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Nomenclature

Upper-case letters are used for denoting parameters and sets. Lower-case letters denote variables
and indexes.

0.1. Indexes and Sets

t ∈ T Hourly periods, running from 1 to T hours.

0.2. Constants

P Maximum power output of unit g [MW].

P Minimum power output of unit g [MW].

SD Shutdown capability of unit g [MW].

SU Startup capability of unit g [MW].

0.3. Variables

0.3.1. Positive and Continuous Variables

pt Power output at period t of unit g, production above the minimum output P g [MW].

0.3.2. Binary Variables

ut Commitment status of the unit g for period t, which is equal to 1 if the unit is online and 0
offline.

vt Startup status of unit g, which takes the value of 1 if the unit starts up in period t and 0
otherwise.

wt Shutdown status of unit g, which takes the value of 1 if the unit shuts down in period t and
0 otherwise.
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ut−1 ut vt pt−1 pt
x(1) = (0 0 0 0 0)

x(2) = (0 1 1 0 0)

x(3) = (1 0 0 0 0)
x(4) = (1 1 0 0 0)

x(5) = (1 1 0 ∆ ∆)
x(6) = (1 1 0 ∆ 0)

x(7) = (1 1 0 0 ∆)

Fig. 1: I think that those are all the possible vertexes

1. Formulation with SU = SD = P

1.1. Generation Limits

The total unit production is P · ut + pt: the minimum power output P that is generated just by
being committed, and the generation over that minimum pt. The generation limits over the power
output and considering unit’s startup and shutdown capabilities are set following the model proposed
by Morales-España et al. [1]:

pt ≤
(

P−P
)

(ut − vt) ∀t ∈ T (1)

pt−1 ≤
(

P−P
)

(ut−1 − wt) ∀t ∈ [2, |T |] (2)

ut − ut−1 = vt − wt ∀t ∈ [2, |T |] (3)

wt ≤ 1− ut ∀t ∈ [2, |T |] (4)

pt ≥ 0 ∀t ∈ T (5)

ut ∈ {0, 1} ∀t ∈ T (6)

vt ∈ {0, 1} ∀t ∈ [2, |T |] (7)

Note that constraints (1) and (4) ensure that a unit cannot start up and shut down simultaneously.
Since pt ≥ 0, (1) and (4) impose the inequalities vt ≤ ut and ut ≤ 1−wt, respectively, which combined
become vg + wg ≤ 1.

Although we consider the variable wt to indicate whether the generator is shut down in period t, this
variable is completely determined in terms of ut and vt. From (3), wt = vt − ut + ut−1. Consequently,
the set of constraints (1)-(7) can be rewritten as the following polyhedron P :

pt ≤ ∆(ut − vt) ∀t ∈ [2, |T |] (8)

pt−1 ≤ ∆(ut − vt) ∀t ∈ [2, |T |] (9)

vt ≥ ut − ut−1 ∀t ∈ [2, |T |] (10)

vt ≤ 1− ut−1 ∀t ∈ [2, |T |] (11)

pt ≥ 0 ∀t ∈ T (12)

0 ≤ ut ≤ 1 ∀t ∈ T (13)

0 ≤ vt ≤ 1 ∀t ∈ [2, |T |] (14)

where ∆ = P−P .

Proposition 1. Considering |T | = 2, P is full dimensional, dim (P) = n = 5 as x(1), . . . , x(6), from

Fig. 1, are six affinely independent points in P.

Proof. From [2, Definition 9.4], the n + 1 = 6 vectors
(

x(1), 1
)

...,
(

x(6), 1
)

are linearly independent.
That is, considering ∆ > 0, e.g., ∆ = 2, then the determinant of the matrix made by the 6 vectors is
equal to 4.
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Proposition 2. The six points x(1)..., x(5), x(7) are also affinely independent.

Proof. The 6 vectors
(

x(1), 1
)

...,
(

x(5), 1
)

,
(

x(7), 1
)

are linearly independent (the determinant of the
matrix made by the 6 vectors is equal to -4 if ∆ = 2).

Proposition 3. The inequality (8) defines a facet of conv (P), for |T | = 2.

Proof. From [2, Definition 9.5], see facet proof in [2] Approach 1 page 144. The n = 5 affinely
independent points x(1)..., x(3), x(5), x(7) (see Proposition 2) satisfy the equality pt = ∆(ut − vt).

Proposition 4. The inequality (9) defines a facet of conv (P), for |T | = 2.

Proof. The n = 5 affinely independent points x(1)..., x(3), x(5), x(6) (see Proposition 1) satisfy the
equality pt−1 = ∆(ut − vt).

Proposition 5. The inequality (10) defines a facet of conv (P), for |T | = 2.

Proof. The n = 5 affinely independent points x(1)..., x(2), x(4)..., x(6) (see Proposition 1) satisfy the
equality vt = ut − ut−1

Proposition 6. The inequality (11) defines a facet of conv (P), for |T | = 2.

Proof. The n = 5 affinely independent points x(2)..., x(6) (see Proposition 1) satisfy the equality vt =
1− ut−1

Proposition 7. The inequalities (12) are facet-defining of conv (P), for |T | = 2.

Proof. The n = 5 affinely independent points x(1)..., x(4), x(6) (see Proposition 1) satisfy the equality
pt = 0; and The n = 5 affinely independent points x(1)..., x(4), x(7) (see Proposition 2) satisfy the
equality pt−1 = 0.

Proposition 8. The inequality vt ≥ 0 (14) defines a facet of conv (P), for |T | = 2.

Proof. The n = 5 affinely independent points x(1), x(3)..., x(6) (see Proposition 1) satisfy the equality
vt = 0.

Proposition 9. From (13)-(14), The inequalities vt ≤ 1 ∀t ∈ [2, |T |] and 0 ≤ ut ≤ 1 ∀t ∈ T are

redundant.

Proof. The facets vt ≥ 0 (see Proposition 8) and vt ≤ 1−ut−1 (see Proposition 6) guarantee (dominate
over) the inequality ut−1 ≤ 1.

The facet (8) (see Proposition 3) imposes ut ≥ vt and facet vt ≥ ut − ut−1 (see Proposition 5)
guarantee ut−1 ≥ 0.

The facet vt ≤ 1− ut−1 (see Proposition 6) and ut−1 ≥ 0 ensure vt ≤ 1.
The inequality ut ≥ vt and the facet vt ≥ 0 (see Proposition 8) ensure ut ≥ 0.
The facets 1 − ut−1 ≥ vt (see Proposition 6) and vt ≥ ut − ut−1 (see Proposition 5) guarantee

ut ≤ 1.

Theorem 10. Because of the previous nine prepositions, P∗ provides the rational polyhedron of the

convex hull of P, P∗ = conv (P), where P∗ is the polyhedron P without the redundant inequalities

presented in Proposition 9.
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ut−1 ut vt pt−1 pt
x(1) = (0 0 0 0 0)

x(2) = (0 1 1 0 0)

x(3) = (0 1 1 0 δU )
x(4) = (1 0 0 0 0)

x(5) = (1 0 0 δD 0)
x(6) = (1 1 0 0 0)

x(7) = (1 1 0 ∆ ∆)

x(8) = (1 1 0 ∆ 0)
x(9) = (1 1 0 0 ∆)

Fig. 2: I think that those are all the possible vertexes

2. Full Formulation with SU and SD Capabilities

The total unit production is P · ut + pt: the minimum power output P that is generated just by
being committed, and the generation over that minimum pt. The generation limits over the power
output and considering unit’s startup and shutdown capabilities are set as follows Morales-España
et al. [1]:

pt ≤
(

P−P
)

ut −
(

P−SU
)

vt ∀t ∈ T (15)

pt−1 ≤
(

P−P
)

ut−1 −
(

P−SD
)

wt ∀t ∈ [2, |T |] (16)

ut − ut−1 = vt − wt ∀t ∈ [2, |T |] (17)

ut ≥ vt t ∈ [2, |T |] (18)

wt ≤ 1− ut ∀t ∈ [2, |T |] (19)

pt ≥ 0 ∀t ∈ T (20)

ut ∈ {0, 1} ∀t ∈ T (21)

vt ∈ {0, 1} ∀t ∈ [2, |T |] (22)

From (3), wt = vt − ut + ut−1. Consequently, the set of constraints (1)-(7) can be rewritten as the
following polyhedron P :

pt ≤∆ut − δUvt ∀t ∈ T (23)

pt−1 ≤SD · ut−1 − δD (vt − ut) ∀t ∈ [2, |T |] (24)

vt ≥ ut + ut−1 ∀t ∈ [2, |T |] (25)

ut ≥ vt t ∈ [2, |T |] (26)

vt ≤ 1− ut−1 ∀t ∈ [2, |T |] (27)

pt ≥ 0 ∀t ∈ T (28)

0 ≤ vt ≤ 1 ∈ {0, 1} ∀t ∈ [2, |T |] (29)

0 ≤ ut ≤ 1 ∈ {0, 1} ∀t ∈ T (30)

where ∆ = P−P , δU = P−SU , and δD = P−SD.

Proposition 11. Considering |T | = 2, P is full dimensional, dim (P) = n = 5 as x(1), . . . , x(6), from

Fig. 2, are six affinely independent points in P.

Proof. From [2, Definition 9.4], the n + 1 = 6 vectors
(

x(1), 1
)

...,
(

x(6), 1
)

are linearly independent.
That is, considering, for example, ∆ = 2, δU = 4/3, δD = 2/3, then the determinant of the matrix
made by the 6 vectors is equal to -0.8889.
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Proposition 12. The inequality (23) defines a facet of conv (P), for |T | = 2.

Proof. The n = 5 affinely independent points x(1), x(3)..., x(5), x(9) satisfy the equality pt = ∆ut−δUvt.
That is, considering, for example, ∆ = 2, δU = 4/3, δD = 2/3, then the determinant of the matrix
made by the 6 vectors (including x(8)) is equal to 1.333.

Proposition 13. The inequality (24) defines a facet of conv (P), for |T | = 2.

Proof. The n = 5 affinely independent points x(1)..., x(3), x(5), x(8) satisfy the equality pt−1 = SD ·
ut−1 − δD (vt − ut). That is, considering, for example, ∆ = 2, δU = 4/3, δD = 2/3, then the determ-
inant of the matrix made by the 6 vectors (including x(9)) is equal to -2.6667.

Proposition 14. The inequality (25) defines a facet of conv (P), for |T | = 2.

Proof. The n = 5 affinely independent points x(1)..., x(3), x(8), x(9) satisfy the equality vt = ut + ut−1.
That is, considering, for example, ∆ = 2, δU = 4/3, δD = 2/3, then the determinant of the matrix
made by the 6 vectors (including x(5)) is equal to -2.6667.

Proposition 15. The inequality (26) defines a facet of conv (P), for |T | = 2.

Proof. The n = 5 affinely independent points x(1)..., x(5) satisfy the equality ut = vt. That is, consid-
ering, for example, ∆ = 2, δU = 4/3, δD = 2/3, then the determinant of the matrix made by the 6
vectors (including x(6)) is equal to -0.8889.

Proposition 16. The inequality (27) defines a facet of conv (P), for |T | = 2.

Proof. The n = 5 affinely independent points x(2)..., x(6) satisfy the equality vt = 1 − ut−1. That is,
considering, for example, ∆ = 2, δU = 4/3, δD = 2/3, then the determinant of the matrix made by
the 6 vectors (including x(1)) is equal to -0.8889.

Proposition 17. The inequality (28) defines a facet of conv (P), for |T | = 2.

Proof. The n = 5 affinely independent points x(1)..., x(4), x(6) satisfy the equality pt−1 = 0. The n = 5
affinely independent points x(1), x(2), x(4)..., x(6) satisfy the equality pt = 0. That is, considering, for
example, ∆ = 2, SU = 4/3, SD = 2/3, then the determinant of the matrix made by the 6 vectors
(

x(1), 1
)

...,
(

x(6), 1
)

is equal to -0.8889.

Proposition 18. The inequality (29) defines a facet of conv (P), for |T | = 2.

Proof. The n = 5 affinely independent points x(1), x(5), x(6), x(8), x(9) satisfy the equality vt = 0. That
is, considering, for example, ∆ = 2, δU = 4/3, δD = 2/3, then the determinant of the matrix made by
the 6 vectors (including x(3)) is equal to -4.

Proposition 19. From (23)-(29), The inequalities vt ≤ 1 ∀t ∈ [2, |T |] and 0 ≤ ut ≤ 1 ∀t ∈ T are

redundant.

Proof. See Proof of Proposition 9.

Theorem 20. Because of the previous nine prepositions, P∗ provides the rational polyhedron of the

convex hull of P, P∗ = conv (P), where P∗ is the polyhedron P without the redundant inequalities

presented in Proposition 19.

References

[1] Morales-España, G., Latorre, J. M., Ramos, A., 2012. Tight and compact MILP formulation for the
thermal unit commitment problem. IEEE Transactions on Power SystemsAccepted for publication
(DOI: 10.1109/TPWRS.2013.2251373), online preprint.
URL http://www.iit.upcomillas.es/aramos/papers/V3.3_Tight_Compact_UC.pdf

[2] Wolsey, L., 1998. Integer Programming. Wiley-Interscience.

5

http://www.iit.upcomillas.es/aramos/papers/V3.3_Tight_Compact_UC.pdf

	Indexes and Sets
	Constants
	Variables
	Formulation with SU=SD=P
	Generation Limits

	Full Formulation with SU and SD Capabilities

