Max/Min Output Polytopes Including Startup and Shutdown Capabilities: The Case of The Unit Commitment Problem

Germán Morales-España and Andrés Ramos

Universidad Pontificia Comillas, Spain Institute for Research in Technology (IIT) E-mail: german.morales@iit.upcomillas.es

> Working Paper No. IIT-13-017^a Last Update: 2013-03-21

Nomenclature

Upper-case letters are used for denoting parameters and sets. Lower-case letters denote variables and indexes.

$0.1. \ Indexes \ and \ Sets$

 $t \in \mathcal{T}$ Hourly periods, running from 1 to T hours.

0.2. Constants

- \overline{P} Maximum power output of unit g [MW].
- <u>P</u> Minimum power output of unit g [MW].
- SD Shutdown capability of unit g [MW].
- SU Startup capability of unit g [MW].

0.3. Variables

- 0.3.1. Positive and Continuous Variables
- p_t Power output at period t of unit g, production above the minimum output \underline{P}_q [MW].
- 0.3.2. Binary Variables
- u_t Commitment status of the unit g for period t, which is equal to 1 if the unit is online and 0 offline.
- v_t Startup status of unit g, which takes the value of 1 if the unit starts up in period t and 0 otherwise.
- w_t Shutdown status of unit g, which takes the value of 1 if the unit shuts down in period t and 0 otherwise.

		u_{t-1}	u_t	v_t	p_{t-1}	p_t
$x^{(1)}$	=	(0	0	0	0	0)
$x^{(2)}$	=	(0	1	1	0	0)
$x^{(3)}$	=	(1	0	0	0	0)
$x^{(4)}$	=	(1	1	0	0	0)
$x^{(5)}$	=	(1	1	0	Δ	Δ)
$x^{(6)}$	=	(1	1	0	Δ	0)
$x^{(7)}$	=	(1	1	0	0	Δ)

Fig. 1: I think that those are all the possible vertexes

1. Formulation with $SU = SD = \underline{P}$

1.1. Generation Limits

The total unit production is $\underline{P} \cdot u_t + p_t$: the minimum power output \underline{P} that is generated just by being committed, and the generation over that minimum p_t . The generation limits over the power output and considering unit's startup and shutdown capabilities are set following the model proposed by Morales-España et al. [1]:

$\forall t \in \mathcal{T} \ (1)$
$\forall t \in [2, \mathcal{T}] \ (2)$
$\forall t \in [2, \mathcal{T}] \ (3)$
$\forall t \in [2, \mathcal{T}] \ (4)$
$\forall t \in \mathcal{T} \ (5)$
$\forall t \in \mathcal{T}$ (6)
$\forall t \in [2, \mathcal{T}] \ (7)$

Note that constraints (1) and (4) ensure that a unit cannot start up and shut down simultaneously. Since $p_t \ge 0$, (1) and (4) impose the inequalities $v_t \le u_t$ and $u_t \le 1 - w_t$, respectively, which combined become $v_g + w_g \le 1$.

Although we consider the variable w_t to indicate whether the generator is shut down in period t, this variable is completely determined in terms of u_t and v_t . From (3), $w_t = v_t - u_t + u_{t-1}$. Consequently, the set of constraints (1)-(7) can be rewritten as the following polyhedron \mathcal{P} :

$p_t \le \Delta \left(u_t - v_t \right)$	$\forall t \in [2, \mathcal{T}] (8)$
$p_{t-1} \le \Delta \left(u_t - v_t \right)$	$\forall t \in [2, \mathcal{T}] (9)$
$v_t \ge u_t - u_{t-1}$	$\forall t \in [2, \mathcal{T}] \ (10)$
$v_t \le 1 - u_{t-1}$	$\forall t \in [2, \mathcal{T}] \ (11)$
$p_t \ge 0$	$\forall t \in \mathcal{T}$ (12)
$0 \le u_t \le 1$	$\forall t \in \mathcal{T}$ (13)
$0 \le v_t \le 1$	$\forall t \in [2, \mathcal{T}] \ (14)$

where $\Delta = \overline{P} - \underline{P}$.

Proposition 1. Considering $|\mathcal{T}| = 2$, \mathcal{P} is full dimensional, $\dim(\mathcal{P}) = n = 5$ as $x^{(1)}, \ldots, x^{(6)}$, from Fig. 1, are six affinely independent points in \mathcal{P} .

Proof. From [2, Definition 9.4], the n + 1 = 6 vectors $(x^{(1)}, 1) \dots, (x^{(6)}, 1)$ are linearly independent. That is, considering $\Delta > 0$, e.g., $\Delta = 2$, then the determinant of the matrix made by the 6 vectors is equal to 4. **Proposition 2.** The six points $x^{(1)}, x^{(5)}, x^{(7)}$ are also affinely independent.

Proof. The 6 vectors $(x^{(1)}, 1) \dots, (x^{(5)}, 1), (x^{(7)}, 1)$ are linearly independent (the determinant of the matrix made by the 6 vectors is equal to -4 if $\Delta = 2$).

Proposition 3. The inequality (8) defines a facet of $conv(\mathcal{P})$, for $|\mathcal{T}| = 2$.

Proof. From [2, Definition 9.5], see facet proof in [2] Approach 1 page 144. The n = 5 affinely independent points $x^{(1)}...,x^{(3)},x^{(5)},x^{(7)}$ (see Proposition 2) satisfy the equality $p_t = \Delta (u_t - v_t)$.

Proposition 4. The inequality (9) defines a facet of $conv(\mathcal{P})$, for $|\mathcal{T}| = 2$.

Proof. The n = 5 affinely independent points $x^{(1)}, \dots, x^{(3)}, x^{(5)}, x^{(6)}$ (see Proposition 1) satisfy the equality $p_{t-1} = \Delta (u_t - v_t)$.

Proposition 5. The inequality (10) defines a facet of $conv(\mathcal{P})$, for $|\mathcal{T}| = 2$.

Proof. The n = 5 affinely independent points $x^{(1)}, \dots, x^{(2)}, x^{(4)}, \dots, x^{(6)}$ (see Proposition 1) satisfy the equality $v_t = u_t - u_{t-1}$

Proposition 6. The inequality (11) defines a facet of $conv(\mathcal{P})$, for $|\mathcal{T}| = 2$.

Proof. The n = 5 affinely independent points $x^{(2)}..., x^{(6)}$ (see Proposition 1) satisfy the equality $v_t = 1 - u_{t-1}$

Proposition 7. The inequalities (12) are facet-defining of $conv(\mathcal{P})$, for $|\mathcal{T}| = 2$.

Proof. The n = 5 affinely independent points $x^{(1)}, \dots, x^{(4)}, x^{(6)}$ (see Proposition 1) satisfy the equality $p_t = 0$; and The n = 5 affinely independent points $x^{(1)}, \dots, x^{(4)}, x^{(7)}$ (see Proposition 2) satisfy the equality $p_{t-1} = 0$.

Proposition 8. The inequality $v_t \ge 0$ (14) defines a facet of $conv(\mathcal{P})$, for $|\mathcal{T}| = 2$.

Proof. The n = 5 affinely independent points $x^{(1)}, x^{(3)}, \dots, x^{(6)}$ (see Proposition 1) satisfy the equality $v_t = 0$.

Proposition 9. From (13)-(14), The inequalities $v_t \leq 1 \forall t \in [2, |\mathcal{T}|]$ and $0 \leq u_t \leq 1 \forall t \in \mathcal{T}$ are redundant.

Proof. The facets $v_t \ge 0$ (see Proposition 8) and $v_t \le 1 - u_{t-1}$ (see Proposition 6) guarantee (dominate over) the inequality $u_{t-1} \le 1$.

The facet (8) (see Proposition 3) imposes $u_t \ge v_t$ and facet $v_t \ge u_t - u_{t-1}$ (see Proposition 5) guarantee $u_{t-1} \ge 0$.

The facet $v_t \leq 1 - u_{t-1}$ (see Proposition 6) and $u_{t-1} \geq 0$ ensure $v_t \leq 1$.

The inequality $u_t \ge v_t$ and the facet $v_t \ge 0$ (see Proposition 8) ensure $u_t \ge 0$.

The facets $1 - u_{t-1} \ge v_t$ (see Proposition 6) and $v_t \ge u_t - u_{t-1}$ (see Proposition 5) guarantee $u_t \le 1$.

Theorem 10. Because of the previous nine prepositions, \mathcal{P}^* provides the rational polyhedron of the convex hull of \mathcal{P} , $\mathcal{P}^* = conv(\mathcal{P})$, where \mathcal{P}^* is the polyhedron \mathcal{P} without the redundant inequalities presented in Proposition 9.

		u_{t-1}	u_t	v_t	p_{t-1}	p_t
$x^{(1)}$	=	(0	0	0	0	0)
$x^{(2)}$	=	(0	1	1	0	0)
$x^{(3)}$	=	(0	1	1	0	δ^{U}
$x^{(4)}$	=	(1	0	0	0	0)
$x^{(5)}$	=	(1	0	0	δ^D	0)
$x^{(6)}$	=	(1	1	0	0	0)
$x^{(7)}$	=	(1	1	0	Δ	Δ)
$x^{(8)}$	=	(1	1	0	Δ	0)
$x^{(9)}$	=	(1	1	0	0	Δ)

Fig. 2: I think that those are all the possible vertexes

2. Full Formulation with SU and SD Capabilities

The total unit production is $\underline{P} \cdot u_t + p_t$: the minimum power output \underline{P} that is generated just by being committed, and the generation over that minimum p_t . The generation limits over the power output and considering unit's startup and shutdown capabilities are set as follows Morales-España et al. [1]:

$p_t \le \left(\overline{P} - \underline{P}\right) u_t - \left(\overline{P} - SU\right) v_t$	$\forall t \in \mathcal{T} \ (15)$
$p_{t-1} \le \left(\overline{P} - \underline{P}\right) u_{t-1} - \left(\overline{P} - SD\right) w_t$	$\forall t \in [2, \mathcal{T}] \ (16)$
$u_t - u_{t-1} = v_t - w_t$	$\forall t \in [2, \mathcal{T}] \ (17)$
$u_t \ge v_t$	$t \in [2, \mathcal{T}] \ (18)$
$w_t \le 1 - u_t$	$\forall t \in [2, \mathcal{T}] \ (19)$
$p_t \ge 0$	$\forall t \in \mathcal{T} \ (20)$
$u_t \in \{0,1\}$	$\forall t \in \mathcal{T} \ (21)$
$v_t \in \{0, 1\}$	$\forall t \in [2, \mathcal{T}] \ (22)$

From (3), $w_t = v_t - u_t + u_{t-1}$. Consequently, the set of constraints (1)-(7) can be rewritten as the following polyhedron \mathcal{P} :

$p_t \leq \Delta u_t - \delta^U v_t$	$\forall t \in \mathcal{T} \ (23)$
$p_{t-1} \le SD \cdot u_{t-1} - \delta^D \left(v_t - u_t \right)$	$\forall t \in [2, \mathcal{T}] \ (24)$
$v_t \ge u_t + u_{t-1}$	$\forall t \in [2, \mathcal{T}] \ (25)$
$u_t \ge v_t$	$t \in [2, \mathcal{T}] \ (26)$
$v_t \le 1 - u_{t-1}$	$\forall t \in [2, \mathcal{T}] \ (27)$
$p_t \ge 0$	$\forall t \in \mathcal{T}$ (28)
$0 \le v_t \le 1 \in \{0, 1\}$	$\forall t \in [2, \mathcal{T}] \ (29)$
$0 \le u_t \le 1 \in \{0, 1\}$	$\forall t \in \mathcal{T}$ (30)

where $\Delta = \overline{P} - \underline{P}, \, \delta^U = \overline{P} - SU$, and $\delta^D = \overline{P} - SD$.

Proposition 11. Considering $|\mathcal{T}| = 2$, \mathcal{P} is full dimensional, $\dim(\mathcal{P}) = n = 5$ as $x^{(1)}, \ldots, x^{(6)}$, from Fig. 2, are six affinely independent points in \mathcal{P} .

Proof. From [2, Definition 9.4], the n + 1 = 6 vectors $(x^{(1)}, 1) \dots, (x^{(6)}, 1)$ are linearly independent. That is, considering, for example, $\Delta = 2$, $\delta^U = 4/3$, $\delta^D = 2/3$, then the determinant of the matrix made by the 6 vectors is equal to -0.8889.

Proposition 12. The inequality (23) defines a facet of $conv(\mathcal{P})$, for $|\mathcal{T}| = 2$.

Proof. The n = 5 affinely independent points $x^{(1)}, x^{(3)}, x^{(5)}, x^{(9)}$ satisfy the equality $p_t = \Delta u_t - \delta^U v_t$. That is, considering, for example, $\Delta = 2$, $\delta^U = 4/3$, $\delta^D = 2/3$, then the determinant of the matrix made by the 6 vectors (including $x^{(8)}$) is equal to 1.333.

Proposition 13. The inequality (24) defines a facet of $conv(\mathcal{P})$, for $|\mathcal{T}| = 2$.

Proof. The n = 5 affinely independent points $x^{(1)} \dots, x^{(3)}, x^{(5)}, x^{(8)}$ satisfy the equality $p_{t-1} = SD \cdot u_{t-1} - \delta^D (v_t - u_t)$. That is, considering, for example, $\Delta = 2$, $\delta^U = 4/3$, $\delta^D = 2/3$, then the determinant of the matrix made by the 6 vectors (including $x^{(9)}$) is equal to -2.6667.

Proposition 14. The inequality (25) defines a facet of $conv(\mathcal{P})$, for $|\mathcal{T}| = 2$.

Proof. The n = 5 affinely independent points $x^{(1)}, ..., x^{(3)}, x^{(8)}, x^{(9)}$ satisfy the equality $v_t = u_t + u_{t-1}$. That is, considering, for example, $\Delta = 2$, $\delta^U = 4/3$, $\delta^D = 2/3$, then the determinant of the matrix made by the 6 vectors (including $x^{(5)}$) is equal to -2.6667.

Proposition 15. The inequality (26) defines a facet of $conv(\mathcal{P})$, for $|\mathcal{T}| = 2$.

Proof. The n = 5 affinely independent points $x^{(1)}..., x^{(5)}$ satisfy the equality $u_t = v_t$. That is, considering, for example, $\Delta = 2$, $\delta^U = 4/3$, $\delta^D = 2/3$, then the determinant of the matrix made by the 6 vectors (including $x^{(6)}$) is equal to -0.8889.

Proposition 16. The inequality (27) defines a facet of $conv(\mathcal{P})$, for $|\mathcal{T}| = 2$.

Proof. The n = 5 affinely independent points $x^{(2)}, \dots, x^{(6)}$ satisfy the equality $v_t = 1 - u_{t-1}$. That is, considering, for example, $\Delta = 2$, $\delta^U = 4/3$, $\delta^D = 2/3$, then the determinant of the matrix made by the 6 vectors (including $x^{(1)}$) is equal to -0.8889.

Proposition 17. The inequality (28) defines a facet of $conv(\mathcal{P})$, for $|\mathcal{T}| = 2$.

Proof. The n = 5 affinely independent points $x^{(1)}, ..., x^{(4)}, x^{(6)}$ satisfy the equality $p_{t-1} = 0$. The n = 5 affinely independent points $x^{(1)}, x^{(2)}, x^{(4)}, ..., x^{(6)}$ satisfy the equality $p_t = 0$. That is, considering, for example, $\Delta = 2$, SU = 4/3, SD = 2/3, then the determinant of the matrix made by the 6 vectors $(x^{(1)}, 1) ..., (x^{(6)}, 1)$ is equal to -0.8889.

Proposition 18. The inequality (29) defines a facet of $conv(\mathcal{P})$, for $|\mathcal{T}| = 2$.

Proof. The n = 5 affinely independent points $x^{(1)}, x^{(5)}, x^{(6)}, x^{(8)}, x^{(9)}$ satisfy the equality $v_t = 0$. That is, considering, for example, $\Delta = 2$, $\delta^U = 4/3$, $\delta^D = 2/3$, then the determinant of the matrix made by the 6 vectors (including $x^{(3)}$) is equal to -4.

Proposition 19. From (23)-(29), The inequalities $v_t \leq 1 \ \forall t \in [2, |\mathcal{T}|]$ and $0 \leq u_t \leq 1 \ \forall t \in \mathcal{T}$ are redundant.

Proof. See Proof of Proposition 9.

Theorem 20. Because of the previous nine prepositions, \mathcal{P}^* provides the rational polyhedron of the convex hull of \mathcal{P} , $\mathcal{P}^* = conv(\mathcal{P})$, where \mathcal{P}^* is the polyhedron \mathcal{P} without the redundant inequalities presented in Proposition 19.

References

- Morales-España, G., Latorre, J. M., Ramos, A., 2012. Tight and compact MILP formulation for the thermal unit commitment problem. IEEE Transactions on Power SystemsAccepted for publication (DOI: 10.1109/TPWRS.2013.2251373), online preprint. URL http://www.iit.upcomillas.es/aramos/papers/V3.3_Tight_Compact_UC.pdf
- [2] Wolsey, L., 1998. Integer Programming. Wiley-Interscience.