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1 INTRODUCTION 

Stochastic programming (SP) deals with mathematical programming problems where 

some of the input data are random parameters (Birge and Louveaux 1997). The method 

employed to solve an SP problem highly depends on the underlying characteristics of the 

random parameters. SP problems involving random parameters whose probability distributions 

are approximated with continuous functions are mainly solved via sampling and simulation 

techniques. On the other hand, SP problems where probability distributions are approximated by 

discrete functions may in principle be solved with conventional optimization software via the 

formulation of their deterministic equivalent problem. 

Many SP problems may be formulated as multiperiod or multistage problems, where each 

period indicates a moment in which a decision has to be made. The natural way of representing 

uncertainty in this type of problems when probability distributions are approximated with 

discrete functions is by a scenario tree (Dupacová, Consigli et al. 2000). 

The introduction of stochasticity into a mathematical programming problem and its 

solution through a deterministic equivalent problem greatly increases the computational effort 

required. Not surprisingly, decomposition techniques appear as alternative or complement 

strategies to the direct solution of these problems (Ruszczynski 1997). For linear cases with two 

decision stages, Benders’ decomposition technique is the most widely used (Benders 1962; Van 

Slyke and Wets 1969). The introduction of three or more decision stages leads to the immediate 

generalization of the method to nested decomposition schemes (Morton 1993). When 

stochasticity is introduced in the form of a scenario tree, the decomposition method can also be 

extended and used with a monocut version or with a multicut version (Birge and Louveaux 1988). 
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When stochasticity is introduced through continuous probability distribution functions, the 

deterministic version is extended to accept simulation and sampling in the decomposition 

algorithm (Birge and Louveaux 1997). 

The introduction of integer variables in such a decomposition scheme complicates the 

development of a solution method. The original two-stage or L-shaped method (Benders 1962) 

formulates the first-stage problem so that it comprises the collection of integer variables 

whereas the second-stage problem deals with the rest of decision variables with the first-stage 

integer decisions fixed. The method exploits the linearity of the second-stage problem in order 

to outer approximate the convex recourse function, which represents the dependence of the 

second-stage objective function with respect to the first-stage decisions. However, when integer 

variables are included in the second-stage problem this recourse function is in general non 

convex and non continuous. Many efforts have been done to overcome this difficulty. The 

integer L-shaped method of (Laporte and Louveaux 1993), uses an adequate expression to outer 

approximate the recourse function for problems with only 0-1 first-stage decision variables and 

mixed-integer second-stage decision variables. Its disadvantage is that not all problems fit 

within such structure. The specific method developed by (Van der Vlerk 1995) for simple integer 

recourse problems exploits the pseudo-convexity properties of the recourse function for this 

type of problems including the extension to nested cases when each subproblem presents a 

simple integer recourse structure. Again, not every problem can be formulated in a natural way 

as a simple integer recourse problem. Other extensions of the method to deal with nonconvex 

recourse functions that have been developed are oriented to solve problems with general 

structures. For example, the branch-and-bound subproblem solution of (Birge and Louveaux 

1997) computes one Benders’ cut at each terminal node of the ramification tree. This procedure 

has the purpose of treating the collection of cuts generated in each iteration by means of a 

disjunctive logic constraint: only one of these cuts is allowed to be active in subsequent 

iterations. The combination of branch and bound techniques with decomposition methods has 

provided successful results in (Ahmed, Tawarmalani et al. 2004). This later B&B is limited to 

problems with pure integer first stage variables. The method transforms the space of tender 

variables with the purpose of having the discontinuities of the recourse function orthogonal to 

the variable axes. 

Other authors such as (Olaf E. Flippo 1993) use generalized duality instead of linear 

duality with the purpose of approximating the recourse function. For example (Carøe & Tind, 

1998) generate a non-continuous approximation of the recourse function by using subbadditive 

theory in the solution of the second-stage problem. However, the technique does not lead to an 

efficient algorithm to solve this type of problems. They are theoretical extensions to the linear 
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case. For example, the cuts generated by (Carøe & Tind, 1998) are neither convex nor 

continuous, which complicates their use with algorithmic purposes. 

Convexification is a natural approach to address the solution of these problems. 

Generalized Benders’ decomposition (GBD), originally proposed by (Geoffrion 1972), uses 

nonlinear duality to approximate the convexification of the recourse function. Our paper 

proposes an extension of GBD that considers the domain of the recourse function induced by 

the collection of tender variables. Convexification procedures have also the goal of obtaining 

the convex hull of the second stage feasible region. In (Sen and Kothari 1998), disjunctive 

programming is used into the second stage of the L-shape method to approximate this convex 

hull. The method presented in (Sen and Kothari 1998) has the advantage that the disjunctive 

cuts obtained may be shared among the second-stage individual scenario subproblems. 

Alternative to L-shaped methods, which profit from the block structure of decision 

variables, Lagrangean methods exploit the block structure of constraints to eliminate those that 

complicate the solution of the problem (Geoffrion 1974). Stochastic programming is a suitable 

field to apply these Lagrangean methods. The usual approach is to derive an extended 

formulation of the stochastic problem that includes copies of the decision variables for each 

scenario and explicitly incorporates the formulation of the non-anticipativity constraints. These 

constraints force the decisions taken at each period to be independent of future realizations of 

the uncertainty. Non-anticipativity constraints introduce a link between the copies of the 

decision variables corresponding to different scenarios. The Lagrangean relaxation of these 

constraints leads to a Lagrangean subproblem that is separable into individual subproblems, 

each one corresponding to one scenario. This technique is commonly known as scenario 

decomposition or progressive hedging algorithm when a regularized term is added to the 

subproblem objective function (Rockafellar and Wets 1991). A disadvantage of these methods 

appears in the dimension of the lagrangean function, which is usually extremely large for the 

application of any outer approximation method. Another disadvantage is that a primal solution 

is usually not available after the Lagrangean algorithm, and B&B or heuristic methods are 

frequently required to postprocess the given solution. 

In this paper we present a Benders-type algorithm that approximates the lower convex 

envelope of the nonconvex recourse function. This convexification considers the domain of the 

recourse function imposed by the tender variables. Additionally, the paper also presents the 

application of the method to a battery of test-sets problem obtained from the literature 

(stoprog.org). In the application of the method, a sequential approach has been adopted. The 

code developed for obtaining numerical results generates computationally cheaper 

approximations of the recourse function prior to other more computationally expensive ones. 

This sequential method stems from our experience with the solution of mixed-integer 
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programming (MIP) problems. The closer to the optimal solution the algorithm is, the more 

effort is required to improve the achieved solution. The sequential approach makes it possible to 

stop the algorithm as soon as a certain tolerance has been reached. This idea is particularly 

interesting in a stochastic integer programming (SIP) environment, where the difficulty of 

obtaining a solution for an integer programming (IP) problem is combined with the curse of 

dimensionality typical of stochastic programming (SP) problems. 

The rest of the paper is organized as follows. Section 2 briefly reviews Benders’ 

decomposition or L-shaped method and presents the proposed convexification procedure. 

Section 3 summarizes the numerical results and tests the algorithm efficiency. Finally, section 4 

presents the main conclusions of this research. 

2 L-SHAPED DECOMPOSITION AND CONVEXIFICATION 

The method we are about to present may be formulated for multistage stochastic 

problems. However, for the shake of simplicity, we describe the algorithm for a two-stage 

problem, pointing out those parts where a particular nested scheme should be necessary. 

2.1 The L-Shaped Method 

Benders’ or L-shaped decomposition considers two-stage optimization problems that can 

be formulated in the following form: 

( )P  

min

,

cx qy
Tx Wy h
x X y Y

+
+ =
∈ ∈

 (1) 

where x  represents first-stage decisions and y  comprises second-stage variables whose 

feasible regions are respectively given by { }1
1 1,

nX A x a x += ≤ ∈  and 

{ }2
2 2 , nY A y a y += ≤ ∈ . The solution of problem ( )P  is equivalent to the solution of the 

following master problem ( )MP . 

( )MP  { }min ( ),cx Q x x X+ ∈  (2) 

where ( )Q x  is the recourse function which is defined by the following subproblem ( )xSP : 

( )xSP  { }( ) min , ,Q x qy Wy h Tx y Y= = − ∈  (3) 

The L-shaped algorithm replaces the recourse function ( )Q x  in the master problem 

( )MP  by a partial description that is updated as the algorithm proceeds. This description of the 

recourse function is derived by application of linear duality. Indeed, the recourse function ( )Q x  
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may also be represented as { }2max ( )i i
i I h Tx aπ ρ∈ − + , where { }( , )i i

i Iπ ρ ∈  is the collection 

of extreme dual solutions of problem (3). Observe that this representation of the recourse 

function is based on linear cuts. This outer approximation of the recourse function is 

complemented in the decomposition algorithm by the outer approximation of the first-stage 

feasibility region, which is given by the collection of first-stage solutions such that Benders’ 

subproblem ( )xSP  is feasible. This feasibility region can be represented as 

{ }2/ 0 ( )j j

j J
x h Tx aπ ρ

∈
≥ − + , where { }( , )j j

j Jπ ρ ∈  is the collection of extreme dual 

solutions that result from the minimization of infeasibilities of ( )xSP , (Birge and Louveaux 1997). 

An alternative formulation for Benders’ cuts can be derived that will prove useful later 

on. Let *π  and 
0

*
xθ  be the optimal dual value and optimal solution of a feasible subproblem 

0
( )xSP  when a certain first-stage solution 0x  has been proposed. Then, the following is a lower 

bound for the recourse function: 

 
0

* * * *
2 0 0 2

* * * * *
0 2 0 0

( ) ( ) ( )

( ) ( ) ( )x

Q x h Tx a h Tx Tx Tx a

h Tx a Tx Tx T x x

π ρ π ρ

π ρ π θ π

≥ − + = − + − + =

= − + + − + = + −
 (4) 

The decomposition algorithm solves in each iteration a relaxed master problem ( )RMP  

given by 

( )RMP  0

0

min
0 ( ) ´

( ) ´

j j j

i i i

cx
T x x j J

T x x i I
x X

θ

θ π

θ θ π

+

≥ + − ∈

≥ + − ∈

∈

 (5) 

where ´I  is a subset of I  and correspond to the set of optimality cuts, ´J  is a subset of J  and 

correspond to the set of feasible cuts and 0
ix  is the master proposal that generated cut i. 

Each iteration of the method starts with the solution of ( )RMP  and the proposal of a 

first-stage solution, 0x . This first-stage solution is then used to evaluate the recourse function 

by solving the corresponding subproblem 
0

( )xSP . The description of the recourse function in 

( )RMP  is enhanced with an optimality cut i  in case of subproblem feasibility. In the other 

case, the feasibility region of ( )RMP  is constrained with a feasibility cut j . Simultaneously, 

the algorithm computes a lower and an upper bound for the objective function of ( )P  and stops 

when the relative difference is less than an appropriate tolerance. 
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Step 0 Set ´ ´ 0i j= = . Set 0θ ≡  at the initial iteration 
Step 1 Solve ( )RMP  and obtain solution 0x  and lower bound ( )z RMPυ=  
Step 2 Solve 

0
( )xSP  

 If 
0

( )xSP  is infeasible set ´ ´ 1J J= + , and obtain ´jπ  

 If 
0

( )xSP  is feasible set ´ ´ 1I I= + , and obtain ´iπ  

 Compute upper bound 
00 ( )xz cx SPυ= +  

Step 3  (stopping rule) 
 If ( )z z z tol− <  stop, 0x  is optimal solution, else go to Step 1 

Algorithm 1. L-Shaped method. 

The two-stage L-shaped method is immediately extended to multistage problems via 

nested decomposition and to stochastic problems with the use of the multicut or monocut 

version of the method. 

2.2 An extension for non-convex recourse functions 

The introduction of integer requirements within the second-stage decision variables turns 

non-convex the recourse function (3). A clear exposition of the convexification of the recourse 

function can be given through the concept of graph and epigraph for the second stage-

subproblem. Let 

 { }0 0( , ) /  with  and G r r y Y Wy h r qy r= ∃ ∈ − = =  (6) 

be the graph of the second stage subproblem. The second stage subproblem, for a fixed first 

stage value 0x , may now be reinterpreted as finding a point 0 0( , )Tx r−  in G  with minimum 

ordinate. Similarly, consider 

 { }0 0( , ) /  with  and EpiG r r y Y Wy h r qy r= ∃ ∈ − = ≤  (7) 

be the epigraph of the second stage subproblem. Any linear expression that outer-approximates 

the epigraph of the second stage may turn into a valid cut to approximate the recourse function. 

A simple way of deriving a valid inequality for the lower convex envelope of the epigraph (7) is 

achieved by considering a multiplier value λ  and evaluating the dual function ( )ω λ , defined 

as: 

 { }
0( , ) 0 0( ) min /( , )r r r r r r EpiGω λ λ= + ∈  (8) 

The optimal solution of above problem provides a valid cut that approximates the lower 

convex envelope of the epigraph given as: 

 0 ( )r rω λ λ≥ −  (9) 
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It is important to notice that the expression (7) of the epigraph does not take into account 

the fact that the values that r  can take are restricted to the set { },Tx x X− ∈ . We suggest to 

improve the above construction of a valid cut by considering { },r Tx x X= − ∈ , and redefining 

the dual function as 

 { },( ) min , ,x y Tx qy x X y Yω λ λ= − + ∈ ∈  (10) 

This problem generates a linear cut that outer approximates the nonconvex recourse 

function whose expression is 

 ( ) ( )Q x Txω λ λ≥ +  (11) 

The choice of the multiplier λ  that enters in above expression may be conditioned by the 

subproblem that needs to be solved at any given iteration of the L-shaped method. For a given 

first stage proposal 0x , a possibility is to find the multiplier that returns the maximum of the 

lower bounds provided by (11). The dual problem ( )D  is defined as the optimization problem 

that selects the optimal multiplier. 

( )D  { }( )0max min , ,Tx qy x X y Y Txλ λ λ− + ∈ ∈ +  (12) 

The reader may appreciate the similarity of optimality cut (11) with that of expression (4). 

Linearizing around the value 0x  and after some algebra we find 

 
00 0 0( ) ( ) ( )xQ x Tx Tx Tx T x xω λ λ λ λ θ λ≥ + − + = − −  (13) 

Expression (13) recovers the traditional result that relates the dual variable of a linear 

programming problem with the opposite of the optimal multiplier that the nonlinear duality 

theory provides. This result is of remarkable interest in the development of an efficient 

algorithm for realistic stochastic integer programming problems. We will take this issue again in 

the next section. 

We remark that above lines have assumed that the second-stage mixed-integer problem is 

feasible for any given first-stage value. This assumption is not necessary for the correct 

behavior of the algorithm. In case of infeasibility of the second stage problem (for a given first 

stage value), the convexification procedure can be carried out replacing the objective function 

by that of minimization of infeasibilities. This convexification creates a feasibility cut that 

eliminates the first stage proposal out of the collection of first–stage solutions. 

2.3 Description of the algorithm 

The algorithm we propose for stochastic integer programming problems considers 

stochasticity given by discrete distributions. For multistage programs, the method assumes that 



 8

random parameters adopt a tree-shape form. The goal is to find the first stage solution such that 

the total expected cost is minimized: 

 { }min ( , ),cx E Q x w x Xω∈Ω+ ∈  (14) 

with 

 { }( , ) min ( ) , ( ) ( ) ,Q x w q y W y h Tx y Yω ω ω= = − ∈  (15) 

For the particular case we are about to solve, i.e. stochastic parameters discretely 

distributed, problem (14) can be formulated as 

 min ( , ),cx p Q x w x Xω
ω∈Ω

⎧ ⎫+ ∈⎨ ⎬
⎩ ⎭

∑  (16) 

The L-shaped method, reviewed in section 2.1 for the deterministic counterpart to (14) in 

continuous variables, is applied in a natural way to the L-shaped decomposition of problem (16)

. A master problem ( )MP  comprises the collection of variables that represent first-stage 

decisions and partial approximations to the lower convex envelope of the recourse functions. 

( )MP  0

0

min

0 ( )( ) (́ )

( )( ) ´( )

j j j

i i i

cx p

T x x j J

T x x i I
x X

ω ω
ω

ω ω

ω ω ω

θ

θ π ω ω

θ θ π ω ω

∈Ω

+

≥ + − ∈

≥ + − ∈
∈

∑

 (17) 

This master problem proposes first-stage decisions that modify the right-hand-side of 

each scenario subproblem (15). In (17) we have adopted the notation used for optimality and 

feasibility cuts of the linear problem. This adoption has been done in order to maintain clarity, 

and because the optimality and feasibility cuts obtained for the linear relaxation of the 

individual scenario subproblems are valid when imposing integrality requirements to the 

decision variables. 

The L-shaped method we present in this section has been applied in a sequential way. It is 

defined as cut refinement method. It executes Benders’ algorithm computing Benders’ cuts in 

different ways as the algorithm proceeds. Easier cuts are calculated first and more expensive 

cuts are calculated later. The method is organized in three phases where each phase is 

characterized by the way of computing the Benders’ cuts. 
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2.3.1 Phase 1 

In Phase 1 we remove integrality requirements from the subproblems and we apply the 

traditional linear Benders’ decomposition algorithm. Hence, in forward and backward1 passes 

we solve the linear relaxation of the ( )MP  problem. In each iteration, the accuracy of the linear 

solution achieved is calculated as the relative difference between a linear upper bound and a 

linear lower bound, as usual in Benders’ algorithm. The linear lower bound is given by the 

objective value of the relaxed master problem whereas the linear upper bound is obtained by 

evaluating the objective function of the complete problem with the latest solution. Phase 1 ends 

when the relative difference between these two bounds is smaller than a certain tolerance. 

2.3.2 Phase 2 

In phase 2 we reincorporate the integrality requirements that we removed in phase 1. 

When we traverse forward the problems, we solve their MIP version (this also holds for phase 

3). In the backward pass, we generate a linear cut that approximates the recourse function. In 

order to reduce the computational cost of solving the dual problem (12), we choose the 

multipliers that will enter in the evaluation of the dual function (10). Our selection corresponds 

to the opposite of the dual variables of the subproblem linear relaxation. 

In a two-stage case, this technique shifts the linear Benders cut until it touches the 

recourse function. The cut obtained will in general not be tangent to the lower convex envelope 

at the point proposed by the master problem but, in any case, it is a valid cut and it is stronger 

than the linear Benders cut. This improvement has the computational cost of solving a MIP 

subproblem instead of a LP subproblem. 

When dealing with integer variables, the stopping rule of the linear Benders algorithm is 

no longer valid. There is not guarantee that the lower bound provided by the resolution of the 

root problem will be equal to the evaluation of the objective function at the optimal solution. 

For this reason, the stopping criterion is modified and this phase ends when the difference of the 

primal values obtained in two consecutive iterations is lower than a specified tolerance. 

                                                      

1 We are considering in the description of the method the natural extension to nested problems. A forward 

pass indicates subproblem resolutions that are oriented to obtain primal proposals for descendent 

subproblems. A backward pass indicates subproblem resolutions oriented to generate approximations of 

the recourse function lower convex envelope. 
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2.3.3 Phase 3 

In this phase, we solve the MIP version of the subproblems and obtain primal values for 

their descendents. In backward passes, we solve the dual problem (12) of each subproblem to 

find the optimality cut that better approximates the convex envelope of the recourse functions at 

the proposal given by its ancestor master problem. The cuts calculated in this phase are certainly 

harder to compute than those of phase 2. For this reason, in the code developed with the purpose 

of testing the method, we control whether it is necessary to solve the dual problem or not. The 

duality gap is computed when a primal solution is available. This duality gap is given by the 

difference of the evaluation of the recourse function (computed in the forward pass), and the 

lower bound provided by the lifting procedure of phase 2. Thus, the optimization of the dual 

function in only invoked when the optimality gap is greater than a given tolerance. 

In this phase, the stopping rule maintains the criterion of phase 2. 

2.3.4 Summary and observations 

In the cut refinement method, as soon as we are in the phase 2 we have feasible solutions 

for the complete problem and we can obtain upper bounds for the solution by evaluating the 

objective function of the complete problem at any of these feasible solutions. Additionally, a 

lower bound is provided by the master problem. 

The method may be stopped at any phase if the tolerance required for the solution is 

reached. This is useful because it permits avoiding phase 3, which is dramatically more time 

consuming than the previous ones. 

A major drawback of this sequential method that must be highlighted is the possibility of 

having an LP feasible subproblem that turns out to be MIP infeasible. Although this rarely 

happens, in such case the algorithm triggers the maximization of the dual problem (12), with the 

objective function ( )q yω  replaced by that of minimization of infeasibilities, which is 

computationally expensive. 

The following table summarizes the sequential cut refinement method. 

 Forward Solution Backward Solution 
Phase 1 LP LP 
Phase 2 MIP LP + Lagrangean Subproblem 
Phase 3 MIP Max-Min Subproblem 

Table 1. L-shaped and convexification method. 

2.3.5 Convergence of the method 

The method converges to a first stage solution that minimizes first stage cost and the 

expected cost of the lower convex envelope functions. However, this is not the total expected 



 11

cost, which is the sum of the first stage cost and the expected cost of the second stage objective 

function. It is clear that the convexification of the sum of nonconvex functions is not the sum of 

the individual convexifications, so that it cannot be asserted that the method converges to the 

optimal solution of the problem (a short example is presented in the next section). However, for 

some problems, the approximation provided by the method is good enough, which motivates the 

use of the method for large-scale problems. 

3 NUMERICAL RESULTS 

We have applied the proposed method to a collection of examples provided in the 

Stochastic Programming Community homepage (stoprog.org) as well as stochastic models 

arising from the field of power systems operation planning. These problems present a suitable 

staircase structure that gives the possibility of using the L-shaped algorithm to obtain the 

optimal solution. The collection of tested problems is now presented. 

Ex1. This example is taken from (Ahmed, Tawarmalani et al. 2004) and is the problem: 

 1 2 1 2 1 2

1 2

min  1.5 4 [ ( , , , )]
          , [0,5]

x x E Q x x
x x

ω ω− − +
∈ ∩

 

with 

 

{ }

1 2 1 2 1 2 3 4

1 2 3 4 1 1

1 2 3 4 2 2

1 2 3 4

( , , , ) min 16 19 23 28
          s.t. 2 3 4 5
               6  3 2
               , , , 0,1

Q x x y y y y
y y y y x
y y y y x

y y y y

ω ω
ω
ω

= − − − −
+ + + ≤ −

+ + + ≤ −

∈

 (18) 

and 1 2( , )ω ω  is considered to be uniformly distributed on [0,5] [0,5]Ω⊆ × . In similarity with 

(Ahmed, Tawarmalani et al. 2004) five instances of 4, 9, 36, 121 and 441 scenarios have been 

tested. Computational results are presented in table 2. 

Ex2. This example is a variant of Ex1 and consists of Ex1 where the integrality 

requirements have been removed from the first stage decision variables. See table 3. 

Ex3. This example is a variant of Ex1 with a different technology matrix T . The recourse 

function of (18) is replaced by 

 

{ }

1 2 1 2 1 2 3 4

1 2 3 4 1 1 2

1 2 3 4 2 1 2

1 2 3 4

( , , , ) min 16 19 23 28
1 2          s.t. 2 3 4 5
3 3

2 1               6  3 2
3 3

               , , , 0,1

Q x x y y y y

y y y y x x

y y y y x x

y y y y

ω ω

ω

ω

= − − − −

+ + + ≤ − −

+ + + ≤ − −

∈
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and the five stochastic instances of Ex1 have also been tested. See table 4. 

Sslp. This example arises in stochastic server location problems. The problem presents 

pure binary first-stage variables and mixed-binary second stage variables. The collection of 

instances provided in the web page are different instances named Sslp_m_n_s, where m is the 

number of potential server locations, n is the number of potential clients, and s is the number of 

scenarios. This notation is maintained in table 5, which presents the numerical results obtained. 

Sizes. This example is a two-stage multiperiod stochastic integer program that arises in 

product substitution applications. The problem has mixed integer variables in both stages. Three 

stochastic instances of the problem are available and the numerical results achieved with our 

method are given in table 6. 

Dcap. This problem comes from a dynamic capacity acquisition and allocation 

application described in (Ahmed and Garcia 2002). This problem is formulated as a two-stage 

integer programming problem where the first-stage decisions consist on determining the 

capacity that needs to be expanded of a given resource (or collection of resources) all over a 

time scope of T periods. The second stage problem assigns the available resources to the tasks 

that have to be realized. This assignment is modeled with binary variables, leading to a pure 

integer second stage subproblem. 

The problem is stochastic because the expansion decisions have to be carried out (for the 

entire horizon) before the disclosure of uncertainty. Uncertainty that modifies the cost of 

assigning resources to different tasks as well as the amount of resource that is required by the 

different tasks. This problem presents a suitable staircase structure for the application of L-

shaped methods. Twelve stochastic instances of the model have been solved, see table 7. 

Muc. This example is from the field of power systems operation planning (Cerisola, 

Baíllo et al. 2005). The problem is a stochastic unit commitment model for a power generation 

company that takes part in an electricity spot market. The relevant feature of this model is its 

detailed representation of the spot market during a whole week, including seven day-ahead 

market sessions and the corresponding adjustment market sessions. This representation takes 

into account the influence that the company’s decisions exert on the market clearing price by 

means of a residual demand curve for each market session. Uncertainty is introduced in the form 

of several possible spot market cases for each day, which leads to a weekly scenario tree. The 

model also represents in detail the operation of the company’s generation units, as usual in unit 

commitment models. The proposed unit commitment model leads to large-scale mixed integer 

maximization problem, with mixed-integer variables at each of the periods of the problem. The 

staircase structure of the matrix can be appreciated in figure 1, showing the constraints for the 

corresponding seven days. 
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nz = 133979

 

Figure 1. Matrix structure of a single-scenario 7 periods market unit commitment problem 

A difference with the examples so far presented is that the introduction of stochasticity 

for this market unit commitment problem forces the solution method to be applied in their 

nested version. An eight scenarios problem has been solved. The subtree structure that splits the 

deterministic equivalent problem for the decomposition method has been chosen to be that of 

figure 2. 

Sat Sun Mon Tue Wen Thu Fri  

Figure 2.Partitioning approach for the market unit commitment problem 

The reader may appreciate that this partitioning scheme fits into the standard input format 

for stochastic programming problems (Birge, Dempster et al. 1987). 

The algorithm proposed in this paper has been applied to this variety of problems. Input 

data are introduced in SMPS format. CPLEX 7.5 (ILOG 2003) was used as the LP solver as 
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well as the MIP solver for the individual subproblems resolutions. Problems have been run in a 

personal computer with 1 GB of RAM memory and a CPU of 3 GHz.  

Name Number of Scenarios Lower Bound Solution Iterations CPU seconds 

Ex1 4 -57.5 -56.25 6 0.23 

Ex1 9 -60.68 -58.92 7 0.96 

Ex1 36 -62.87 -61.22 9 3.35 

Ex1 121 -64.15 -62.29 9 5.82 

Ex1 441 -63.11 -61.31 10 27.65 

Table 2. Computational results for the Ex1 problem. 

Name Number of Scenarios Lower Bound Solution Iterations CPU seconds 

Ex2 4 -57.5 -56.25 6 0.25 

Ex2 9 -60.68 -58.92 7 0.98 

Ex2 36 -62.87 -60.86 10 4.81 

Ex2 121 -64.14 -62.06 10 7.04 

Ex2 441 -64.27 -60.21 10 38.54 

Table 3. Computational results for the Ex2 problem. 

Name Number of Scenarios Lower Bound Solution Iterations CPU seconds 

Ex3 4 -54.05 -50.60 8 0.87 

Ex3 9 -57.14 -54.54 6 1.31 

Ex3 36 -59.30 -57.38 8 3.46 

Ex3 121 -59.82 -56.54 9 12.92 

Ex3 441 -60.60 -55.62 10 79.84 

Table 4. Computational results for the Ex3 problem. 

Name Number of Scenarios Lower Bound Solution Iterations CPU seconds 

Sslp_5_25_50 50 -121.6 -121.6 26 9.50 

Sslp_5_25_100 100 -127.37 -127.37 24 26.09 

Sslp_15_45_5 5 -262.4 -262.4 31 76.75 

Sslp_15_45_10 10 -260.5 -260.5 35 1180 

Sslp_15_45_15 15 -253.6 -253.601 36 2870 

Sslp_10_50_50 50 -364.62 -364.62 149 5162 

Sslp_10_50_100 100 -354.19 -354.19 172 25565 

Sslp_10_50_500 500 --- --- --- >30000 

Table 5. Computational results for the Sslp problem. 
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Name Number of Scenarios Lower Bound Solution Iterations CPU seconds 

Sizes 3 225441 226499 8 4.75 

Sizes 5 224586 225984 11 16.75 

Sizes 10 223355 225226 10 42.15 

Table 6. Computational results for the Sizes problem. 

Name Number of Scenarios Lower Bound Solution Iterations CPU seconds 

Dcap233_200 200 1833.47 1864.50 30 358 

Dcap233_300 300 1642.93 1671.22 26 621 

Dcap233_500 500 1736.70 1781.49 22 760 

Dcap342_200 200 1618.12 1733.28 41 873 

Dcap342_300 300 2065.67 2143.35 35 1154 

Dcap342_500 500 1903.02 2013.00 38 3057 

Dcap243_200 200 2321.22 2344.16 32 464 

Dcap243_300 300 2556.96 2594.64 34 919 

Dcap243_500 500 2165.51 2186.42 42 2786 

Dcap332_200 200 1059.01 1129.34 46 1013 

Dcap332_300 300 1251.09 1366.14 46 1355 

Dcap332_500 500 1587.13 1669.16 42 4822 

Table 7. Computational results for the Dcap problem. 

Name Number of Scenarios Upper Bound Solution Iterations CPU seconds 

Muc 8 5.404626 5.401882 13 3684 

Table 8. Computational results for the Muc problem. 

The obtained numerical results may be analyzed from different points of view. First of 

all, the simplicity of the examples Ex1, Ex2 and Ex3, shows the limitations of using the exact 

convexification of the recourse functions of independent scenario subproblems in the algorithm 

based on decomposition techniques. However, the method seems to achieve the optimal solution 

when the number of scenarios increases. The CPU time is similar to the time presented in 

(Ahmed, Tawarmalani et al. 2004). 

This need of incorporating branch and bound techniques is clear when observing the 

results of the Dcap problem. In most of these problems there is a gap between the solution and 

the lower bound provided by the algorithm. An issue to take into account appears when 

comparing these numerical results with the solutions of the Dcap problem given in (Ahmed and 

Garcia 2002). Although the solutions given by our method are far away from those solutions, 
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the lower bounds are really close to them, a feature that needs to be considered in future 

enhancements of the method. 

The problem Sslp seems to behave in a different way to the remaining examples. For the 

problem instances solved, the lower bound coincides with the solution obtained. This suggests 

that for this particular example the convexification of the sum of recourse functions may be 

equal to the sum of convexifications. These problems are solved in (Sen and Higle 2004) by the 

convexification of the feasible regions of the individual scenario subproblems, which leads to 

obtaining the lower convex envelope of the recourse functions. It should be interesting to test 

the behavior of their algorithm, named C3D2 over the numerical examples of the Dcap 

problems. In any case, the computation times obtained by the C3D2 algorithm are really better 

than those achieved with our method. In fact, our method is not able to solve instances with 

more that 500 scenarios. 

The Sizes problems as well as the Muc problems are examples of models that contain 

mixed-integer variables at any stage. The solution of our method applied to the Sizes problem 

does not improve the solutions in (Ahmed, Tawarmalani et al. 2004). However, the computation 

time really outperforms that of his method. The Muc problem is the biggest problem of all the 

tested ones. The numerical results of the application of the method to this problem are 

extraordinary if we take into account that CPLEX 7.5 was not able to solve the problem within a 

limit of 24 hours. In this case, we only had to execute two phases to reach an accuracy of less 

than 0.1 %. A note on the application of the method to UC commitment problems needs to be 

outlined. The large dimension of the inner subproblem of the max-min procedure of (12) 

suggests that an efficient application of the method should avoid the optimization of the dual 

problem ( )D . This suggestion is confirmed by the numerical results of table 8. In this case, the 

algorithm was stopped after the phase 2 of the method was done. 

4 CONCLUSION 

This paper has presented an extension of Benders’ decomposition algorithm to face the 

solution of multistage problems with integer variables at any stage. The extension is based on 

the idea of approximating the lower convex envelope of the recourse functions of the individual 

scenario subproblem. The convexification presented in this paper considers the implicit domain 

of the recourse function imposed by the collection of tender variables. Additionally, the paper 

suggests the use of the algorithm in a sequential way, improving the approximation of the 

recourse function by calculating computationally cheaper cuts prior to more expensive cuts. 

We have illustrated the importance of the proposed approach by means of its application 

to a battery of academic examples as well as to a real-size weekly stochastic market unit 
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commitment problem. The results obtained by our method clearly indicate that the algorithm 

has to be considered as an adequate alternative to the direct resolution of real sized problems as 

UC problems. The numerical results also indicate the limitations of considering the 

convexification of the recourse function in the development of decomposition-based algorithms 

for stochastic integer problems. The computational time is high in some examples, in particular 

for those problems with a large number of scenarios. This may be caused by the use of a 

multicut strategy that creates one cut in the master problem for each subproblem solved in each 

iteration. The use of a monocut version as well as the combination of the method with branch 

and bounds techniques appears as subjects of further study. 
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