
better solution quality in general (i.e., converged to
smaller optimality tolerances) thatbin, especially for
the large cases. Howevelbin obtained better solution
qualities for 5 of the 40 instances (3 for th&-dayand

2 for the x10-gen).

Node enumeration vs. LP complexiffjable V shows
that for the x10-gentest-set, all the formulations enu-
merated more nodes thdiin to find a solution within
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Table VI: Overall Speedups they hit the time limit of one hour or until they reach optiibal

3bi1nbi<:1\'ef Pllg‘ifsf lefi)‘ﬁr Pl;k\)'iif P2§I\J’i‘~: PZO;flff (more precisely ta0~% of relative optimality tolerance).
— — — — — — = Five d!fferent forr_nulatl_ons are now cons_ldereq. Three ef th
Caces 112 3 88 221 =517 X formulations described in Sectidh-A, 1bin, 3bin and P2.
Cases 01-2 14 5.7 143 a1 104 2.1 The other two formulations are the relaxed versions3loin
and P2 and they are denoted &3binand RP2 respectively.
Similarly to 1bin, the commitment variable:, is the only
the given optimality tolerance. As mentioned aboveariable that is defined as binary f&3bin and RP2 That
formulations with different integer variables lead tds, for R3binand RP2 the set of variables,, w, anddgs:
different enumeration tree and branching strategies. Bye defined as continuous variables within the intefoal].
default, an MILP solver’s objective is to obtain satisfactAs discussed in SectionsA2 andll-B3, onceu,, is defined
ory feasible solutions quickly using different strategiesas binary, the formulation8bin and P2 allow relaxing the
such as branching, cuts and heuristics. The strate@yegrality condition of variables,;, w,; andd,.; because the
that proves to be more effective is used more oftetbnstraints guarantee that these variables always takeybin
(e.g. branching) and the others more seldom so thailues.
they do as little harm as possibld(. That being The problem size for the different formulations, the op-
said, larger enumerated nodes in one formulation diinal solutions and integrality gaps are shown in Tallé.
not mean longer solving times. In fact, exploring fevirhe computational performances are presented in Tdble
nodes for long periods is an indication of the difficultywhich includes runtimes, nodes explored, iterations and
of the linear relaxed formulatior80]. Therefore,P2is memory required to solve the problems until optimality,esth
able to explore more nodes thdmin in even shorter wise the final optimality tolerance is shown within parerse®
times mainly due to the compactness of the formulatiomableVIl shows that all formulations present the same optimal
Focusing on the number of nodes explored can lead golution for a given time span. As expected, all formulasion
misleading conclusions. That is why other works prefesbtain the same integer solutions because they are characte
to look at the number of simplex iterations rather thaizing the same integer problem (see Sectign
nodes in order to perform comparisorid], [31]. 1) Pure Branch and Bound (BB)To assess the impact

Finally, TableVI presents the overall speedups of the form@n the computational performance of formulations contajni
lations compared with each other. For a given instance, tHiferent number of binary variables, the UC is solved byyonl
speedup of, for exampl8pinoverilbinis obtained by dividing using the branch-and-bound method. The cutting planes and
the runtime oflbin by the runtime of3bin, and the results heuristics were then disabled, and CPLEX defaults were used
are summarized using the geometric mean on the speedf@sall remaining features. Therefore, the solver is for¢ted

of a group of instances. Both test-set§-day and x10-gen explore all the tree in order to prove optimality], [16].

are grouped together and now the instances are separated infableVlll shows the computational performance for the 1-,
small, large and all cases (see Talb)e In general3binis 1.4 2- and 3-day cases that where solved by pure BB. Tible
times faster tharibin and presented a better performance fdiresents the optimal generation schedule, for the 1-dag, cas
the small casesP? was around 14 and 10 times faster thagbtained by all formulations, of which schedules were the
1bin and3bin, respectivelyP2 presented the best performancéame. All formulations could prove optimality for the cade o
for the large cases, wheR2 was around 22 and 18 times fastepne and two days. For the 3-day case, none of the formulations
than1bin and3bin, respectively. Note tha®1 already presents could achieve optimality because they either exceededrtae o
significant improvements ovdibin (5.7 times faster) an@bin hour time limit or the 4-GB memory limit°2, 3bin, RP2and

(4.1 times faster). In additiof?2 is a further improvement on R3binhit the time limit and the final optimality tolerances that
P1, being generally 2.5 times faster. they achieved are shown between parentheses in dlle

1bin hit the memory limit achieving the worst final optimality
. ) , i tolerance of4.3 x 10~2 after about 500 seconds.

D. Difficulty of an MILP vs. its Number of Binary Variables Although P2 is the formulation with the highest number of

In this part, we present two sets of experiments to assdsrary variablesP2 explored the least number of nodes and
the impact on the convergence evolution and solving times dpresented the best computational performance for the 2-day
to the number of binary variables, and the simultaneous tigtese, in comparison with the other five formulations. On the
and compact characteristic of the proposed formulatiore Thther extremelbin, with the least number of binary variables
UC is solved for the eight-generator power system by 1) pufie same afk3bin and RP2, explored the highest number
branch-and-bound method (BB), for one to three days, anfinodes and presented the worst computational performance
2) the solver defaults, which is the complete branch-artd-dollowed by R3binand RP2 see TableVIll .
method including heuristics (BC+H), for three to five days. Fig. 3 shows the convergence evolution until optimality of

The eight-generator data and power demand can be fouP® 3bin and1bin, for the 2-day case. Note that the first value
in AppendixC. The spinning reserve requirement of 5% of thef the lower bound oP2, which is the LP relaxed solution,
power demand has to be met for each hour; the non-serweas found sooner (due to the compactness) and nearer to the
energy is not considered (i.e., the variablee; is removed final integer solution (due to the tightness) tt&bin and1bin.
from all formulations); and all UC problems are solved untifter 4 secondsP2 presented a better evolution of both lower
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and upper bounds and hence faster convergence to optime ~
in comparison with3bin and 1bin.

If a model containingn binary variables is solved by the
pure BB algorithm, this algorithm could potentially enurater
2™ nodes to prove optimality. Consequently, one might expe
the solution time to increase exponentially with the numb
of binary variables. However, the BB method cuts off larg
sections of the potential tree because some expectedswuti
may be infeasible or worse than solutions already known. F 1155
example, for the 2-day cas@? potentially presentg!920—384 115
times more nodes to explore thabin, but the BB algorithm
solvedP2 until optimality enumerating 42% of the number of
nodes required to solvébin. This very surprising efficiency
that the BB method exhibits over the potential amount (.;z: 1135
computation is due to the tightness of the formulation, beng%
the number of binary variables is a very poor indicator of th~ 12
difficulty of an MILP model [L1], [16]. In fact, the BB will 1.125- - ]
solve a problem exploring zero nodes if the whole model 10! 10 _ 10 10
the tightest possible (convex hull); that is, the LP relomt o cruTmels
solution will always be integerlll. Furthermore, increasing £ % Corveroence solton lor e apimalty lorarme spoeriover
the number of binary variables is actually a tighteningteg® figure, black lines refer to upper bounds and gray lines tcetobounds.
[32.

Increasing the number of binary variables can also provide
a further advantage in the tree search strategy. This isab@ cconsiderably reduce the size of the tree.
of formulations involving variables that take binary vaue |n short, the computational burden of a MILP formulation
even when these variables are defined as continuous, éghinly depends on its tightness and compactness. A further
Vg, wgr 8N 0gr. AS also stated inl9], declaring all these computational advantage can be obtained by defining asybinar
variables as binary does not cause extra complexity durieg ghose variables that either way take binary values, because
enumeration process (branching), because when fixing SofRé constraints (and tightness of the model) force them to
of the variables, many others can be immediately obtaingd so. In addition, branching on different variables may be
due to the high correlation among each other. For examplepibre convenientq0], [19]. MILP solvers employ techniques
the variablev,, is fixed to 1 then ) fixes u,; to 1 for the o exploit the integrality characteristic of integer véulies
following TU, periods, then§) (together with 7)) fixeswy:  such as cutting planes and node presolv€],[[11], [20].
anduy, to 0 for thosel'U, periods, and finally3) fixes d,st,  Consequently, declaring this type of variables as contisuo

for all s, for the same periods. will not allow the solver to look for opportunities to expioi

8-generator system was solved for three, four and five days
using BC+H strategy, which are CPLEX defaults. Similarly,
as previously shown in Sectidh-D1, P2 generally requires IV. CONCLUSIONS
shorter runtimes to solve the problem until optimality thie
other four formulations, see Tab\dll . P2 was up to 17 and  This paper presented an MILP reformulation for the thermal
2.5 times faster thambin and 3bin, respectively. Note that, in UC problem. The formulation is simultaneously tighter and
general, the relaxed versioR8binand RP2 present a higher more compact than equivalent formulations found in the-lite
computational burden than their analogous formulati®bi; ature. This simultaneous characteristic boosts the cgenee
and P2, respectively. speed that solvers take to solve the MILP formulation. This
Note that in Table/Ill, the formulations with higher numberis done by reducing the search space (tightening) and at
of binary variables may keep the tree considerably smatlerthe same time increasing the searching speed (compacting)
size. For example, for the 5-day caddyin required around with which solvers explore that reduced space. Consegyentl
250 and 110 times more memory to deal with the branctihe computation time is dramatically reduced. Several case
and-bound tree tha®2 and 3bin, respectively. In order to studies were analysed to show the improvements achieved
solve the 5-day case until optimaliti?2 potentially presents by this formulation with respect to others available in the
24800-960 times more nodes to explore thdin, but the literature. Results showed that the proposed UC formula-
BB+H algorithm solvedP2 and 3bin by just enumerating tion considerably reduced the computational burden while
around 3% of the number of nodes required to sdbim. Sim- achieving better solution qualities. While the formulatis
ilarly, 3bin required around the 5% of the nodes enumeratéested only on “standard” thermal UC problems, the tight and
by 1bin, although3bin potentially presented?®*°—960 times compact formulation can be further extended to many other
more nodes to explore. As mentioned before, the tightneds arariants of the UC problem, where analogous results should
the high correlation between binary variables3bin andP2 be expected.

N
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Table VII: Problem Size, Optimum and Integrality Gap for 8wgenerator Case

days # constraints # nonzero elements # binary var # total var mipti | Integrality Gap 10~ 2]
P2* [ 3bin’ | 1bin | P2* [ 3bif [ 1bin [ P2* [3binf [1bin® | P2* [3bin' [ 1bin All° P2 | 3bin" | 1bin
1 1480| 4587 4641 710p 30103 29897 960 %76 192 1344 152 ||960 368%p| 10.21 12.07 17.86
2 | 3088| 9243 9303 1509( 661%1 65513 1920 1152 [384 2688 P304 [19222132.12§ 9.01 10.4B 15.00
3 | 4696| 13899 13959 23089 102199 101129 2880 1728 |576 $#032 |32880 || 1710633.601 8.6[L 9.88 14.04
4 | 6304| 18555 1861 31081 138247 1367445 3840 2304 |768 pH376 |4BBE0 || 2279135.074 8.4[L 9.60 13.55
5 | 7912| 23211f 23271 39073 174295 172361 4800 2880 (960 p720 |[5¥800 || 2847636.547 8.29 9.43 13.27
* P2is equal toRP2for these cases T 3binis equal toR3binfor these cases
1bin, RP2and R3binare equal for these cases <>F’Z, 3bin 1bin, RP2and R3binare equal for these cases

Table VIII: Computational Performance for the 8-generafaise

da Time [s] / (OptTol [x10~°]) | Nodes [x 107] | lterations [x 10”] Memory [MB] / (OptTol [x10~"]) |
Y RP2] R3bi) _P2[ 3bi] 1bh RPP R3hin P2 3pjn 1hin  RP2 biR3 P2 | 3bin | 1bin] RP2] R3bin
1 11 06 0d 0f 1 1B oo o6 12 T4 156 181 |96 23 [Boz.1[o0 01 o1 o4 o]
B[ 2 | 920] 1694 2427 1715 2095 924 1/p.6 2405 2p2.0 130.6/8.2p 2140.0 3952p 3082]2 27332 2B0 469 481 W49 4735
3 | (2.03) (1.04] 5183 (3.1d) (2.7P) 3150.8 260p.7 248.7 3bpY552.3 49814 47095[2 5368.0 62240.6 51563.5 1349.20.8p14.3)| 1079.2 1313
.| 3 79] 99 43 71 66 1p 11 o8 {7 8 386 doo 375 pr8 [p242] 02 03 043 14
R 97| 224 449 124 2770 06 10 64 L1 278 256 1p8.4 496.543.1] 18844 0.1 17 4F 55 78
@[5 [ 12.9] 334 218f 39p 15945 (.9 4 2p6 |48 2p06 pBas5 13a87.3 1720 113395 10 2|3 2478 L9 1282
Table IX: Optimal Generation Scheduling for the 8-gener&ase and 1-day Time Span [MW]
Ge Hour
1] 2 [ 3] 4] 5] 6] 7] 8] o[ 19 11 17 1§ 1 1% 14 1f 18 [9 20 p1 32 [23 p4
1 [ 375| 455 455 455 45§ 455 455 456 495 455 455 J55 |55 455 |455 4555 | 4855 | 455 455] 459 455 456 455
2 | 375|418.4% 459 451]2 420.16 420[16 443.26 418.67 444.28 455 | 455| 455 455 453|7 433.61 426[16 465 k55 455 W55 455 W3BMEI0
370 20| . . ) ) . 20| 70| 12p 13p 13p 130 180 1B0 1B0 130 130 130 [130 |1380 |1130| 130
470 20| . . ) ) . 20| 70| 12p 13p 13p 130 180 1B0 1B0 130 130 130 [130 |1380 |1130| 130
5 | 85 | 40.35) 5224 25 25| 25| 32.94 79p1 93|68 91.6 82.64 98.164B21.4 57.38 77.5f 104 16P 162 150,76 129.2 113.68 $3.68 |25
6| 80| 20| . . ) ) . . . |20 20 20 | . . 20| 55823b8 20 20 40 PO
71 25| 25| . . . . . . . N . N . 25| 29 25 2§
8 [21.9 10
ACKNOWLEDGEMENT must be fixed:
German Morales-Espafia has been awarded an Erasmpjs=u, Vg,t € [LLTUS + TDY] (14)

Mundus Ph.D. Fellowship. The authors would like to express
their gratitude to all partner institutions within the pragime
as well as the European Commission for their support.

b) Initial Startup Type:The equation15 complements
(2) and this means that an inappropriate startup type will not
be chosen when taking into account the initial conditiofs. |

TDj > 2, thend,,, must be fixed for some initial periods as
APPENDIX follows:

A. Initial Conditions Sgst =0 Vg,s €[1,8,),t (Tg Y TDO T, s+1>
The initial behaviour of the units is bound by their initial (15)
conditions. This is guaranteed by fixing the value of some Equations {4) and (15) can also be respectively written as

variables before running the optimization model. The foHo additional constraints in the optimization problem:
ing parameters are needed to deal with the unit state during

TUR+TDE
the first periods: "’Z gu _TURL (16)
! Initial commitment status of unig {0,1}. 99 g
U0 Number of hours that the unig has been online TS
before the scheduling horizon. S B
TD)  Number of hours that the unjj has been offline Z SUZ . Ogst =0 V9. (17)
before the scheduling horizon. M S A

a) Initial Minimum Up/Down Times:The number of However, equationsl€) and (5) are preferrgd overl@)_
hours during which the units must be initially onllanR) and a_7)’ becausel4) and (5) turr_l the mvolv_ed_ mtgger varl-
or offline (I'D%) due to their minimum up/down constramtsﬁlbles into constants before running the optimization b
are obtained g\s follows: thus decreasing the problem size. Nevertheless, solveadlys

' provide the option to treat fixed variables as constants.
TUS =max {0, (TU, — TUJ) u} Vg (13a)

TDL =max {0, (TDy — TDY) (1 —u))} Vg (13b)

B. Comparing Feasible Regions of the Startup Capability
Constraints

Now, the commitment variables for the initial periods where This section compares the tightness of the startup capabili
the units must remain online or oﬁlin@TUf + TDf) > 1 constraint of the proposed formulation with the one pre=gnt
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. . . . Table X: Generator Data
in [21]. Similar analysis and conclusions can be made for the

shutdown capability constraint. For notational simpjicithe _ Technical Information oot Coefficlents
. . . . . P P TU/TD RURD Stey* T V|C [} cyvre:
index g is dropped in this section. _ Genl g MWl ] MW 1 [ (s sMwhl @ 8]
For all the following analysis, we consider;_; = 0. 11 455 150 B 225 8 14] 1000 16.19 4500 9doo
Therefore, the constraint imposing the unit’s startup bdjpya | 2 | 455 150 8 225 8 14/ 970 1726 5000 10000
3 | 130 20 5 50 -5 10 700 16.60 550 11p0
(9) becomes 4 | 130 20 5 50 -5 10 680 16.50 560 11P0
<(P_ _(P_ 5| 162 25 6 60 -6 11| 450 1970 900 1800
pe+ 1 <(P=P)ur = (P=SU) v, Ve (18) 15| s a0 3 60 -3 8| 370 2226 170 34D
and @) together with8 imposesv; = wu,. Thatis, ) | 7| 8 2 3 60 -3 6| 480 2774 260 520
8| 55 10 1 135 -1 2| 660 2592 30 6

guarante'e$]t S Ut, and If Ut—1= 0 then 6) ensurea')t 2 Ut, *Hours that the unit has been online (+) or offline (-) priorthe first period of the time span.
th us fOrC'ngUt — Ut . Consequently, 1(8) can be I’EWI'Itten as a T Subindexh refers to hot startup = 1, and subindex to cold startups = 2
function of u;:

petre S(SU-P)uy vt. (19) Tme [ 1] 2 3] 4] 5] 6 7}) 8] 9 10 17 13
%

The analogous constraint fro2], eq. (18)], imposing the |Demand 71% 65% 62% 60% 58 5§% 6(% 6a% 73% $0% PB2% 83%

) F Time 13| 14| 15| 16| 17| 18 19 2( 21 22 283 24
unit's Startup Capablllty’ becomes Demand| 82% 80% 79% 79% 83po 91% 90% 8B% 85% 84% 9% [74%
P, < SU -uy + P (1 —uy) vt (20)

whenwu;_; = 0. Wherep, is the maximum available power REEERENCES
output at timet, which is the total power output plus the

oA ; S. Stoft, Power System Economics: Designing Markets for Electricity
spinning reserve. Thus, in terms of the nomenclature used i 15t ed. Wiley-IEEE Press, May 2002.

this paperp, is equal toP - u; + p; + r;. Hence, 20) can be  [2] B. F. Hobbs, W. R. Stewart, R. E. Bixby, M. H. Rothkopf, R.®Neil,

Table XI: Demand (% of Total Capacity)

rewritten as and H.-p. Chao, “Why this book? new capabilities and new sded
_ unit commitment modeling,” infhe Next Generation of Electric Power
pr+re < (SU=P)us + P (1 —uy) vt. (21) Unit Commitment ModeJsB. F. Hobbs, M. H. Rothkopf, R. P. O'Neill,
and H.-p. Chao, Eds. Boston: Kluwer Academic Publisher€220
Now the tightness of inequalitiesl9) and @1) can be vol. 36, pp. 1-14.

directly compared. Note that if the unit starts up, = 1 [3] N. Padhy, “Unit commitment-a bibliographical surveyEE Transac-
' ' tions on Power Systemsol. 19, no. 2, pp. 1196-1205, May 2004.

bOth_ (19). and @1) impOSEPt +re < SU_ *g- Therefore, the [4] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Beldh R. E.
feasible integer region of both constraints is the same wihen Bixby, E. Danna, G. Gamrath, A. M. Gleixner, S. Heinz, A. Lodi

unit starts up. Be aware, however, that their relaxed fémsib ~ H- Mittelmann, T. Ralphs, D. Salvagnin, D. E. Steffy, and KoM,

. . . . “MIPLIB 2010,” Mathematical Programming Computatiovol. 3, no. 2,
regions are completely different. Whereas the right side of ;"103 163 jun. 2011.
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