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An algorithm for the mid-term forecast and
scenario generation of natural gas and fuel oil prices

Emilio Gómez-Villalva, Member, IEEE, and Andrés Ramos

Abstract—The liberalization of energy markets and, as
a consequence, the openness of retail energy markets, has
allowed consumers to sign new types of energy contracts
which are subject to uncertainty. To evaluate these con-
tracts, consumers need easily implementable and reliable
tools for the forecast of energy prices. With this purpose in
mind, we propose an original method for the forecast and
scenario generation of natural gas and fuel oil monthly av-
erage prices with an annual scope in Spain. The algorithm
is based on the strong linear correlations existing between
crude oil Brent spot prices and the energy prices to be es-
timated. Thus, the algorithm first generates future Brent
spot price scenarios by sampling from probability distribu-
tions constructed with historical data of Brent futures and
spot prices. An example of the capabilities of the algorithm
is presented for the natural gas and fuel oil price forecast of
2003.

Index Terms—Energy price forecast, scenario generation,
Monte Carlo simulation, stochastic optimization.

I. Introduction

IN the framework of the current liberalized energy mar-
kets, an industrial consumer who is responsible for en-

ergy contracting decisions is obviously greatly affected by
energy price uncertainty. Thus, he or she must consider
this factor in the decision-making process.

In this paper, we present industrial consumers with a
model for representing the natural gas and fuel oil price
uncertainty. This uncertainty is modeled by a scenario tree
to be used as input data in a two-stage stochastic mixed-
integer linear optimization model for supporting decisions
related to optimal energy management [1]. Specifically,
this stochastic model decides the annual energy/fuel con-
tracts to sign (first-stage variables) for supplying the fac-
tory and the energy system of a consumer. The energy
system is composed of a cogeneration plant and a boiler
and the scope of the problem is one year since this is the
duration of the contracts. Once the contracts have been
selected, the model obtains the optimal energy system op-
eration (second-stage variables) in each period of the time
frame of the problem.

Stochastic optimization is a very powerful technique for
making decisions since it allows for the representation of
uncertainty associated with the parameters of the problem.
Despite the broad scope of stochastic optimization models,
there has so far been no general methodology established
for the generation of scenario trees. The method to be used
depends greatly on factors such as the optimization model
into which the tree is introduced and the availability of
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input data. A summary of different techniques of scenario
generation depending on the available information can be
found in [2].

In our model, as previously said, the tree generated
by the algorithm we propose is used to feed a two-stage
stochastic optimization problem [1]. Since the first-stage
variables (contracting decisions) are unique for the whole
time frame, it is reasonable to generate independent time
series of fuel prices.

Ideally, the technique to be used for scenario generation
should obtain a unique solution of the decision variables of
the stochastic optimization problem with any possible sce-
nario tree generated. If several solutions of the stochastic
optimization problem are obtained, it would be convenient
to increase the number of scenarios to be generated despite
increasing the execution time. Nevertheless, the intrin-
sic stability of the solution of the stochastic optimization
problem is independent from the hypotheses posed for the
generation of the scenario tree.

In general, scenario generation is performed by either
advanced stochastic models (e.g. [3]) or time series models
(e.g. [4], [5]) which are used for sampling scenarios.

More sophisticated is the method proposed by Høylan et
al. [6] for scenario generation. In order to obtain a tree with
certain statistical properties, they use non-linear program-
ming to minimize the square error between the moments
of the marginal distributions of the tree to generate and
those of the distributions entered as data. The resulting
non-linear optimization problem is hard to solve since it
may contain several local minima.

In this model, all of the scenarios are generated simul-
taneously, which makes the method slow if the number
of random variables is high. To overcome this obstacle,
the same authors propose a model [7] in which the tree is
generated decomposing the problem and dealing with each
marginal probability distribution separately.

Another method for scenario generation consists of per-
forming sampling from historical data distributions [8].
This is the easiest method and can especially be applied
when the random variables of interest have the same be-
havior in the past as well as in the future. With this tech-
nique, Takriti et al. [9] obtain an electricity demand tree
using observations from the past of power plant failures and
deviation in demand forecast under circumstances similar
to those expected in the future.

The mid-term forecast of natural gas and fuel oil prices
for industrial consumers is not an easy task. These prices
depend on hard-to-predict macroeconomic variables which
determine crude oil prices as well as on transportation and
distribution costs. In addition, these prices are influenced
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Fig. 1. Monthly average Brent spot prices 1990-2002.

by political decisions, wars, development of alternative en-
ergy sources and other unpredictable factors.

In this paper, we present an original model which takes
advantage of the high correlations between the prices to be
estimated and crude oil Brent prices.

II. Previous considerations & hypotheses

In Spain, natural gas prices for consumers are indexed
to Brent spot prices while fuel oil prices are indexed to
different fuel oil market prices. Nevertheless, since fuel oil
market prices and Brent prices are also highly correlated,
both fuels are estimated by the Brent spot forecast.

In this section, we explain the basics of the Brent spot
price forecast and the characteristics of the technique used
for scenario generation.

A. Brent spot price forecast

The algorithm estimates for each scenario g monthly (pe-
riods k = 1, ..,12) natural gas pg

g(k) and fuel oil pg
f (k) prices

with annual scope.
Historical prices of natural gas pg(i) and fuel oil pf (i)

(with i the period index of historical data) are highly lin-
early correlated with Brent spot prices s(i), and there-
fore the forecast of the prices pg

g(k) and pg
f (k) is done

via the estimation of monthly average Brent spot prices
sg(k). Specifically, the correlation coefficients between
pf (i) and s(i−1), on the one hand, and between pg(i) and
1
6

∑i−1
r=i−6 s(r), on the other hand, are high (above 0.95).

In this way, estimating only Brent spot prices sg(k), the
prices pg

g(k) and pg
f (k) and the correlation between them

are calculated jointly.
To forecast Brent spot prices, in a first approach we rep-

resented Brent historical data s(i) (figure 1) by means of
an ARIMA 1 univariate time series model according to the
Box-Jenkins methodology [10]. The results were not sat-
isfactory. Alternatively, using solely the Brent spot price
time series, a GARCH 2 model could be a possible method
to estimate Brent spot prices [10], [11].

Given the difficulty in forecasting Brent spot prices, it is
advisable to take into account other information in addi-

1 AutoRegressive Integrated Moving Average.
2 General Autoregressive Conditional Heteroscedasticity.

tion to the Brent spot price time series. In this sense, his-
torical Brent futures prices contain information that can be
used for the Brent spot price forecast sg(k). Pilipović [12]
links both prices defining the equation:

fr(i) = e−α(i−r)Er[s(i)] (1)

where the parameter α includes terms such as the risk-free
rate and volatility, the value fr(i) represents the Brent fu-
tures price observed in period r with the time of expiration
in period i, and the value Er[s(i)] represents the expected
value of the Brent spot price s(i) in period i observed from
period r.

We tried to determine a function θ (not necessarily ex-
ponential) to relate historical prices fi−k(i) and s(i) for
each period k between 1 and 12 in order to calculate Brent
spot prices with the equation:

sg(k) = θ[f0(k)] + εg(k) (2)

In this equation, the values f0(k) are Brent futures prices
observed in the month (period 0) previous to the forecast
time frame with expiration in each period of the forecast
scope and therefore are known prices, and the values ε(k)
are the error distributions derived from the determination
of θ. It was not possible to apply this method since the
prices fi−k(i) and s(i) are not correlated.

Due to the lack of success in forecasting mid-term Brent
spot prices, we propose an original methodology based on
the following hypotheses:

• Brent futures prices provide information about Brent
spot prices sg(k) that is useful for the forecast.

• The relation between Brent futures and spot prices in
the past is considered to be the same as in the future.

These hypotheses are consistent with the use of the
algorithm by industrial consumers since the information
needed as input data is easily available in public sources.

B. Scenario tree

The model presented in this paper has been conceived
to represent price uncertainty as input for a two-stage
stochastic optimization model [1] and, therefore, it is rea-
sonable to generate scenarios as independent price time se-
ries. In a scenario tree of these characteristics, each node
that the algorithm generates belongs to only one scenario,
with all the scenarios having the same probability of oc-
currence. Alternatively, it is possible to construct a tree of
any size and apply scenario reduction techniques [13], [14].

To generate the price probability distributions to intro-
duce in the scenario tree, it is necessary to identify the
sources of uncertainty in the method stated. These are the
following:

• The error derived from the linear regressions between
fuel oil prices pf (i) and Brent spot prices s(i− 1) on
the one hand, and between natural gas prices pg(i) and
Brent spot prices 1

6

∑i−1
r=i−6 s(r) on the other hand.

• The error derived from the Brent spot price forecast.
The latter error is significantly greater than the former

and therefore the scenario generation is focused on repre-
senting the uncertainty derived from the Brent spot price
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Fig. 2. Generation of the random variables SF (k) from historical
data.

forecast. The error in the linear correlations between Brent
prices and both fuels is neglected.

III. algorithm description

The Brent spot price forecast is based on the hypothe-
sis that the relative error distributions of Brent spot and
futures prices is the same in the last few years as in the
year of the forecast. Since Brent futures prices are avail-
able for the forecast time frame, spot prices are calculated
from futures prices.

For each period, the moments of the distribution of the
generated samples are compared to those of the error dis-
tributions between historical Brent spot s(i) and futures
fi−k(i) prices so as to validate the values obtained.

The variation of Brent spot prices in consecutive peri-
ods should be reflected in the algorithm since, for instance,
high prices in one period will lead to a higher probability of
high prices in the following period than of low ones. In or-
der to consider the price relation in consecutive periods, the
model uses linear regressions obtained from relative errors
between historical spot and futures prices in consecutive
periods.

The determination of the error distribution of the first
period is done in a different way from those of the other
periods k. To generate the error distribution of the first
period, the Brent spot price in the month preceding the
forecast time frame is taken into account.

Finally, once the Brent spot price scenarios sg(k) are
obtained, the determination of natural gas pg

g(k) and fuel
oil pg

f (k) prices is done via the linear regressions that link
Brent spot prices with natural gas and fuel oil prices.

Each of the items in italics mentioned above is explained
in detail below.

A. Price distribution in each period

The relation between Brent spot and futures prices is
defined for each period k by the random variable SF (k),
whose sample space S is composed of the following histor-
ical data:

S[SF (k)] =
{

s(i) − fi−k(i)
fi−k(i)

}
(3)

Figure 2 shows an example of the generation of two val-
ues of each of the distributions SF (1) and SF (2) from his-
torical prices. The graphic on the left represents historical

values in periods i = {−9,−8,−7,−6}. These periods are
numbered in decreasing order starting with the period far-
ther away in time. The last period preceding the forecast
time frame is period 0. Historical Brent prices represented
are spot prices s(i), futures prices f−9(i) in period −9 for
the following three periods (f−9(−8), f−9(−7), f−9(−6))
and futures prices f−8(i) in period −8 for the following two
periods (f−8(−7), f−8(−6)).

In any period i, for example in period −7, in addition
to the prices s(−7), f−9(−7) and f−8(−7) depicted, there
are historical data of futures prices in previous periods to
period −9 with the time of expiration in period −7. In
this way, the value f−10(−7) is the futures price in period
−10 for period −7, the value f−11(−7) is the futures price
in period −11 for period −7, and so on until we reach the
futures price twelve periods preceding period −7, which is
the value f−19(−7). All these values are not depicted so
as to ease the comprehension of the figure.

With these historical data represented in figure 2, it
is possible to determine the values s(−8)−f−9(−8)

f−9(−8) and
s(−7)−f−8(−7)

f−8(−7) (right side of the same figure) of the random
variable SF (1). This variable is a measure of the difference
between futures prices in period k expiring in period k +1
and spot prices in period k + 1. Similarly, s(−6)−f−8(−6)

f−8(−6)

and s(−7)−f−9(−7)
f−9(−7) (also in figure 2), belong to the random

variable SF (2).
Using the random variables SF (k) for the Brent spot

price forecast has the following advantages:
• The model takes advantage of the information pro-

vided by Brent futures prices in relation to Brent spot
prices.

• Since the samples from the random variables SF (k)
are normalized, there is no need to apply any type of
discount rate to the current value of money.

• In order to estimate the parameters of the model, no
restrictions are imposed concerning the stabilization of
mean and variance (like in the case of ARIMA mod-
els), which is something desirable given the character-
istics of the Brent spot time series.

As explained in the following sections, the model gener-
ates the samples sfg(k). Given that

sfg(k) =
sg(k) − f0(k)

f0(k)
(4)

and the futures prices f0(k) in period 0 for each of the
forecast time frame periods are known, Brent spot prices
sg(k) can easily be calculated.

To guarantee that the samples generated sfg(k) have the
same statistical properties as the distributions SF (k) ob-
tained from historical data, a deviation measure function is
formulated to compare the moments of both distributions.
This function is

∑

z∈Z

φz

∣∣∣∣
mz(k) − m′

z(k)
mz(k)

∣∣∣∣ (5)

where mz(k) is the moment of order z of the random
variable SF (k) in period k, m′

z(k) is the moment of order
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Fig. 3. Price relation between periods 1 and 2.

z of the samples generated sfg(k) in period k and φz is the
weight assigned to each moment. The resulting function is
adimensional, which allows the comparison of moments of
different order.

The number of moments z of the distributions SF (k)
which have to be reflected in the scenario tree depends
on how the risk is measured in the stochastic optimiza-
tion model. For instance, with Markowitz mean-variance
models, only the first two moments affect the result of the
problem. The algorithm stated in this work calculates 4
moments: mean, variance, skewness and kurtosis. Never-
theless, by means of the weights φz, it is possible to assign
the moments different importance in the resulting price
distributions. In order to validate the samples generated
sfg(k), the deviation measure function should be below a
certain threshold ζ.

B. Price relation in consecutive periods

The observations of the random variables SF (k) rep-
resent Brent futures and spot relative differences in each
of the 12 months of the forecast time frame. These dis-
tributions do not take into account the price relation in
consecutive periods, a factor necessary to determine the
samples sfg(k).

In order to consider the relative error dependency in
consecutive periods (relation between the random variables
SF (k) and SF (k+1)), the following 11 straight lines (k =
2, ..,12) are constructed:

sfg(k) = Ak−1sf
g(k − 1) + Bk−1 + εg(k − 1) (6)

Each of these lines is obtained through the regression
analysis with the following pair of historical differences:( s(i)−fi−k(i)

fi−k(i) , s(i+1)−fi−k(i+1)
fi−k(i+1)

)
.

Brent futures prices used in each pair correspond
to prices in the same period with expiration time
in consecutive periods whereas Brent spot prices cor-
respond to those in one month and the following
one. Going back to the example in the previous sec-
tion with the historical prices represented in figure 2,
the pairs of values

( s(−8)−f−9(−8)
f−9(−8) , s(−7)−f−9(−7)

f−9(−7)

)
and

( s(−7)−f−8(−7)
f−8(−7) , s(−6)−f−8(−6)

f−8(−6)

)
are used to determine the

linear relation between samples of the first period sfg(1)
and those of the second period sfg(2) (see figure 3 as well).
The linear regression between the first two periods has the
expression sfg(2) = A1sf

g(1) +B1 + εg(1).
By means of the mentioned linear regressions, the model

reflects the relation in consecutive months of Brent spot
and futures prices in period 0 with the time of expiration
in each of the periods of the forecast time frame. For in-
stance, if in period k− 1 the sample sfg(k− 1) has a high
value, the spot price sg(k − 1) will be clearly higher than
the futures price f0(k − 1) (see equation 4) and thus the
most likely thing to happen in the following period is that
the value sfg(k) will not change its sign and therefore the
spot price sg(k) will also be higher than the futures price
f0(k). On the contrary, if the sample sfg(k−1) is close to
zero, meaning similar values of the spot sg(k− 1) and fu-
tures f0(k−1) prices, the probability of the sample sfg(k)
having a different sign from that of sfg(k−1) is high, and
the spot price sg(k) will be higher or lower than the futures
price f0(k) but probably of similar value.

The adjustment error of the linear regressions is repre-
sented by the empirical distributions of residues ε(k − 1).
Back again to figure 3, s(−6)−f−8(−6)

f−8(−6) − (A1
s(−7)−f−8(−7)

f−8(−7) +

B1) and s(−7)−f−9(−7)
f−9(−7) − (A1

s(−8)−f−9(−8)
f−9(−8) +B1) are values

of the random variable ε(1).
The generation of error samples is performed by Monte

Carlo simulations using the inverse transformation tech-
nique, in the same way as the sampling from the distribu-
tion SF (1) for the determination of the values of the first
period (next section). This method consists of generating
a value u from the uniform distribution [0,1) and finding
the corresponding value from the error distribution func-
tion F [ε(k − 1)] so as to obtain an error value εg(k − 1)
equal to F−1[u]. For each value sfg(k− 1), only one sam-
ple of the random variable ε(k−1) is obtained since, as said
in section II. B, each node belongs to only one scenario.

C. Determination of the relative error distribution of the
first period, sfg(1)

The method described so far is used to obtain the dis-
tribution of spot and futures prices in each period SF (k)
(section A) as well as to obtain the relation that these
prices have to fulfill in consecutive periods, relation be-
tween the distributions SF (k) and SF (k +1) (section B).

The price scenarios determined under these hypotheses
do not consider in a specific manner spot prices in the last
few periods before period 1, the first of the forecast scope.
The historical price distributions SF (k) are formed inde-
pendently of the period in which those prices took place.

In order to consider recent past prices, the Brent spot
price s(0) in the period preceding the first one of the fore-
cast time frame is employed. This price is used for the
generation of the samples of the first period sfg(1), as de-
scribed in this section, whereas the samples sfg(k) of the
other periods are generated according to the criteria ex-
plained in sections A and B.
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To determine the relative error sfg(1) between spot and
futures prices in period 1, the algorithm first samples the
values

sfg(0) =
sg(0) − f−1(0)

f−1(0)
3 (7)

from the distribution function F [SF (1)]. In this distri-
bution, the value s(0)−f−1(0)

f−1(0)
is introduced replacing the

closest sample of sfg(0). This introduced value contains
the known Brent spot price s(0) and is used as the root for
the scenario generation.

The samples sfg(0) (including the value s(0)−f−1(0)
f−1(0)

) be-
long to period 0. To refer them to period 1 (i.e. sfg(1) =
sg(1)−f0(1)

f0(1)
), two transformations are needed:

1. The first one obtains the samples

sf ′g(1) =
sg(1) − f−1(1)

f−1(1)
(8)

from sfg(0) via the linear regression that links the ran-
dom variables SF (1) and SF (2) (equation (6) with
k = 2). These values belonging to the distribution
SF (2) correspond to spot prices in period 1 and fu-
tures prices in period -1 for period 1.

2. To relate these samples generated sf ′g(1) to the de-
sired sfg(1), a linear regression analysis is done with
the pairs

( s(i)−fi−2(i)
fi−2(i)

, s(i)−fi−1(i)
fi−1(i)

)
. Again with the ex-

ample of the historical data depicted in figure 2, one of
these pairs of values is

( s(−7)−f−9(−7)
f−9(−7) , s(−7)−f−8(−7)

f−8(−7)

)
.

These observations relate relative differences between
spot and futures prices in period −7, with the futures
prices being from 1 and 2 preceding periods (periods
−8 and −9 respectively).

The adjustment error in the former regression is reflected
in the distribution of residues ε′. For each sample sf ′g(1),
G values are generated from the distribution function F [ε′],
with G the number of scenarios to be obtained. Therefore,
the size of the samples sf j(1) is G ·G, and those starting in
period 0 from the value s(0)−f−1(0)

f−1(0)
are the ones correspond-

ing to the samples sfg(1). The algorithm generates G ·G
scenarios since in each period the samples must behave as
the random variables SF (k) do. Of all these G ·G scenar-
ios, only those G which consider the known spot price s(0)
constitute the output of Brent spot prices.

This process as well as the generation of samples in pe-
riod 2 is depicted in figure 4. Circles from period 1 on, rep-
resent the samples sfg(k) obtained from the known value
s(0)−f−1(0)

f−1(0)
. Samples generated in each period sf j(k) are

those depicted as both circles and crosses. The linear re-
gressions which relate values of consecutive periods are also
represented in the figure. The dummy period 1′ contains
the samples sf ′g(1) which link values of periods 0 and 1 as
explained in the previous paragraphs.

3 Index −1 corresponds to 2 periods prior to the first period of the
forecast time frame.

0
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Fig. 4. Determination of samples of periods 1 sfg(1) and 2 sfg(2).

D. Determination of natural gas and fuel oil scenarios

Once the samples sfg(k) are generated, Brent spot price
estimation is immediate through the equation:

sg(k) = f0(k)(1 + sfg(k)) (4′)

With these prices, natural gas pg
g(k) and fuel oil pg

f (k)
prices are calculated as follows:

pg
g(k) = E

1
6

k−1∑

r=k−6

λ(r)sg(r) + F (9)

and
pg

f (k) = Hλ(k − 1)sg(k − 1) + L (10)

with λ(·) the e/$ exchange rate and E, F , H and L the
parameters of the linear regressions.

IV. Sequential formulation

To facilitate the comprehension of the algorithm, its se-
quential formulation is presented below.

1. Generation of the samples sf j(1) of the first period
of the forecast scope.

(a) Generation of the samples sfg(0) from the distri-
bution function F [SF (1)] with

sfg(0) =
sg(0) − f−1(0)

f−1(0)
(7)

These values from the random variable SF (1) are
Brent spot prices in period 0 (the one preceding the
first period of the forecast scope) and Brent futures
prices for period 0 observed from the preceding pe-
riod −1.

(b) The observation s(0)−f−1(0)
f−1(0)

is replaced by the sam-
ple of the distribution sfg(0) with the closest value.
In this way, the historical observation from which
the future scenarios are generated is introduced in
the distribution obtained in (a).

(c) Checking that the generated samples sfg(0) have
the same statistical properties as the distribution
SF (1):

∑

z∈Z

φz

∣∣∣∣
mz(1) − m′

z(0)
mz(1)

∣∣∣∣ ≤ ζ (11)
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If this inequality is not satisfied, the algorithm goes
back to (a).

(d) From each sample sfg(0) one sample in period 1′

is obtained:

sf ′g(1) = A1sf
g(0) + B1 + εg(1) ((6) with k=2)

These samples sf ′g(1) belong to the random vari-
able SF (2) with

sf ′g(1) =
sg(1) − f−1(1)

f−1(1)
(8)

(e) Futures prices in sf ′g(1) are from period -1. To re-
fer them to period 0, the most recent futures prices
before the forecast time frame, the linear regression

sf j(1) = Csf ′g(1) + D + ε′j (12)

is used.
(f) Checking that the generated samples sf j(1) have

the same statistical properties as the distribution
SF (1):

∑

z∈Z

φz

∣∣∣∣
mz(1) − m′

z(1)
mz(1)

∣∣∣∣ ≤ ζ (13)

If this inequality is not satisfied, the algorithm goes
back to (d).

2. Generation of the samples sf j(k) of the remaining
periods of the forecast scope.

(a) From k = 2 to 12:
(b) Determination of the samples sf j(k) for each pe-

riod via the linear regressions linking consecutive
periods:

sf j(k) = Ak−1sf
j(k − 1) + Bk−1 + εj(k − 1) (6)

(c) Checking that the generated samples sf j(k) have
the same statistical properties as the distribution
SF (k):

∑

z∈Z

φz

∣∣mz(k) − m′
z(k)

mz(k)

∣∣ ≤ ζ (14)

If this inequality is satisfied, the algorithm goes
back to (a) while k < 12, otherwise it goes to (b).

3. Calculation of Brent spot prices sg(k).
(a) Among all the samples sf j(k) generated, sfg(k)

contain the Brent spot prices sg(k) coming from
s(0)−f−1(0)

f−1(0)
(see item 1.(b)):

sg(k) = f0(k)(1 + sfg(k)) (4′)

4. Calculation of natural gas pg
g(k) and fuel oil pg

f (k)
prices.

(a) Natural gas and fuel oil prices are obtained from
Brent spot prices with the equations:

pg
g(k) = E

1
6

k−1∑

r=k−6

λ(r)sg(r) + F (9)

and

pg
f (k) = Hλ(k − 1)sg(k − 1) + L (10)

respectively.

TABLE I

Correlation coefficients of samples of relative errors

between Brent spot and futures prices in consecutive

periods, sfg(k− 1) and sfg(k)

k 2 3 4 5 6 7

k 1ዊ�ዊ� 0.8315 0.8579 0.8940 0.9113 0.9359 0.9505

k 8 9 10 11 12 

k 1ዊ�ዊ� 0.9516 0.9553 0.9574 0.9479 0.9436

TABLE II

Other correlation coefficients

Determination
of period 1 

Brent spot
Natural gas 

Brent spot
Fuel oil 

g j
sf sf
'
( (1), (1))

g g

gs k p k( ( ), ( ))
g g

fs k p k( ( ), ( ))

0.7706 0.9897 0.9692 

V. Case example

The algorithm stated in this paper has been imple-
mented in the programming environment MATLAB 6.5.
To demonstrate its performance, we present an example in
which the scenario tree of natural gas and fuel oil monthly
average prices are obtained for 2003. Period 0, the one
preceding the first month of the forecast time frame, is
December 2002.

The liberalization of the natural gas market is now tak-
ing place in Spain. At this point, consumers can choose be-
tween negotiating their contracts with retailers and signing
contracts based on tariffs established by the Government.
Due to this recent market openness, prices of the contracts
in the new framework are indexed to tariffs. These latter
prices represent a reference for the prices of the contracts
under the open market and thus are the natural gas prices
we use as historical data.

Fuel oil prices for large consumers have been liberalized
now for a few years and thus we use historical fuel oil prices
of industrial consumers in the open market as input data
for the model.

The data we have used as input for the forecast comes
from the years 1999-2002. This data contains enough in-
formation to calculate the linear regression between Brent
spot and natural gas prices as well as the linear regression
between Brent spot and fuel oil prices. The correlation co-
efficients obtained in these regressions are high (see table
II). In the data from these years, 1999 to 2002, the increase
in mean and variance of Brent spot prices which has oc-
curred in the last few years can be observed (figure 1). In
addition, this period consisting of four years does not con-
stitute a high number of years, since it would be difficult to
reflect future situations in years farther away in the past.
Nevertheless, it is worth noting that the method proposed
is independent from the number of historical years used as
input data.

In the proposed example, ten (G = 10) scenarios are
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generated. The other configurable parameters correspond-
ing to the deviation measure between the distributions
of historical data SF (k) and the values generated are:
φ1 = φ2 = 1, φ3 = φ4 = 0.2 and ζ = 0.15. The mean and
variance have been weighted more heavily than the other
moments since they are the most important of the distri-
butions. The value for ζ has been chosen as a tradeoff be-
tween time execution and the magnitude of the deviation
measure. With the ζ selected, we have made sure that
several executions of the algorithm lead to similar price
scenarios and that these scenarios obtained with different
executions do not change the first-stage decisions of the
stochastic model presented in [1].

Tables I and II depict the correlation coefficients ρ of the
regressions used in the algorithm.

The price scenarios of Brent spot, natural gas and fuel
oil obtained for the 2003 forecast are depicted in figure 5.
The dash-dot lines in this figure represent average values of
the scenarios generated whereas the solid lines with crosses
are the real prices which occurred in 2003. Changes in nat-
ural gas prices between consecutive periods are smoother
than those of fuel oil prices since the former are estimated
through the correlation with average Brent spot prices over
6 months.

Figure 6 illustrates the influence of using Brent futures
prices in the forecast. Calculated as linear regressions,
Brent spot price trends of the average scenario generated
and of the real price series for 2003 have similar and nega-
tive slopes, whereas the historical data trend (years 1999-
2002) has a positive slope. On the other hand, the inclu-
sion of the past known Brent spot price in the algorithm
is responsible for having a forecasted average trend closer
to the real trend than to the historical trend.

As shown in table III, the annual standard deviations
of the Brent spot price scenarios generated have similar
values compared to those of the real price series.

The terms φz

∣∣mz(k)−m′
z(k)

mz(k)

∣∣ resulting from the deviation
measure for each forecast period are stated in table IV.
This table also shows the sum of these terms, whose val-
ues should be below ζ to verify that the samples obtained
sf j(k) are distributed according to the random variables
SF (k).

VI. Summary

The model presented in this paper aims at obtaining a
scenario tree of monthly average natural gas and fuel oil
prices as input data of a two-stage stochastic optimiza-
tion model [1] for supporting industrial consumers in mak-
ing their optimal annual contracting (first-stage variables)
and energy supply system operation (second-stage vari-
ables) decisions in liberalized energy markets. Although
the model can be easily adapted to fulfill the requirement
of other countries, it has been developed according to the
Spanish market.

First of all, the algorithm performs the Brent price fore-
cast and scenario generation. For this purpose, we propose
an original method based on the use of the relation between
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Fig. 5. Brent spot, natural gas and fuel oil price scenarios for 2003.

Brent futures and spot historical prices for the forecast of
future Brent spot prices.

To check that the tree generated has the same statistical
properties as the distributions constructed with historical
Brent futures and spot prices, the moments of the distribu-
tions used as input data and those of the tree generated are
compared. The iteration process ends when the difference
of the moments of the distributions compared is below a
configurable threshold.

Once the Brent spot price tree is generated, linear re-
gressions between Brent spot prices and the desired fuel
prices are employed for the scenario generation of natural
gas and fuel oil prices.

Finally, an example of the forecast and scenario genera-
tion of energy prices for 2003 is presented to demonstrate
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Fig. 6. Influence of futures prices on the price scenarios generated
for 2003.

TABLE III

Annual standard deviations of the real Brent spot price

series and the scenarios generated [$/barrel]

1999-2003  5.01 2.91 3.19 2.77 2.18 

2.46 3.96 3.72 2.20 1.95 Scenarios 
generated 3.41 5.25 1.58 2.04 4.96 

TABLE IV

Terms of the deviation measure φz

∣∣ mz(k)−m′
z(k)

mz(k)

∣∣

k z 1= z 2= z 3= z 4= Total 

1 0.0098 0.0786 0.0177 0.0255 0.1316
2 0.0045 0.0346 0.0392 0.0328 0.1111
3 0.0481 0.0514 0.0163 0.0240 0.1398
4 0.0231 0.0581 0.0410 0.0019 0.1241
5 0.0051 0.0929 0.0099 0.0092 0.1171
6 0.0121 0.1213 0.0045 0.0081 0.1460
7 0.0182 0.0722 0.0049 0.0178 0.1131
8 0.0191 0.0057 0.0319 0.0709 0.1276
9 0.0443 0.0135 0.0194 0.0643 0.1415
10 0.0503 0.0139 0.0203 0.0544 0.1389
11 0.0407 0.0318 0.0696 0.0035 0.1456
12 0.0376 0.0018 0.0758 0.0061 0.1213

how the model works. The results obtained are satisfactory
and, in addition, they are reliable for supporting industrial
consumer decisions since the stability of the first-stage vari-
ables of the stochastic optimization model presented in [1]
was checked.
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the Universidad Politécnica de Madrid, Spain
in 1990. From 1982 to 1984 he was a Junior
Researcher at the Instituto Tecnológico para
Postgraduados. Since 1984 he has been a Senior
Researcher at the Instituto de Investigación
Tecnológica, ICAI. He was a visiting scholar at

Stanford University in the 1991-1992 academic year. Today, he is
a Full Professor at the Departamento de Organización Industrial
(DOI), ICAI.



0 1 2 3 4 5 6 7 8 9 10 11 12
5

10

15

20

25

30

35

40

B
re

nt
 s

po
t (

$/
ba

rr
el

)

0 1 2 3 4 5 6 7 8 9 10 11 12
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

N
at

ur
al

 g
as

 (
eu

ro
 c

en
ts

/th
er

m
)

0 1 2 3 4 5 6 7 8 9 10 11 12
14

16

18

20

22

24

26

28

30

32

F
ue

l o
il 

(e
ur

o 
ce

nt
s/

kg
)

Month

Fig. 7. Brent spot, natural gas and fuel oil price scenarios for 2002.


