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Nomenclature

Upper-case letters are used for denoting parameters and sets. Lower-case letters denote variables
and indexes.

0.1. Indezes and Sets
t € T Hourly periods, running from 1 to 7" hours.

0.2. Constants
P Maximum power output of unit g [MW].

P

P Minimum power output of unit g [MW].
SD Shutdown capability of unit g [MW].
SU Startup capability of unit g [MW].

0.3. Variables

0.3.1. Positive and Continuous Variables
Pt Power output at period ¢ of unit g, production above the minimum output P 9 [MW].

0.3.2. Binary Variables

Uy Commitment status of the unit g for period ¢, which is equal to 1 if the unit is online and 0
offline.

Vt Startup status of unit g, which takes the value of 1 if the unit starts up in period ¢ and 0
otherwise.

Wy Shutdown status of unit g, which takes the value of 1 if the unit shuts down in period ¢ and

0 otherwise.
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Fig. 1: I think that those are all the possible vertexes

1. Formulation with SU = SD = P

1.1. Generation Limits

The total unit production is P - us + p;: the minimum power output P that is generated just by
being committed, and the generation over that minimum p;. The generation limits over the power
output and considering unit’s startup and shutdown capabilities are set following the model proposed
by Morales-Espana et al. [1]:

pt <(P—P) (ug — vy) vte T (1)
pi—1 <(P—P) (ur—1 — wy) vt e [2,|T] (2)
Up — Up_1 = Vg — Wy vt e [2,|T] (3)
wy <1 —uy vt e [2,[T]] (4)
p: >0 Ve T (5)
uy € {0,1} Vte T (6)
vy € {0,1} YVt e [2,]T]] (7)

Note that constraints (1) and (4) ensure that a unit cannot start up and shut down simultaneously.
Since p; > 0, (1) and (4) impose the inequalities v < u; and u; < 1 — wy, respectively, which combined
become vy + wg < 1.

Although we consider the variable w; to indicate whether the generator is shut down in period ¢, this
variable is completely determined in terms of u; and v;. From (3), wy = vy — us + us—1. Consequently,
the set of constraints (1)-(7) can be rewritten as the following polyhedron P:

pr < A (up — ) vt e [2,|T]] (8)

i1 < A (ug —vy) vt e 2,|T] (9)

Vg > U — Up—1 vt e [2,|T]] (10)

vp <1 —uyy vt e [2,|T]] (11)

pe =0 VteT (12)

0<u; <1 Vte T (13)

0<wv <1 vt e [2,|T]] (14)
where A = P—P.

Proposition 1. Considering |T| = 2, P is full dimensional, dim(P) =n =5 as 2, ... 26 from

Fig. 1, are siz affinely independent points in P.

Proof. From [2, Definition 9.4], the n + 1 = 6 vectors (ac(l), 1) e (x(6), 1) are linearly independent.
That is, considering A > 0, e.g., A = 2, then the determinant of the matrix made by the 6 vectors is
equal to 4. O



Proposition 2. The siz points V..., O () are also affinely independent.

Proof. The 6 vectors (ac(l), 1) - (x(5), 1) , (xm, 1) are linearly independent (the determinant of the
matrix made by the 6 vectors is equal to -4 if A = 2). O

Proposition 3. The inequality (8) defines a facet of conv(P), for |T| = 2.

Proof. From [2, Definition 9.5], see facet proof in [2] Approach 1 page 144. The n = 5 affinely
independent points z() ..., 23, ) (7 (see Proposition 2) satisfy the equality p; = A (u; — v¢). O

Proposition 4. The inequality (9) defines a facet of conv(P), for |T| = 2.

Proof. The n = 5 affinely independent points z(1)..., (3 £(5) 2(6) (see Proposition 1) satisfy the

equality p;—1 = A (ur — vy). O
Proposition 5. The inequality (10) defines a facet of conv(P), for |T| = 2.

Proof. The n = 5 affinely independent points z(1)..., z(®) 2®) . 2 (see Proposition 1) satisfy the
equality vy = uy — up—1 O

Proposition 6. The inequality (11) defines a facet of conv(P), for |T| = 2.

Proof. The n = 5 affinely independent points z(?)..., z(® (see Proposition 1) satisfy the equality v; =
1-— Ut—1 O

Proposition 7. The inequalities (12) are facet-defining of conv(P), for |T| = 2.

Proof. The n = 5 affinely independent points 2(V)..., () 2(6) (see Proposition 1) satisfy the equality
p: = 0; and The n = 5 affinely independent points z(V..., 24 () (see Proposition 2) satisfy the
equality p;—1 = 0. O

Proposition 8. The inequality v; > 0 (14) defines a facet of conv(P), for |T| = 2.

Proof. The n = 5 affinely independent points 2(), 23 .., 2(6) (see Proposition 1) satisfy the equality
Ve = 0. O

Proposition 9. From (13)-(14), The inequalities v, < 1Vt € [2,|T|] and 0 < uy < 1Vt € T are
redundant.

Proof. The facets vy > 0 (see Proposition 8) and v; < 1—wu;—1 (see Proposition 6) guarantee (dominate
over) the inequality u;—1 < 1.

The facet (8) (see Proposition 3) imposes u; > v and facet vy > up — us—1 (see Proposition 5)
guarantee u;_1 > 0.

The facet vy <1 — us—1 (see Proposition 6) and u;—1 > 0 ensure v; < 1.

The inequality u; > vy and the facet v; > 0 (see Proposition 8) ensure u; > 0.

The facets 1 — u;—1 > v; (see Proposition 6) and vy > uy — us—1 (see Proposition 5) guarantee

Theorem 10. Because of the previous mine prepositions, P* provides the rational polyhedron of the
convex hull of P, P* = conv(P), where P* is the polyhedron P without the redundant inequalities
presented in Proposition 9.
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2. Full Formulation with SU and SD Capabilities

The total unit production is P - us + p;: the minimum power output P that is generated just by
being committed, and the generation over that minimum p;. The generation limits over the power
output and considering unit’s startup and shutdown capabilities are set as follows Morales-Espana
et al. [1]:

pi <(P—P) uy — (P—=SU) v, Vte T (15)
pi—1 <(P—P)us_y — (P—SD) w, vi e [2,[T]] (16)
Ut — Up—1 = Vp — Wt Ve e [2,|T]] (17)
ue > vy te2,]7] (18)
wy <1 —wuy vt e [2,|T]] (19)
pe =0 vVte T (20)
u € {0,1} Vte T (21)
vy € {0,1} vt e [2,|T]] (22)

From (3), ws = vy — ut + ur—1. Consequently, the set of constraints (1)-(7) can be rewritten as the
following polyhedron P:

pr <Auy — Vv, vte T (23)
pi1 <SD-uy_q — 0P (vy — uy) vt e [2,|T]] (24)
Vg > Up Uy vt e [2,[T]] (25)

Up > Uy te[2,|T]] (26)

vy <1 —up_y vt € [2,]T1] (27)

pe >0 Vte T (28)
0<v, <1€{0,1} vt e [2,|T]] (29)
0<u <1e{0,1} vt e T (30)

where A = P—P, 6V = P—SU, and 6° = P—SD.

Proposition 11. Considering |T| = 2, P is full dimensional, dim (P) =n =75 as 2" ..., 20 from
Fig. 2, are siz affinely independent points in P.

Proof. From [2, Definition 9.4], the n + 1 = 6 vectors (ac(l), 1) e (x(6), 1) are linearly independent.
That is, considering, for example, A = 2, §Y = 4/3, 6 = 2/3, then the determinant of the matrix
made by the 6 vectors is equal to -0.8889. O



Proposition 12. The inequality (23) defines a facet of conv(P), for |T| = 2.

Proof. The n = 5 affinely independent points z(1), 3 ... () £ satisfy the equality p; = Aus—6Yv;.
That is, considering, for example, A = 2, §Y = 4/3, 6 = 2/3, then the determinant of the matrix
made by the 6 vectors (including z(®)) is equal to 1.333. O

Proposition 13. The inequality (24) defines a facet of conv(P), for |T| = 2.

Proof. The n = 5 affinely independent points z(M)..., 23 25 2(®) satisfy the equality p,—; = SD -
us—1 — 6P (vy — ug). That is, considering, for example, A = 2, §V = 4/3, §° = 2/3, then the determ-
inant of the matrix made by the 6 vectors (including (%)) is equal to -2.6667. O

Proposition 14. The inequality (25) defines a facet of conv(P), for |T| = 2.

Proof. The n =5 affinely independent points (1) ..., 2(3) 2 29 satisfy the equality vy = wus + wp—_1.
That is, considering, for example, A = 2, §Y = 4/3, 6P = 2/3, then the determinant of the matrix
made by the 6 vectors (including #(®)) is equal to -2.6667. O

Proposition 15. The inequality (26) defines a facet of conv(P), for |T| = 2.

Proof. The n = 5 affinely independent points z(1)..., (5 satisfy the equality u; = v;. That is, consid-
ering, for example, A = 2, 6V = 4/3, 6 = 2/3, then the determinant of the matrix made by the 6
vectors (including (%)) is equal to -0.8889. O

Proposition 16. The inequality (27) defines a facet of conv(P), for |T| = 2.

Proof. The n = 5 affinely independent points (..., (%) satisfy the equality v; = 1 — u;_;. That is,
considering, for example, A = 2, 6V = 4/3, 6” = 2/3, then the determinant of the matrix made by
the 6 vectors (including (M) is equal to -0.8889. O

Proposition 17. The inequality (28) defines a facet of conv(P), for |T| = 2.

Proof. The n =5 affinely independent points z()..., 24, 2(%) satisfy the equality ps_; = 0. The n =5
affinely independent points (1), 2 2®) . 26 satisfy the equality p, = 0. That is, considering, for
example, A = 2, SU = 4/3, SD = 2/3, then the determinant of the matrix made by the 6 vectors
(:c(l), 1) . (:c(6), 1) is equal to -0.8889. O

Proposition 18. The inequality (29) defines a facet of conv(P), for |T| = 2.

Proof. The n =5 affinely independent points z(1), z(5) (6 £(®) 29 satisfy the equality v; = 0. That
is, considering, for example, A = 2, §V = 4/3, 6 = 2/3, then the determinant of the matrix made by
the 6 vectors (including (®)) is equal to -4. O

Proposition 19. From (23)-(29), The inequalities vy < 1Vt € [2,|T|] and 0 < uz < 1Vt € T are
redundant.

Proof. See Proof of Proposition 9. O

Theorem 20. Because of the previous mine prepositions, P* provides the rational polyhedron of the
convex hull of P, P* = conv(P), where P* is the polyhedron P without the redundant inequalities
presented in Proposition 19.
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