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Abstract 

This paper proposes a novel binary optimization model to address the parking place 

demand and offer assignment problem. Although the problem has some similarities 

with timetabling and assignment problems, some particular extensions have been 

made. A new formulation for consecutiveness constraints is proposed. This new model 

takes into account in a multiobjective setting the preferences of the users to park in an 

already known parking place, the distance between demanded and offered parking 

places and the number of total assignments made. The model has a daily scope to be 

executed on an hourly basis, with the possibility to modify the assignments already 

made for those clients that have not yet confirmed their assignment. Using randomly 

generated parameters, several large-scale case studies are presented that show the 

strength of the current approach. 
 

1. Introduction 

Nowadays, the authorities are more concerned than ever about the greenhouse effect 

gases, and transportation is one of the major contributors to these gases (see [1]). 

Several studies have appeared to look for solutions to this problem, most of them 

related with parking management. In [2], the authors propose an algorithm to 

optimize the location of a public parking. Marshall shows in [3] that there are too many 

parking in small cities, and very often underused. He proposes to switch from the 

conventional town-planning policies to a mixed-use activity center.That means that 

residential areas and commercial ones should not be separated as they use to be. That 

way, the parking are used during the whole day, instead of using it just in the day for 

commercial zones and the nights in the residential ones. Knoflacher, [1], suggests that 

public transportation must be encouraged and private car discouraged, by making 

parking places less accessible than public transport stops. Other works focuses on 

public transportation improvement, such as [4] in Tagus Valley (Portugal) and [5] in 

Vilnius (Lithuania), showing the increasing interest in all these related matters.  

 

Not only are the authorities concerned with this problem, but also users and 

companies are more and more aware, making new parking solutions emerge. In [6] it is 

shown how some companies have developed a system of car pooling to reduce the 

number of cars traveling from or to the company site, proposing a solution to match 

cars and destinations. Other users seem willing to share their cars to split trip costs. In 

[7], the authors present an integrated system for the organization of a car pooling 

service, where the specific routing problem is solved heuristically. 

 
One of the latest alternatives involves renting one’s parking place when it is not used, 

for example while being at work. This could reduce parking problem, as well as 

decrease the number of cars running during rush hours, since time to find parking 

places would be dramatically reduced. Although there is not yet any reference in the 



technical literature, a system with these features has already been put in operation in 

several Spanish cities (see [8]), using a previous version of the solution proposed here.  

 
This paper proposes a novel formulation to solve the problem of parking place 

assignment that can be considered as a kind of assignment or scheduling problems. 

Assignment problems consist in assigning people to jobs, matching one to one. 

Different variations of assignment problems can be found in [9]. Toroslu proposed in 

[10] two kinds of job assignment problems of: satisfying all the job demands, verifying 

as many as possible or satisfying the constraints, maximizing the number of jobs 

finished. The latter is similar to the parking place assignment problem. Timetabling 

problems, used to match participants with each other and with the resources 

available, are equivalent to the cars and parking places. Classical timetabling problems 

include employee, university, exams, lectures or sports timetabling, see [11] and [12] 

for real-world applications. 

 
 

Problem description 

Sharing parking places involves demand and offer assignment. The assignment must 

consider parameters such as distance between car park offers and demand addresses, 

parking place and car dimensions, maxiumum matching timerequirements, etc. 

 

In addition there are several considerations to be taken into account. Firstly, a user 

may prefer to park in a known place. Therefore, if a person parks every day in the 

same parking place, despite the availability of a free place nearer his final destination, 

the user may probably prefer the same customary place. However, if the usual parking 

place is unavailable, then the client could use the next nearer available place. Frequent 

use of this new place could make the client to become used to it, not wanting to go 

back to the old one.  

 

Secondly, cars or other types of vehicles (such as motorbikes or vans) can only be 

parked in places larger than its own size. 

 

Parking a car means keeping the car in the same parking place for the whole period of 

time demanded. Of course, once the period ends, and if the offer is still available, the 

same place can be assigned to a different demand. Therefore, different vehicles can be 

assigned to the same parking place in the same day if the assignments do not overlap. 

 

Clients should be allowed to limit their acceptable walking distance from the potential 

assignment to the requested location, since it may be better not to assign a place than 

to provide it too far away. The proposed algorithm tries to minimize this walking 

distance, and its bound is considered as a hard constraint.  

 

Finally, it must be taken into account that offers and demands vary dynamically with 

time. Indeed at any time new users may access the system to find or to offer new 

parking places. In addition, existing clients may change their needs along the week. For 

example, from Monday to Thursday, a client may demand a place from 9 to 18 h, while 



on Fridays from 8 to 15 h, and nothing on Saturdays and Sundays. This means that the 

assignments must be computed in real time many times per day.  

 

In fact the model must be able to be run at least once per hour in order to make the 

algorithm viable in a real environment. The natural rolling time scope should be 24 

hours, due to the daily cycle of the demand requirements. Any time before the 

assignments take place, the affected clients (demands and offers subject to potential 

assignment) are asked to confirm their previous demand or offer. This is a key point of 

the system, since theoretically available places or demands can be discarded in real 

time when no explicit confirmation is obtained. This allows occasional routine 

modification, such as for example when a sick client doesn’t use the car. 

 

In the sequel the paper analyses analogous job assignment problems, and describes 

the mathematical formulation of the parking place sharing algorithm proposed. In 

section IV some case studies are presented and their results analyzed to confirm the 

validity of the proposed approach. Finally, some conclusions are extracted and further 

developments are suggested.  

 

Mathematical model 

As has already been seen, the problem of parking place assignment is related to some other 
classical assignment or scheduling problems such as assignment problem or timetabling.  
 
 

These problems have a combinatorial nature and the number of constraints and 

variables increases exponentially as in the parking place assignment problem. 

However, the current problem has some additional characteristics (which will be 

defined in the following mathematical formulation) that make it different. The 

mathematical formulation of the job assignment problem, as explained in [13], is: 
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where i are jobs and j persons, and n the total number of jobs and persons, which in 

this model coincide. Cij represents the assignment cost of job i to person j. The job 

assignment is a variable defined as 

 

1 job  assigned to person 

0 otherwiseij

i j
x




 

 

The objective function minimizes the total assignment cost. The first constraint 

guaranties that each person performs one and only one job, and the second one that 

each job is done by one and only one person. This problem is a particular case of the 



transportation problem, which has an optimal solution with binary variables. This 

problem is also called Linear Assignment Problem (LAP), [14]. 

 

The parking place assignment problem extends the assignment problem across time. 

The time scope of the model spans over the next 24 hours with a time unit of 1 hour. It 

may also be possible to consider a shorter time window with a time unit of 30 minutes 

or a 2-day scope with a 2-hour time unit. The assignment variable can be redefined to 

include a new dimension k, corresponding to hours: 

 

1 demand  supplied with offer  in hour 

0 otherwiseijk

i j k
x





 

 

where demands are cars to be parked, and offers are the available parking places.  

 

Another important modification is the introduction of a multiobjective function, see 

[15], that directs the problem towards more realistic solutions. On the one hand it is 

important to maximize the number of attained assignments as a primary objective of a 

matchmaker company. On the other hand a second objective is client satisfaction that 

is achieved by minimizing the distance between each demand and offer, and 

maximizing also the assignment familiarity, which is 1 when the same place has already 

been assigned to the same demand in the recent past, and 0 otherwise:  

 

1 demand  supplied with offer  in previous days

0 otherwiseij

i j
F




 

 

[16] introduces the concepts of priority and seniority, to prioritize some persons over 

others. Although it is similar to the familiarity, the latter is a dynamic attribute, since it 

depends on the previously offers and demands matched. In addition, familiarity is not 

a constraint but a term in the objective function, which gives more flexibility to the 

solution. In addition, priorities can be assigned to clients based on a price 

discrimination scheme. The more they pay the better chances to be assigned. 

 

Both distance and familiarity have been normalized. The distance has been normalized 

by dividing it by the maximum acceptable distance D established by each client. 

Familiarity has been normalized by dividing by the number of days taken into 

consideration. Since the algorithm has been conceived to maximize the number of 

assignments, normalized distance and familiarity have been weighted by parameters α 
and β. These weights must be small enough to make both factors negligible with 

respect to the number of assignments, so that these objectives are only used to select 

from solutions having the same number of assignments. Nevertheless, another cases 

giving priority to client satisfaction are compatible with the model proposed. 

 

The parking place assignment problem can now be stated as:  
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where parameter Dij is the normalized distance between the demand i and offer j, and 

Hi is the duration of the parking demand. x
ij 
defines the assignment of a demand to an 

offer at any time  

 

1 demand  assigned to offer  in any hour

0 otherwiseij

i j
x
′ 


 

The first two constraints correspond to non simultaneousness hypothesis. A car is 

parked at most in only one place and a place is used by at most only one car at any 

given hour. The third constraint represents the relation between the hourly assignment 

variable xijk and the parking status of the car x
ij
. A car is considered parked if and only if 

the car remains stopped at the same parking place during all the demanded hours Hi. The 

new variables yijk and zijk correspond to the beginning and end of the assignment. 

 

In the last three constraints we propose a new formulation for establishing the 

consecutiveness of the parking hours by introducing the variables yijk and zijk for 

detecting the beginning and end of the assignment, respectively. 
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The first one expresses that the end of the parking time occurs Hi hours after its beginning. 

The second one states the relation between hourly parking assignment variables and the 

beginning and ending variables. Observing the second equation, if the car is not parked at 

hour k − 1, xijk−1 = 0, and is parked at hour k, xijk = 1, then the parking period begins at k 
and necessarily yijk = 1 and zijk = 0. On the contrary, if the car is parked at hour k − 1, xijk−1 

= 1, and is not parked at hour k, xijk = 0, then the parking period ends at k, and 

automatically zijk = 1 and yijk = 0. The last equation establishes that at most one beginning 

and one end can be set. 

 

An additional condition ijk ∈ Φ is introduced by allowing the tuple ijk to be set only when 
parking place is available, a car is demanding it, the car fits into the parking place, and any 

other convenient condition holds such as the maximum allowed walking distance D
¯
.  



 

As these constraints are the most difficult to solve, an alternative formulation for the 
consecutiveness constraints has been tested, suppressing the variables zijk corresponding to 
the end of the assignment  
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The first constraint states that if the parking period begins at hour k, yijk =1 and the last Hi 

xijk variables have to be equal to 1. The second one is similar to the corresponding one in the 
earlier formulation but without using the variable zijk, corresponding to the end of the 
assignment. It changes from an equality to an inequality, eliminating zijk. The third one says 
that at most one beginning of assignment is allowed. This leads to the following complete 
second formulation: 
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The number of constraints and binary variables of both formulations is shown in table XX, 

being the capital letters the cardinal of the respective sets. However, the number of 

continuous variables decreases substantially in the second formulation, and therefore the 

number of non zero elements. 

 

 Formulation 1 Formulation 2 

Constraints 2 2 ( )IJK IJ I J K+ + +  2 2 ( )IJK IJ I J K+ + +  

Continuous 

Variables 

2IJK  IJK  

Binary 

Variables 

IJK IJ+  IJK IJ+  

 

If we suppose that there are 1000I =  cars and 1000J =  parking places to manage 

during 24K =  hours, it can be easily observed that the problem becomes very large, as 

it will be shown in the case study. 

 



Case Study 

To check the validity of the proposed model, as well as its solution time, nine examples 

have been worked out. The examples have different parameters values to show their 

influence in the final solution. The first problem is composed of 200 offers and 

demands, scattered in a large area (see 1), and the number of assignments is 

prioritized compared to familiarity or distance. The second and third examples have 

nearer offers and demands, but they differ in the maximum allowed walking distance. 

The fourth and fifth are examples similar to the second and third ones (see 2), but the 

offers and demands are nearer than the first example. The next two examples uses 500 

offers and demands differing only in the maximum allowed walking distance, as in the 

previous cases. The last examples use 1000 offers and demands, giving a considerable 

weight to the familiarity in the last case. The parameters of all these examples are 

summarized in Table 1.  

 

 
Figure 1 Demands (red circles) and offffffffers (blue cross) of C1 

 

Parameter ‘size’ corresponds to the number of offers and demands. For simplicity, in 

these cases the number of demands and offers were the same. The parameters α and 

β are used to weight distance and familiarity depending on their values. Current cases 

were focused on maximizing the number of assignments, and therefore small values 

were used for these parameters. These parameters reflect the decision priorities and 

therefore may be changed depending on the needs of the application.  

 

Recently, the authors have been developing a system to allow people sharing their 

parking places based on mobile phone communications with a startup company, see 

[8], with a similar version of the proposed algorithm. The data for the case study have 

been taken from real data of this Spanish parking place board website and 

complemented with random values. Geographical locations correspond to real offers 

and demands of parking places, while familiarity data have been randomly created. 



Distances correspond to real cases. The familiarity matrix takes into account just the 

last day. That means that each row (demand) has only one 1 corresponding to the 

parking place where the car was parked the day before. In commercial operation, 

familiarity should be computed as the time ratio that the car is parked in each place. 

 

 
Figure 2 Demands and offers for C4 and C5 

 
 size α  β  D  [m] 

C1 200 1/500 1/10000 200000 

C2 200 1/50 1/1000 1000 

C3 200 1/50 1/1000 2000 

C4 200 1/50 1/1000 1000 

C5 200 1/50 1/1000 2000 

C6 500 1/50 1/1000 1000 

C7 500 1/50 1/1000 2000 

C8 1000 1/50 1/1000 2000 

C9 1000 1/50 1/5 2000 

Table 1 Case study data 

 

Data corresponding to the sizes of cars and places were randomly generated. The 

offering and demanding hours for each car and parking place have also been 

generated randomly, but coherently with everyday real situations. Each offer and 

demand must correspond to one of the following type of parking demand/offer: 

• Night time  
• Day time (morning + afternoon)  
• Morning time  
• Afternoon time  
 



Analysis of the simulation results 

 

The model has been coded in GAMS 22.9 and run in an Intel Xeon 2.33 GHz CPU with 8 

cores, 8 GB RAM and Windows Server 2003 Enterprise x64 Edition. CPLEX 11.2 was 

used as MIP solver with dual simplex method. 

 

Table 2 shows the number of assignments made, the weighted familiarity and distance 

and the objective function of the solution for each case example. As can be observed 

the number of assignments has a very important weight with respect to familiarity and 

distance. In addition, familiarity has a very low weight compared to distance, being 0 in 

cases C2 to C5. The familiarity matrix, being generated randomly because of the lack of 

real values, gives familiarity to places and cars that cannot be matched together. This 

forces the algorithm to choose parking places with no familiarity, resulting also in a low 

familiarity weight in the objective function. To show the importance of the familiarity, 

in the last example, the weight given to it has been considerably increased. That way, 

the familiarity becomes more important than the distance. 

 

Tables 3 and 4 show the sizes of the corresponding optimization problems, expressed in R 

constraints, CV continuous variables, BV binary variables and E non zero elements. These 

examples show that the model is fast enough to be used in a production environment. 

Indeed every problem with a size lower than 1000 offers and demands can be solved in 

around 5 seconds. Furthermore, the solver is able to find the optimal solution. The second 

formulation requires much less computing time, as can be seen in all the tested cases, but 

especially in the last ones which are the largest ones. 

 

 # of Assign.  Familiar.  Distance  O.F.  

C1  136  0.001  -0.013  135.988  

C2  150  0  -1.119  149.881  

C3  170  0  -0.935  169.065  

C4  151  0  -1.148  149.852  

C5  168  0  -0.944  167.056  

C6  286  0.001  -2.616  283.385  

C7  391  0.001  -3.338  387.663  

C8  875  0.002  -6.617  868.385  

C9  875  1.6  -6.706  869.894  

Table 2 results for each case 

 

 R  CV  B  E  Time [s]  

C1  61403  242505  38933  471453  1.4  

C2  19454  71646  11066  136318  0.4  



C3  37963  149021  23209  284520  0.9  

C4  20703  78507  11399  145993  0.5  

C5  41281  165893  24241  309961  0.9  

C6  23064  69235  11247  137197  0.4  

C7  54651  189641  30853  374225  1.2  

C8  221962  813848  132532  1612658  5.2  

C9  221962  813848  132532  1612658  5.8  

Table 3 size for each case on formulation 1 

 

As can be seen, cases C8 and C9 have the same values in time and sizes. The input for both 
cases is the same. The only difference is the value of β, the weight parameter of the 
familiarity. The table 2 shows that in the latter, the familiarity has increased considerably, to 
the detriment of the distance. The algorithm has chosen more familiar places although they 
are farther due to the importance of the familiarity in this case.  
 

For problem sizes much bigger than those presented in the table a division by city districts 
can be attempted. Therefore, suboptimal solutions can be found in reasonable solution 
times. As the parking place assignment problem is solved for every hour for the next 24 
hours a verification mechanism is introduced in real life for each client to explicitly confirm 
his/her demand or offer, so the problem is solved only for those daily confirmed requests.  
 
 

 R  CV  B  E  Time [s]  

C1  61403  140721  38933  425314  0.7  

C2  19454  41358  11066  120063  0.2  

C3  37963  86117  23209  251298  0.5  

C4  20703  44955  11399  125496  0.3  

C5  41281  95069  24241  267975  0.5  

C6  23064  40243  11247  126393  0.3  

C7  54651  110249  30853  343508  0.7  

C8  221962  473192  132532  1485781  3.2  

C9  221962  473192  132532  1485781  3.3  

Table 4 size of each case on formulation 2 

 

Conclusions 

This paper proposes a new algorithm to solve the parking place assignment problem. It 
maximizes the number of assignments, minimizing the distance between the assigned place 
and the final destination requested. It also considers as additional criterion the maximization 



of the familiarity of the client with a given place.  
 

The model has been formulated as a MIP problem, coded in GAMS language and solved 

using CPLEX XX.XX. It can be executed on a rolling mode at least once per hour with a time 

scope of 24 h in advance, taking into account just the demands and offers previously 

confirmed by the clients. 

 

The model finds the optimal solution in a very short time for all the real cases studied. A 

previous version has been implemented in a commercial environment [8], and is currently 

supplied with real data and continuously making assignements, proving its applicability in 

a real environment.  

 

If the problem sizes become too big computer memory could limit worsening the solution 
process. In that case metaheuristic algorithms (such as tabu search, genetic algorithms, etc., 
see [17] and [18] for recent developments in using heuristic and evolutionary algorithms for 
timetabling problems), or other alternative approaches (such as constraint programming) 
could be used to obtain optimal or quasi-optimal solutions with less computer resources, or 
to cooperate with traditional methods to seek for optimal assignements. 
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