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Abstract: 

In this paper we apply stochastic dual dynamic programming decomposition 
to a nonlinear multistage stochastic hydrothermal model where the nonlinear 
water head effects on production and the nonlinear dependence between the 
reservoir head and the reservoir volume are modeled. The nonlinear constraints 
that represent the production function of a hydro plant are approximated by 
McCormick envelopes. These constraints are split into smaller regions and the 
McCormick envelopes are used for each region. Binary variables are used for 
this disjunctive programming approach which complicates the application of the 
decomposition method. We resort to a variant of the L-shaped method for 
solving the MIP subproblem with binary variables at any stage inside the 
stochastic dual dynamic programming algorithm. A realistic large-scale case 
study is presented. 

 

IIII IntroductionIntroductionIntroductionIntroduction    

The hydrothermal coordination problem (HCP) can be defined as the 
problem of deciding the operation of thermal units as well as reservoir levels and 
water released from the upstream reservoirs to the hydro plants (El-Hawary and 
Christensen 1979). These decisions are taken with the purpose of minimizing the 
total operation cost while satisfying the load demand. Typically, the HCP 
problem is defined for several time periods (months, weeks, days, hours) 
connected by intertemporal restrictions such as the equations of reservoir 
inventory. Modeling of thermal units usually depends on the time scope of the 
problem. For medium and long-term models (up to several years), the variable 
cost of thermal units can be modeled considering a constant heat rate with 
continuous unit commitment decisions. For short-term models (up to one week), 
this approach is improved with the addition of startup and shutdown costs and 
binary unit commitment decisions. For very short-term unit commitment 
models, minimum startup and shutdown time constraints can also be considered 
(Nowak and Romisch 2000). 
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The power output of a hydro unit is a function of the water discharge, the 
net head and the unit efficiency (El-Hawary and Christensen 1979), (Finardi, 
Silva et al. 2005). Thus, it can be considered as the result of multiplying a 
transforming coefficient by the water discharge. Let us denote this coefficient as 
production function. In simplified models, a constant production function can be 
considered. With this approach, the water value of different reservoirs is the 
same, and the optimization model suffers from multiple solutions because the 
substitution of thermal production by hydro production can be done 
indifferently by any hydro plant of the system. The multiplicity of solutions of 
the HCP may sometimes derive in inadequate management of reservoir levels. 
The use of a constant production function does not take into account the 
nonlinear water head effect that increases the production of the hydro plant 
with the reservoir head. In this paper we model this relation in a simplified 
manner by using a bilinear relation. This allows considering the effect that it 
has on the optimal operation of hydrothermal systems with multiple basins and 
multiple cascaded reservoirs. 

The stochastic nature of HCP must be considered. These models typically 
incorporate stochasticity in natural water inflows or in load demand, which can 
be modeled with separate scenarios, scenario trees or recombining scenario trees. 
In this paper we model the stochasticity of natural hydro inflows by means of a 
recombining tree. Thus, for any period of the planning horizon, we determine a 
fixed number of scenarios to describe this multivariate random variable of such 
period and create the recombining tree assigning transition probabilities among 
states of consecutive periods. The selection of the scenarios is carried out with a 
clustering technique based on the neural gas algorithm as described in (Latorre 
2003), (Latorre, Cerisola et al. 2007). 

Introducing stochasticity in hydrothermal models greatly increases the 
difficulty of solving the optimization problem. When the number of scenarios is 
kept small enough, the deterministic equivalent problem (DEP) can be 
formulated and written algebraically, and it can be solved with the use of 
commercial solvers (ILOG 2009). Typically, this DEP adopts the structure of a 
scenario tree and can be solved directly or by means of decomposition methods 
like Benders decomposition (Benders 1962) or Lagrangean Relaxation (LR) 
method (Geoffrion 1974). 

When the number of scenarios exceeds the capability of formulating the 
DEP, the solution of the problem has to rely upon sampling methods for 
stochastic programming (SP) (Shapiro 2003). Sampling techniques for SP are 
classified in the literature as “interior“ and “exterior“ methods. The former 
methods resort to sampling inside the algorithm during its evolution. For 
example, in SP interior sampling is done whenever an slope or an intercept of a 



cut needs to be calculated (Infanger 1994), (Linderoth, Shapiro et al. 2006). The 
later methods approximate the problem by estimating the objective function 
with a reduced number of scenarios and optimizes a sample average 
approximation of the objective function (Morton 1993) (Shapiro 2003). The 
stochastic dual dynamic programming technique (SDDP) developed by Pereira 
(Pereira and Pinto 1991) falls among these methods and it is the technique 
applied in this paper. 

This technique is a Benders-type method that solves a multistage problem 
by solving smaller subproblems for each stage. Each subproblem incorporates 
the part of the objective function corresponding to that stage together with the 
future cost function as a function of the decision taken in that stage. The 
fundamental property that enables the application of such an algorithm is the 
convexity of this future cost or recourse function. The convexity of the recourse 
function is obtained immediately for linear problems from the theory of duality 
of linear programming (Minoux 1986). 

Unfortunately, for nonlinear problems, the convexity of the recourse function 
is no longer guaranteed. It can be proven that the recourse function is convex 
provided that the second stage problem is also convex (Geoffrion 1972). 
However, if the nonlinear water head effect is included in the HTC model, the 
recourse function becomes nonconvex and Benders-type decomposition methods 
cannot be immediately applied. We will show this nonconvexity of the recourse 
function in the paper. 

An alternative to apply a Benders or SDDP type algorithm when nonlinear 
nonconvex head effects are included in a model consists of convexifying the 
recourse function using LR techniques. A similar convexification technique to 
the one we present in this paper was successfully applied to solve weekly 
stochastic unit commitment models (Cerisola, Baíllo et al. 2009). 

One of our main contributions in the current paper is to take advantage of 
the bilinear modeling for the production function of hydro plants and to replace 
this bilinear relation with its McCormick envelope, (McCormick 1976), (Liberti 
and Pantelides 2006), (Iyer and Grossman 1997), (Quesada and Grossmann 
1995). This substitution underestimates the nonconvex recourse function by a 
convex function that can be used as an approximation of the future cost 
function. A further step can be done at improving the accuracy of that 
approximation. With this purpose, we create a grid for the variables of the 
bilinear function and create the McCormick envelope of the bilinear function 
over each cell of the grid. We force the model to select one cell for every bilinear 
function for each period using disjunctive programming (Williams 1993; 
Williams 1999). Binary variables are thus included in each stage in the HCP. 
By doing this we obtain an upper function and a lower function that bound the 
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bilinear surface. Those functions are neither convex nor concave, but their 
description by using MIP gives the possibility of using branch and bound 
techniques and commercial solvers for solving the problem. We denote this 
approximation as multiple-cell McCormick approximation and, in a parallel 
manner, the McCormick envelope linearization as single-cell McCormick 
approximation. The nonconvex function that approximates the future cost 
function can now be convexifed by using LR techniques (Frangioni 2005; 
Lemacheral 2007). The SDDP decomposition technique is extended to 
multistage stochastic integer problems where binary variables appear at any 
stage. This extension is our second main contribution and is developed in detail 
in section 3 of the article. 

The paper is organized as follows. Section 2 summarizes the hydro 
subsystem model considered in this work, describing the simplifications as well 
as the taken assumptions. This section also presents the approximation for the 
bilinear relation as well as the disjunctive programming model. Section 3 
describes the extension of the SDDP technique to the case where binary 
variables appear in any stage of the model. In section 4 we present a real-sized 
problem of a HCP with multiple basins and cascaded reservoirs. Section 5 is 
devoted to a numerical analysis of the method for the previous described 
problem. Figures showing convergence and reservoir level evolutions for the 
stochastic case are presented. We conclude the paper suggesting future lines of 
research. 

IIIIIIII Hydro Hydro Hydro Hydro Subsystem Subsystem Subsystem Subsystem ModelingModelingModelingModeling    

The power output 
h
P , in MW, of a hydro unit can be expressed as 

 
h t g
P qhgη η=  (1) 

where g  stands for the gravity constant in m/s2, q  is the water release in m3/s, 
h  the net water head in m and η  the efficiency of the unit, which comprises the 
turbine efficiency 

t
η  and the generator efficiency 

g
η  (El-Hawary and 

Christensen 1979). 
The net head of a plant is defined as the difference of the forebay height y , 

the tailrace height 
T
y  and the head losses in the penstock, which can be 

modeled as a quadratic function of the water release, 2kq . 

 2
T

h y y kq= − −  (2) 

The tailrace height accounts for the height of its discharging level and the 
downstream reservoir. It is also a function of the release as well as the spillage. 
In our model we neglect the losses in the penstock and the elevation due to the 



own water flow discharge. We explicity consider the tailrace level as the 
maximum value of the downstream reservoir forebay height and the drainage 
level of the hydro plant. Thus, we simplify the net head modeling as 

 
T

h y y= −  (3) 

The production function is usually given by level curves that relate the 
power output of a plant with the net head for a known amount of water 
released through the turbine. Figure 1 shows a typical hill diagram. (A 
Mathematical Model for the Efficiency Curves of Hydroelectric units A. L. 
Diniz, P. P. I. Esteves, C. A. Sagastizábal). It may be observed that given a net 
head (vertical dashed line) for the reservoir, there is an optimum power output 
(thick line). 

 
Figure 1. Hill diagram of a hydro plant. 

Even more, under the rational assumption that given a net head, the outflow 
through the turbine will be the optimal one, there is a relation between the net 
head of the hydro plant and the efficiency of the unit. This relation can be 
modeled as a piecewise linear function or as a polynomial function (Finardi, 
Silva et al. 2005). 

 ( )hη φ=  (4) 

Merging previous equations, we have the power output of the hydro unit 
modeled as 

 ( )h
P qh qh hη φ= =  (5) 

The right part of above equation, ( )h hφ , formulates a relation that only 

depends on the net head. We approximate this relation with an affine function, 
and denote it as production function 

 ( ) ( )e
C h h h hφ α β= ≈ +  (6) 

Maximum efficiency

Maximum dischargeph [MW]

h [m]
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Thus we finally have a bilinear expression that relates the power output of 
each hydro unit to its net head and the water released through the turbine. 

 ( ) ( )h e
P qC h q hα β= ≈ +  (7) 

For the multistage model we present in this paper, we assume that the 
production function ( )e

C h  as well as the water release q  remains constant for 

each period (that will be one week). The above equation expressed in terms of 
power is used in terms of energy considering the time duration Dur  of each 
period. Thus, we consider 

 ( )· ·
h

Dur P Dur q hα β= +  (8) 

and replace in the equation the water release by time unit with the water 
release w  in the period 

 ( )·
h

Dur P w hα β= +  (9) 

The introduction of the production function in the HCP incorporates the 
signal to the model that the higher the reservoir level, the greater the hydro 
production and the greater the saved thermal cost. We present firstly an 
academic model to show this idea. 

II.1 Example 1 

For the shake of simplicity let us consider a two period case. We assume to 
have one thermal unit and one hydro plant associated with a reservoir. We 
note: 

 
Variables 

1 2
,x x  Thermal output in periods 1 and 2 

1 2
,y y  Hydro output in periods 1 and 2 

1 2
,w w  Water release in periods 1 and 2 

0 1 2
, ,r r r  Initial reserve level and reserve levels at the end of periods 1 and 2 

 
Parameters 

1 2
,c c  Constant production function in periods 1 and 2 

1 2
,i i  Natural inflows in periods 1 and 2 

1 2
,d d  Load demand in periods 1 and 2 

 
Typically, the constant production functions will be equal for both periods. 

However, we keep the difference for the later comparison with the example 2. 



We assume a normalized cost for thermal output. Thus, a linear problem that 
minimizes the total operation cost can be formulated as: 

 

1 2

1 1 1 2 2 2

1 1 1 2 2 2

1 0 1 1 2 1 2 2

min

, Demand balance equations

, Hydro production constraints

, Reserve balance equations

x x

x y d x y d

y c w y c w

r r i w r r i w

+

+ = + =

= =

= + − = + −

 (10) 

Neglecting variable bounds and after same algebra we obtain 

1 0 1 1
w r i r= + − , so that ( )1 1 0 1 1

y c r i r= + −  and consequently 

( )1 1 1 0 1 1
x d c r i r= − + − . Similarly for the second period, 

2 1 2 2
w r i r= + − , so 

that ( )2 2 1 2 2
y c r i r= + −  and consequently ( )2 2 2 1 2 2

x d c r i r= − + − . The 

objective function becomes 

 ( ) ( )1 1 0 1 1 2 2 1 2 2
mind c r i r d c r i r− + − + − + −  (11) 

In hydrothermal models, usually the initial and final reserve levels are known 
values. In our example, the unique decision variable is just 

1
r . Gathering terms 

we obtain the objective function 

 ( ) ( ) ( )1 1 0 1 2 2 2 2 1 2 1
mind c r i d c i r c c r− + + − − + −  (12) 

which for the case of identical and constant production functions, 
1 2
c c= , leads 

to 

 ( ) ( )1 1 0 1 2 2 2 2
mind c r i d c i r− + + − −  (13) 

Note that this is an objective function that does not depend on the decision 
variable. For this reason, the optimization problem presents multiplicity of 
solutions. A large range of first-period final reserves gives the same objective 
value and no evolution profile is decided for the reserve. We now compare the 
above case with the next one where the net head effect of the hydro plant is 
considered in the model. 

II.2 Example 2 

We consider a linear relation between the production function and the 
reserve level. Let’s the new parameters be: 

 
Parameters 

α , β  Intercept and slope of the production function 
 
We incorporate the next relation into the optimization model 
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 1 1

2 2

c r

c r

α β

α β

= +

= +
 (14) 

Now, the outflow-energy function is nonlinear and the optimization problem 
also becomes nonlinear. We again neglect variable bounds and after some 
algebra we obtain ( )( )1 1 0 1 1

y r r i rα β= + + −  and ( )( )2 2 1 2 2
y r r i rα β= + + − . 

The objective function gets the form 

 ( )( ) ( )( )1 1 0 1 1 2 2 1 2 2
mind r r i r d r r i rα β α β− + + − + − + + −  (15) 

Notice that 
1
r  is the unique decision variable of the problem. The optimality 

condition is 

 ( ) ( ) ( )0 1 1 1 2
0r i r r rβ α β α β− + − + + − + =  (16) 

This leaves the reserve decision at the end of the first period as 

 0 2 1
1 2 2

r r i
r

+
= +  (17) 

and the water released in the periods 

 0 2 1
1 2 2

r r i
w

−
= + , 0 2 1

2 22 2

r r i
w i

−
= + +  (18) 

Note that if initial and final reserve levels are equal, half of the natural 
inflows for the first period are saved for the second period. The optimization 
problem decides to keep the reserve at a high level, so that the thermal cost of 
the first period offsets the cost of the second period. 

Although this is a small academic example it presents the overall behavior of 
the reserve levels under an efficient economic dispatch for the hydro units. For 
realistic models as the one we present in this paper, the multiplicity of 
constraints and variable bounds together with multiple basins and cascaded 
reservoirs, and with the additional complexity of stochasticity in the natural 
inflows, an analytic rule about the behavior of the reservoir is impossible to 
obtain. However, it is expected that the inclusion of the nonlinear water head 
effect increases the reservoir levels in comparison with the profiles that a 
constant production function would produce. 

IIIIIIIIIIII Problem Problem Problem Problem FFFFormulationormulationormulationormulation    

We consider a time scope divided into periods p  (weeks) and these periods 
into load levels n  (typically peak and off-peak) and a generation portfolio with 
different thermal units and hydro plants. Hydro plants are assigned to 
reservoirs, taking into account that some reservoirs can be shared by different 



hydro plants and they can be located in cascade. We first list the indexes, 
variables and parameters to ease the exposition of the equations of the model 
formulation. Although the model is stochastic, we explicitly avoid showing the 
scenario index in the mathematical formulation. 

 

Indexes 

,P p  Period 
,N n  Load level (peak, off-peak) 
,T t  Thermal unit 
,H h  Hydro plant 
,E e  Reservoir 
( )H e  Hydro plants sharing reservoir e  
( )Up e  Upstream hydro plants of reservoir e  

( )Down e  Downstream hydro plants of reservoir e  
 

Parameters 

,p n
D  Load demand of period p  and load level n  [MWh] 

,p n
Dur  Duration of period p  and load level n   [h] 

t
CV  Variable cost of thermal unit t    [€/MW] 

e
Cdr , 

e
Cer  Penalty for the slack and surplus of final level of reservoir e  

[€/MWh] 

h
η   Efficiency of pumped storage hydro plant h  [p.u] 

tPT , tPT Minimum and maximum output of thermal unit t  [MW] 

,e p
NI  Natural inflows in reservoir e  in period p  [MWh] 

h
α , 

h
β  Intercept and slope of the linear production function of hydro 

plant h  [MW/m3/s, MW/m4/s] 

e
a , 

e
b , 

e
c  Parameters of the quadratic reservoir volume curve 

h
T   Drainage level of a hydro plant   [m] 

*
eP
R  Final reservoir level of hydro plant h   [GWh] 
 

Variables 

, ,t p n
P  Power output of thermal unit t  in period p  and load level n  

[MW] 

, ,h p n
P  Power output of hydro plant h  in period p  and load level n  

[MW] 
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, ,h p n
B  Consumption of hydro plant h  due to pumping in period p  and 

load level n  [MW] 

,e p
R  Level of reservoir e  at the end of period p   [MWh] 

,e p
S  Spillage of reservoir e  in period p    [MWh] 

,h p
W  Water release of hydro plant h  in period p   [hm3] 

,h p
H  Net head of hydro plant h  in period p    [m] 

,e p
F  Forebay level of reservoir e  in period p    [m] 

,h p
T  Tailrace level of hydro plant h  in period p   [m] 

,e p
I  Inflows in reservoir e  in period p    [MWh] 

,h p
C  Production function for hydro plant h  in period p  [MW/m3/s] 

,e P
dr , 

,e P
er  Slack and surplus of final level of reservoir e  [MWh] 

 

Equations 

The energy balance equation guarantees the production of the required 
demand 

 
, , , , , , ,

/ ,
p n t p n h p n h p n h

t T h H h H

D P P B p nη
∈ ∈ ∈

= + − ∀∑ ∑ ∑  (19) 

The water inventory equation establishes that the reserve level at the end of 
a period is obtained as the initial reserve level plus the period inflows minus the 
own hydro reservoir release. In this equation, the period inflows comprise the 
natural inflows as well as their upstream hydro plant water releases or spillages. 

 
, , 1 , , , , , ,

( ) , ( )

, , , , , , ,
( ) , ( ) ( )
( ) ( )

,

,

e p e p e p h p p n h p n e p
h H e n h H e

e p e p h p p n h p n e p
h H e n h H e e Up e
e Up e e Down e

R R I W Dur B S e p

I NI W Dur B S e p

−
∈ ∈

′
′ ′ ′∈ ∈ ∈

′ ′∈ ∈

= + − − − ∀

= + + + ∀

∑ ∑

∑ ∑ ∑  (20) 

The hydro plant output is related to the water release 
,h p

W  and to the 

production function 
,h p

C , which we approximate as an affine function of the net 

head of the plant 
,h p

H . Thus 

 
, ,

,
h p h h h p

C H h pα β= + ∀  (21) 

 
, , , , ,

,
p n h p n h p h p

n

Dur P W C h p= ∀∑  (22) 

The net head of the plant is computed as the forebay level of the upstream 
reservoir 

,e p
F  minus the tailrace level of the hydro plant 

,h p
T  



 
, , ,

( )

,
h p e p h p

h H e

H F T h p
∈

= − ∀  (23) 

The reserve level of the reservoir 
,e p

R  is modeled as a quadratic function of 

the forebay level, see Figure 2, 

 2
, , ,

,
e p e e e p e e p
R a b F c F e p= + + ∀  (24) 

and the tailrace level of the hydro plant is modeled as the maximum between 
the forebay level of the downstream reservoir 

,e p
F
′

 or the drainage level of the 

plant 
h
T  

 ( ), ,
max , ,

h p e p h
T F T h p

′
= ∀  (25) 

where e′  indicates the downstream reservoir of hydro plant h . 
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Figure 2. Volume of a reservoir as a quadratic function of its head. 

 
With the purpose of obtaining a realistic profile, the model forces the 

production in peak hours, load level 
1
n , to be greater than the production in off-

peak hours, load level 
2
n . On the contrary, it also forces the energy 

consumption for pumping to satisfy the opposite inequality. 

 
1 2

1 2

1 2

, , , ,

, , , ,

, , , ,

,

,

,

t p n t p n

h p n h p n

h p n h p n

P P t p

P P t p

B B t p

≥ ∀

≥ ∀

≤ ∀

 (26) 

The model also incorporates a final reservoir level that ought to be achieved 
by each reservoir. This final reserve is determined by a long-term model and 
integrated in this medium-term model by means of using slack and surplus 
variables. 
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 *
, , ,e P e P e P eP

R er dr R e= − − ∀  (27) 

The objective function minimizes the total variable operating cost and 
penalizes the deviation with respect to the final reserve level. 

 ( ), , , , ,
, ,

min
p n t t p n e e P e e P

t p n e

Dur CVP Cdrdr Cerer+ +∑ ∑  (28) 

III.1 Linear Approximation 

We approximate the above nonlinear HCP by a linear problem. Firstly, the 
head-reserve quadratic relation (24) is replaced with a piecewise linear outer 
approximation, that is not worthwhile to detail it. 

On the other hand, the bilinear relation of the hydro plant production (22) 
is replaced by its convex envelope, which is known in the literature as 
McCormick approximation [McCormick 1973]. 

The McCormick approximation considers a bilinear function z xy=  with 
,x x x ∈   

 and ,y y y ∈   
 and replaces it by the next family of linear constrains. 

 

z xy xy xy

z xy xy xy

z xy xy xy

z xy xy xy

≥ + −

≥ + −

≤ + −

≤ + −

 (29) 

For this particular hydro scheduling problem, we replace equation (22) with 

 

, , , , , , , , ,

, , , , , , , , ,

, , , , , , , , ,

, , , , , , , , ,

p n h p n h p h p h p h p h p h p
n

p n h p n h p h p h p h p h p h p
n

p n h p n h p h p h p h p h p h p
n

p n h p n h p h p h p h p h p h p
n

Dur P W C W C W C

Dur P W C W C W C

Dur P W C W C W C

Dur P W C W C W C

≥ + −

≥ + −

≤ + −

≤ + −

∑

∑

∑

∑

 (30) 

The surface defined by the bilinear constraint together with the McCormick 
envelope (single-cell approximation) that replaces it is depicted in the next 
figures. Both images represent the same function and the axes have been 
rotated to appreciate the nonlinearity of the function. 
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Figure 3. Bilinear surface and McCormick approximation. 

 
It must be outlined that the precision of the McCormick approximation 

increases with the precision of the variable bounds. Thus, when modeling the 
HCP the variable bounds should be as tight as possible. 

III.2 MIP Approximation 

With the purpose of increasing the accuracy of the approximation, we divide 
the domain of the bilinear function into smaller rectangles, and build the 
McCormick approximation for each individual cell. We use disjunctive 
programming techniques to force the model to select one cell out of the total 
and therefore we modify equations (30) by introducing binary variables. 
For the mathematical formulation of this approach we create a grid for the 
variables of the bilinear relation (water release and production function) 

,
i

h p
W , 

1,...,i I=  and 
,
j

h p
C , 1,...,j J= , that accounts for a total of ·I J  cells. Note that 

,
I

h p
W , 0

,h p
W  and 

,
J

h p
C , 0

,h p
C  coincide with the upper and lower bounds of variables 

,h p
W  and 

,h p
C . 

The lower bounds for the variables will be used when needed. 
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Figure 4. Example of approximation of the bilinear hydro output function with a 

multiple-cell McCormick approximation for a 3x2 grid. 3 slots for the production 

function variable and 2 slots for the water release variable. 
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Figure 5. Upper (left) and lower (right) approximation of the bilinear hydro 

output function with the McCormick multiple cell approximation. 
 

 
Figure 6. Bilinear surface of hydro output. 

 
The convex envelope of the grid cell corresponding to the ( , )i j  slot is given 

by the constraints 

 

, , , , , , , , ,

1 1 1 1
, , , , , , , , ,
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, , , , , , , , ,
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− −

− −

≥ + −

≥ + −

≤ + −

≤ + −

∑

∑

∑

∑

 (31) 

Additionally, we need to impose the condition that just one of the 
McCormick envelopes needs to be active. In this is disjunctive programming 
approach we reformulate above equations by introducing a binary variable ,i ju  
that indicates whether the ( , )i j  cell is selected , 1i ju =  or not , 0i ju = . We 
choose a big-M method (Williams 1993) leading to the next equations 
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 (32) 

We now force the model to select just one cell over the grid for every hydro 
plant and every time period. 

 ,
,

,

1 ,i j

h p
i j

u h p= ∀∑  (33) 

This set of equations allows the formulation of the following models that 
describe the HCP: 

 
• A nonlinear nonconvex hydrothermal coordination problem (HCPN), build 

up with equations (19) to (28). 
• A linear hydrothermal coordination problem (HCPL), where the production 

function (21) is replaced by a constant. Besides, the reserve level equation as 
a function of the head (24) is outer approximated by a piecewise linear 
function. 

• A linear approximation (HCPM) of the nonlinear problem, where the 
bilinear function (22) is replaced with its McCormick convex envelope 
(single-cell approximation), equation (31). Same as above for equation (24). 

• A mixed integer problem (HCPT), where we refine the McCormick 
approximation with a collection of tetrahedrons (multiple-cell 
approximation), equations (32), and employ disjunctive programming to 
force the selection variables to lay in one of them, equation (33). Same as 
above for equation (24). 
 
Next table summarizes the characteristics and presents the objective 

function for a realistic deterministic case study that we will present in section 5. 
 

Model 

Type of 
Mathematical 
Programming 

problem 

Hydro output function representation 
Objective 
function 

HCPN NLP Bilinear function 7824.912 
HCPL LP Constant 7837.094 
HCPM LP Single-cell McCormick approximation 7818.214 



HCPT MIP Multiple-cell McCormick approximation1 7824.474 
 
We may observe in the above table the achieved results for the objective 

functions of the different models. With a constant hydro production value 
(HCPL) we obtain an objective function greater than the bilinear model one. 
On the othe hand, the relaxed formulation with just one cell (HCPM model) 
obtains an objective value smaller than the optimun, an indicator that this 
approximation can be inaccurate. Finally the approximated problem with 
multiple cells gives a precise value for the objective function at the same time 
that returs adecuate profiles for the hydro reserves evolution. 

IVIVIVIV Stochastic Dual Dynamic Stochastic Dual Dynamic Stochastic Dual Dynamic Stochastic Dual Dynamic PPPProgrammingrogrammingrogrammingrogramming    

We now focus our attention in the resolution of the nonlinear hydrothermal 
stochastic problem. This multistage problem can be formulated in a general 
form as (Ermoliev and Wets 1988) 

 
( )

( )

2 31 1 2 2 3 3

1

min min min

: 1,...,

: 1,...,

: 1,..., 1

t t

t t

t t t

z c x E c x E c x

Ax b t T

B x d t T

Tx Wx h t T

ξ ξ

ξ
−

  = + + +    
≤

=

+ ≤ −

⋯

 (34) 

where t  are the stages, the constraints 
t t

Ax b≤  represent intraperiod 
constraints, the constraints ( )t t

B x d=  are the bilinear constraints and 

( )1t t t
Tx Wx h ξ

−
+ ≤  the interperiod constraints, also denoted coupling or tender 

constraints. In HCP those constraints account for the water inventory equations 
for the reservoirs. 

Typically multistage models are represented by considering the recourse 
function, which carries the future operation cost as a function of the current 
value of the decision variable. Thus, the multistage problem is formulated as 

 

( )

( )

2

2
1 1 1 1

1 1

1 1

min ,z c x E Q x

Ax b

B x d

ξ
ξ = +   

≤

=

 (35) 

with the recourse function ( )1 1
,

t t t
Q x ξ
− −

 defined in a recursive manner as 

                                      
1 This value corresponds to a grid of 10 slot for the production function and 1 slot for the 

water release and it has been solved with a relative optimality tolerance of 0.08 %. 
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( ) ( )

( )
( )

1 1 1

1

, min ,
t

t t t t t t t t

t t

t t t

t t t

Q x c x E Q x

Ax b

B x d

Wx h Tx

ξ
ξ ξ

ξ

− − +

−

 = +   
≤

=

≤ −

 (36) 

The above formulation is the starting point of a large number of algorithms 
that solve the multistage problem by solving smaller problems associated to 
individual stages. The key point in the development of those methods is the 
convexity of the recourse function because it enables to approximate it by 
means of outer hyperplanes. Typically these methods iterate between stages 
proposing values for the decision variables 

t
x  and obtaining approximations for 

the recourse functions 
t
Q . The convexity property of the recourse function is 

guaranteed in the case of pure linear problems or in the case of convexity of the 
second and further stages (Minoux 1986). 

Unfortunately, the HCP of this paper does not fall into the category of 
problems having convex second stages. The bilinear hydro output function 
breaks this property. For our problem, neither the recourse function is convex. 
We now show this nonconvexity of the recourse function by computing it with 
the next academic example. It is a very reduced problem that comprises the 
structure of the HCP problems. We have a single period problem with a 
demand that need to be satisfied by using two thermal units and one hydro 
plant. 

IV.1 Example 3 

Consider the next problem given as 

 

1 2

1 2

0

1 2
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+

+ + =
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≤

 (37) 

where we have replicated the case of a HCP with nonlinearity in the hydro 
output. We keep the notation of examples 1 and 2. The initial water reserve is 



indicated by 0r . We modify the initial reserve level from 300 to 900 and solve 
the above nonlinear problem. The result is a relation that gives the objective 
function value of the nonlinear problem as a function of the initial value of 0r  
considered. This function is depicted in the next figure. 

 
Figure 7. Example of a nonconvex recourse function (in blue) with bilinear 

hydro output function. 

 
We clearly appreciate the nonconvexity of the recourse function. It can be 

observed that, the more water, the greater the substitution of thermal 
production. Although this is also a feature of general hydrothermal models, the 
above example goes a step further on and shows that, the more water, the 
higher the net head and consequently the greater the production function. As a 
consequence, the greater the thermal substitution but with a greater 
substitution ratio, which causes the loss of the convexity. 

The above academic example alerts about the impossibility of applying the 
multistage algorithms, which approximate the recourse function by tangent 
lines, to the current case. Our approach to solve this difficulty is to create the 
convexification of the recourse function. However, with the intention of avoiding 
the solution of the nonlinear models, we first analyze the recourse function that 
appears when the bilinear function is replaced with a single-cell McCormick 
approximation or with a multiple-cell McCormick approximation. 
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Figure 8. Convex recourse function (in red) when using the single-cell 

McCormick approximation. 
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Figure 9. Nonconvex recourse function (in black) when using the multiple-cell 

McCormick approximation. 

 

So far we have presented three models for the hydrothermal coordination 
problem and we have analyzed the recourse functions obtained with them. In 
the construction of a Benders type algorithm we are forced to obtain outer 
approximations for the convexifications of the recourse function. This 
convexification is performed by means of the LR technique (Lemarechal and 
Renaud 2001), (Lemacheral 2007). We now discuss different models under that 
point of view and argument our selection of the MIP one for carrying out the 
computations. 

The model HCPN is a NLP one. The LR method faces the solution of a dual 
problem and an NLP inner problem. Any algorithm that could stop in a local 
but non global minimum would destroy the convergence of the method. An 
alternative can be the use of spatial branch and bound techniques (Smith and 
Pantelides 1999), (Sahinidis 1996). Nevertheless, we reject the use of NLP 
models because our intention is to take advantage in the decomposition method 
of the capabilities of robust and powerful LP and MIP solvers. 



The model HCPM is a LP one but, as shown, the recourse function that it 
generates may be not a good approximation of the nonconvex recourse function, 
as seen in Figure 8. Thus, we disregard the use of this model. 

Finally, the HCPT model is a MIP one. Although the recourse function that 
it generates is nonconvex, the dimensions of the grid can be tunned so that an 
accurate approximation of the recourse function is obtained. The convexification 
via the application of the LR method iterates between a dual problem and a 
MIP inner problem. The best bound value that most MIP solvers return may be 
used to obtain valid Benders cuts that do not eliminate any part of the recourse 
function. We dive into these ideas in the next section. 

IV.2 Construction of the Lower Convex Envelope 

The HCPT is a MIP problem with binary variables at any stage. It is also a 
stochastic problem where stochasticity is considered within this paper via a 
recombining tree. We focus next in the description of the convexification 
procedure and later in its extension to the stochastic case. An intermediate 
stage of problem HCPT for a given scenario 

t
ξ  can be formulated as: 

( )ttHCPT
ξ  

( ) ( )

( )

11 1 1

1

, min ,
t

t t t t t t t t

t t

t t t

t t t

Q x c x E Q x

Ax b

Mx Nu m

Wx h Tx

ξ
ξ ξ

ξ

+
− − +

−

 = +   
≤

+ ≤

≤ −

 (38) 

where the expectation is considered over the transition probabilities from the 
current node of the scenario tree. The constraints 

t t t
Mx Nu m+ ≤  aggregate 

those constraints that define the McComick multiple-cell aproximation for the 
hydro output and 

t t
Ax b≤  are the thermal operating limits. The remaining 

equations are those that connect stages and consider the inventory of the water 
reserves. 

In the development of our L-shape type algorithm, the t-stage recourse 
function ( )1 1

,
t t t
Q x ξ
− −

 is approximated with outer hyperplanes obtained form the 

convexification of the recourse function. We keep the convention of denoting 
those approximations as Benders cuts. Thus, at any stage t  a subproblem 

( )t
t

RP
ξ  can be solved that takes the next form 
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( )t
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 (39) 

where t

t
K
ξ  indicates the number of outer approximations to the recourse 

function that have been built so far. The convexification can be obtained 
through the maximization of the dual function, defined for each multiplier as 
the solution of the Lagrangean subproblem: 

( )t
t

LP
ξ  

( ) ( )( )1

1

1 1 1 1

1

, 1 ,

min

: 1,...,

tt t t

t

t t t t
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−
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≤
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 (40) 

It can be proven (Geoffrion 1972) that 

( )t
t

DP
ξ  ( ) ( )( ) ( )*

1 1 1 1
, , max t t

t
t

t t t t t t t t
Q x conv Q x

ξ

ξ ξ

λ

ξ ξ ω λ
− − − −

=≜  (41) 

Assume we want to approximate the lower convex envelope of the recourse 

function at a given decision value 
1t

x
−

⌢  and for a chosen scenario 
t
ξ . Let t

t

ξ
λɺ  be 

the optimal multiplier of problem ( )t
t

DP
ξ . By definition we would have for every 

1t
x
−

 

 
( ) ( ) ( )

( )( )
1

*
1 1 1 1

1

, , t t

t t

t

t t t t t t t t

t

t t t t t t

Q x Q x

c x E Tx Wx h
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ξ ξ

ξ
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θ λ ξ
+

− − − −

−

≥ = =

 = + + + −  

ɺ

ɺ ɺɺ ɺ
 (42) 

where the dot letters indicate the values where the optimum has been achieved. 
We particularized the above expression for the 1t −  stage value where we are 
interested in building the approximation. After some algebra we have 
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 (43) 

thus obtaining an approximation in the form of a Benders cut given as 



 ( ) ( )1 1
t t t t

t t t t t t
T x x

ξ ξ ξ ξ
θ ω λ λ

− −
≥ + −

⌢ɺ ɺ  (44) 

and is used to augment problem ( )t
t

RP
ξ . Gathering the terms of the above 

expression we can obtain the coefficients expression in the form of t

t
G
ξ and t

t
g
ξ . 

The difficulty in the above development appears in the optimization of the 
dual function. Proximal bundle methods (Fentelmark and Kiwiel 1999), 
sequential refinement (Jiménez and Conejo 1999), ascending directions (Beltran-
Royo 2009), outer-approximations (Cerisola, Baíllo et al. 2009) are some of the 
techniques that have been used for optimizing it. In general, this method 
requires a huge number of iterations to converge. The overall procedure for the 
multistage problem together with the necessary number of required iterations of 
a LR procedure at every stage and scenario of the tree can transform the task of 
finding a solution of the HCP into a cumbersome one. We avoid the 
optimization of the dual function by employing the next two heuristics. 

 
Heuristic 1. 

We solve the linear relaxation of problem ( )ttHCPT
ξ  and obtain the dual 

variable for the coupling constraint t

t

ξ
πɺ . We then consider the multiplier given 

by t t

t t

ξ ξ
λ π= −ɺ ɺ . With this multiplier we perform a single evaluation of the dual 

function and obtain the value ( )t t

t t

ξ ξ
ω π− ɺ , which is used to create a new cut. 

 
Heuristic 2. 

The construction of the Benders cut has the goal of approximating the 
implicit recourse function defined by the t-stage problem. This recourse function 
is employed in the 1t −  stage subproblem. For this reason, when optimizing 
this 1t −  stage subproblem, we can identify the active cuts. After doing this, 
we determine the next multiplier as a linear combination of the coefficients of 
the active cuts. 

 
Consider the recourse function constructed in example 3. Assume we want to 

optimize a two stage problem with a first stage objective function of 03r  and a 
second stage objective function given by the recourse function. The overall 
objective function is then 

 0 03 ( )r Q r+  (45) 

If we replace the bilinear hydro output function by the McCormick multiple-
cell aproximation we face the problem of optimizing the function 

 0 03 ( )
M

r Q r+  (46) 



 

24 

We depict both functions in the next figures. The figure 10 shows the highly 
nonconvex function that has to be optimized. In figure 11.a we assume that two 
cuts have already been generated that approximate the recourse function. We 
assume those two cuts to be active in the solution of the first stage problem. We 
take the coefficients of those cuts and propose a new multiplier to evaluate the 
Lagrangean subproblem. This Lagrangean subproblem returns a value for the 
dual function that is used to create a new cut. Finally, figure 11.b shows all the 
cuts and the convergence of first stage decision to the solution that minimizes 
the objective function. 
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Figure 10. Nonconvex recourse function. 
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Figure 11. Nonconvex recourse function with two cuts (left) and with all the cuts 

(right). 

 

IV.3 Stochastic Algorithm 

We consider the stochasticity of the problem to be given by means of a 
recombining tree as the one presented in the figure 12. A recombining tree 
assumes a discrete representation of the uncertainty at each stage. It also 
assumes that the distribution depends of the previous stage realization of 
uncertainty. Thus we consider transition probabilities between the nodes of the 

u+v 

u 
v 



recombining tree. In this way, a scenario is constituted by a realization of each 
stage random variable, being the probability of the scenario the product of the 
transition probabilities between stages. 

 
Figure 12. Recombining tree. 

 
With this uncertainty representation, the number of resulting scenarios 

grows exponentially. It is usually impossible to solve the DEP and the solution 
of the multistage problem has necessarily to be solved by the application of 
sampling methods. 

The solution of the stochastic problem is based on the approximation of the 
recourse functions. Those are functions of the reserve levels and the stochastic 
parameters. In our approach, we consider a different recourse function for every 
node of the scenario tree and approximate each one independently. With this 
goal, primal decisions need to be proposed for evaluating the recourse function. 
The SDDP algorithm samples a scenario by conditional sampling of the discrete 
distribution function of each stage. After that, a forward pass is performed, each 
stage problem is solved and primal decisions values proposed. Notice that in the 
forward pass it is only solved one node of the scenario tree at each stage. 
Secondly, a backward pass is performed solving every node of the scenario tree 
and creating a new cut to approximate the recourse function. The construction 
of the new cut involves the computation of the LR algorithm, or the application 
of the heuristics previously described. 
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Figure 13a. Scenario solved in a forward pass of SDDP. 

 

Figure 13b. Nodes solved in the backward pass of SDDP. 

 
The forward and backward passes of the SDDP algorithm may be 

summarized as follows. We assume a relative complete recourse for every stage 
of the problem. Thus no infeasible subproblem will appear in the application of 
the algorithm. 
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Step 0 Set 0t

t
K
ξ
= . Set 0t

t

ξ
θ ≡  at the initial iteration. 

At iteration n  

Step 1 Sample one scenario ( )t n

t
h
ξ , 1,...,t T=  

 Forward pass: 
 Repeat for 1,...,t T=  

  Solve the node 
t
ξ  of stage t  subproblem ( )t

t
RP

ξ  

  Obtain solution t

t
x
ξ  

  If 1t =  obtain lower bound 1

1
( )z v RP

ξ
=  

Step 2 Backward pass 
 Repeat for ,...,1t T=  
  Repeat for each node 

t
ξ  of stage t  

   Solve ( )t
t

RP
ξ  

   Obtain objective 
,

( )t t

t k t
v RP

ξ ξ
θ =  and dual values 

,
t

t k

ξ
π  

    Augment 1t t

t t
K K
ξ ξ
= +  

 Go to step 1 

 Description of the traversing strategy in SDDP. 

 
When applying the L-shaped method of (Van Slyke and Wets 1969), a 

termination criterion is considered that stops the algorithm when the relative 
tolerance between a lower and an upper bound is reached. In the setting of 
sampling within a multistage stochastic program, a lower bound is also available 
after the resolution of the first stage problem. However, the construction of the 
upper bound needs to be revisited. In two-stage problems (Shapiro 2003), the 
upper bound is computed once a first stage solution is available. With that 
purpose, a collection of independent scenarios is sampled and the objective 
function evaluated for the sample average function. When this evaluation is 
repeated for T  independent batches of samples of size N , a confidence interval 
for the upper bound of the problem is available. The sampling method for two 
stage stochastic problems is stopped when the lower bounds falls within this 
confidence interval. The case for multistage SP is more complicated that the 
two-stage problem (Linderoth, Shapiro et al. 2006). We propose the next 
stopping rule for the multistage case. 

Our experimental results show that in the evolution of the traversing 
strategy, there is an iteration from which the values of the first stage decision 
variables are virtually repeated. From that iteration, we store the objective 
function values and compute the sample mean of those values together with the 
confidence interval. The algorithm stops when the lower bound falls within that 
interval. 
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Let 
0
n  be the iteration where the first stage solution is repeated. After N  

additional iterations we have stochastic values for the objective function given 

by ( )1
t

nT

t tt
c x

ξ

=∑ ɺ , 1,...,n N= . We estimate the sample mean as well as the 

standard deviation 
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=

  = −   

∑

∑ ∑

ɺ

ɺ

 (47) 

and create a 95 % confidence interval for the upper bound 

 1.96 , 1.96n nz z
N N

σ σ   − +   
 (48) 

Now, we describe the SDDP algorithm including the extension to MIP 
subproblems and the stopping rule based on the confidence interval. 

 



Step 0 Set 0t
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Step 2 (Upper bound computation) 
 If the variation for first stage variable is less than a given 
tolerance: 
 Get the mean and the standard deviation for the last objective 
function values of the complete objective function evaluated for the primal 
solutions so far obtained. 
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 Update the upper bound confidence interval 

1.96 , 1.96n nI z z
N N

σ σ  = − +   
 

Step 3 (Stopping rule) 

 If 1.96
N

σ
 is less than a given tolerance and z I∈  stop 

  1

1
x
ξ  is optimal solution, 

 else go to Step 4 
Step 4 Backward pass 
 Repeat for ,...,1t T=  
 Repeat for each node 

t
ξ  of stage t  

 If heuristic rule 1 is used 

  Solve linear relaxation of ( )t
t

RP
ξ  

  Get dual variable and create the multiplier 
, ,
t t

t k t k

ξ ξ
λ π= −  

  Solve Lagrangean subproblem ( )t
t

LP
ξ  

  Obtain objective 
,

( )t t

t k t
DP

ξ ξ
θ ω=  
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 If heuristic rule 2 is used 

  Construct the multiplier 
,
t

t k

ξ
λ  as a linear combination of the 

coefficients of the active cuts for 1t −  stage subproblem 

   Solve Lagrangean subproblem ( )t
t

LP
ξ  

   Obtain objective 
,

( )t t

t k t
DP

ξ ξ
θ ω=  

 If no heuristic rule is used 
   Optimize the dual function 

   Obtain objective 
,

( )t t

t k t
v DP

ξ ξ
θ =  and dual values 

, ,
t t

t k t k

ξ ξ
π λ=−  

 Create new cut and augment 1t t

t t
K K
ξ ξ
= +  

 Go to step 1 

Description of the traversing strategy in SDDP for MIP subproblems. 

 
We next apply the SDDP to a realistic large-scale HCP extracted form the 

Spanish system. 
 

VVVV Case StudyCase StudyCase StudyCase Study    

We consider a real size problem for a generation company over a time 
horizon of one year. We consider the hydraulic year which starts in October and 
finishes in September and consider a deterministic demand profile. We divide 
the planning horizon into 52 periods for weeks and each period into two load 
level subperiods (peak, off-peak). We consider uncertainty in natural water 
inflows. We classified historical data for the last 50 years and use a clustering 
technique based in the neural gas algorithm to create the recombining tree that 
represents uncertainty. The generating portfolio is made of 100 thermal plants 
(nuclear, coal, fuel, gas) with an installed capacity of 43375 MW and 51 hydro 
plants with an installed capacity of 11835 MW. 

We consider hydro plants to be located in three different hydro basins and 
implicitly include in the mathematical modeling the physical constraints that 
describe the cascaded connections among hydro reservoirs and hydro plants. 

We have represented our HCP model with GAMS 23.1 (Brooke, Kendrick et 
al. 1996) and solve the subproblems with CPLEX 11.2 in a Pentium V 1.8 GHz. 

For a practical implementation of the algorithm, we perform the 
decomposition algorithm in three phases. 

In phase 1 we solve in the forward pass and in the backward pass the LP 
relaxation of the t-stage subproblems. In doing so we underestimate the recourse 
functions but obtain valid approximations that guide the primal decisions 



towards the optimal ones. This phase has the obvious advantage of being 
computationally cheaper than the forthcoming ones. 

In phase 2 we used the heuristic 2 described in the previous section. In the 
forward pass we solve the LP relaxation of the subproblem of each stage and 
store the dual variables of the active Benders cuts in that iteration. In the 
backward pass we solve the Lagrangean subproblem for every node of the tree, 
proposing as multiplier the linear combination on the dual variables previously 
stored. 

In phase 3 we solve in the forward pass the MIP subproblem of each stage. 
This provides us with upper bound estimations that can be used to create an 
upper bound confidence interval. In the backward pass we use heuristic 1 and 
solve the LP relaxation of the subproblems for each scenario, propose the 
multiplier as the opposite of the dual variable of the coupling constraints and 
solve the Lagrangean subproblem. We obtain different approximation cuts 
because they are created for primal decisions different than those of phase 1 and 
phase 2. Notice that in this phase 3 the primal decisions satisfy the integer 
constraints and thus the hydro output variables lie within the approximating 
cells of the bilinear function. 

We have solved three instances of the stochastic problem: i) a first one with 
a binary branching structure every four weeks of the planning period, 
accounting for a total of 212 scenarios, ii) a second instance with a binary 
branching structure every two weeks, accounting for a total of 225 scenarios, iii) 
and a final instance where the binary ramification takes place every week. The 
total number of scenarios is 251. The next table summarizes the computational 
results after 500 iterations of the decomposition algorithm. 

 

Branching Scenarios 
Lower 

Bound 

Upper 

Bound 

Confidence 

Interval 

Relative 

Tolerance 

Every 4 weeks 212 7821.0 7817.7 [7803.5,7831.9] 0.0036 

Every 2 weeks 225 7828.0 7839.3 [7826.4,7852.2] 0.0033 

Every 1 weeks 251 7839.0 7850.3 [7831.6,7868.9] 0.0047 

 
The evolution of the lower bound as well as the upper bound is depicted in 

the next figure. Notice that the confidence interval is computed starting in the 
400th iteration, when the forward pass solves the MIP subproblem for each stage 
and we have estimations for the upper bound of the objective function. 
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Figure 14. Converge of SDDP with MIP subproblems. 

 
We show next the evolution of some reservoirs of the hydro system. We 

want to outline that this was the initial objective of the current research. To 
include the nonlinear head effect of main reservoirs to appreciate the differences 
in the evolution of the reserve level profiles compared with the case where a 
constant production function is considered. We show now this effect for five of 
the main reservoirs of the system. We have tested the evolution of the water 
profiles for 100 simulated scenarios after the solution of the multistage 
stochastic problem. The solution is carried out by performing similar forward 
passes to those of the decomposition method. In the left column we plot the 
results when a constant production function was used. On the right column we 
plot the equivalent evolution profiles (same scenario tree and same simulated 
scenarios) when the net head nonlinear effect is considered. 
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Figure 14. Evolution of the reserve levels for five reservoirs Left: constant 

production function. Right: McCormick multiple-cell approximation. 

 
We appreciate that the reserve evolution when the nonlinear head effect is 

considered differs from the case when a constant production function is used. 
The model gives higher reserves with the goal of increasing the production 
function and replacing more thermal generation. 
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VIVIVIVI ConclusionConclusionConclusionConclusion    

We have presented a hydrothermal model that considers the net head 
nonlinear effect in hydro output. We consider within this model the 
stochasticity given by means of a recombining scenario tree. The main 
contribution of the paper is the extension of the SDDP to the case where 
bilinear constraints define the feasible region. Our main approach consists of 
replacing the bilinear constraints with the convex envelope given by the 
McCormick approximation of the bilinear function, transforming the nonlinear 
problem into a LP one. When more precision is required, we replace the bilinear 
function with an upper and a lower McCormick surfaces. Those surfaces appear 
when applying the McCormick envelope to every cell of a grid created for the 
two variables of the domain of the bilinear function. Then the problem becomes 
MIP. 

We have presented a successful application of the technique here developed 
to a real size case extracted from the Spanish system. The hydrothermal model 
has a one year time scope divided into 52 periods for every week of the year. 
We have solved instances with 212, 225 and 251 scenarios and shown the results. 
The reserve level of the reservoirs increases with the solution of the proposed 
model. The production function increases and therefore the operating cost is 
minimized as more thermal production is replaced. 

We suggest some lines of research for the model presented. The first two 
lines are oriented to accelerate the convergence of the method. The third line is 
oriented to incorporate the spillage control in the stochastic model. 

The immediate idea to accelerate the convergence is to use an importance 
sampling method within the decomposition method. A second possibility of 
accelerating the convergence is to solve the nodes of the recombining tree in an 
aggregate manner. Thus, the computation time could be reduced by solving in 
the forward and in the backward pass small recombining subtrees bunching the 
subproblems for different stages. 

Finally, reservoir management can be improved by considering some spillage 
risk measure in the stochastic HCP to avoid keeping reservoirs at their very 
upper bounds and therefore reducing the risk of spillage. 
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