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Abstract – Daily bidding is an activity of paramount 

importance for generation companies operating in day-
ahead electricity markets. The authors have developed a 
strategic bidding procedure based on stochastic program-
ming to obtain optimal bids. In this paper, this large-scale 
mathematical programming problem is solved under the 
Benders and Lagrangian relaxation frameworks to deter-
mine the adequacy of these techniques to solve the optimal 
bidding problem. Numerical examples illustrate the conclu-
sions of this research. 
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1 INTRODUCTION 
Competitive electricity markets that operate on a 

daily basis have been organized in many regions 
throughout the world so as to enhance the efficiency of 
the bulk electric industry. This has triggered an intense 
research effort to devise new optimization tools devoted 
to the maximization of the companies’ long-term profits 
in the new framework. 

In particular, the development of optimal bids for a 
generation company that participates in a day-ahead 
electricity market has attracted much attention. Li et al. 
[1] propose an iterative model in which each generation 
company solves a self-unit commitment problem based 
on a set of hourly price scenarios and builds an offer 
curve formed by a fixed number of bids. Zhang, Wang 
and Luh [2] first define a model for the day-ahead mar-
ket and obtain a closed-form expression both for the 
marginal clearing price and for the energy sold by the 
company as functions of the company’s quadratic offer 
curve parameters (which have to be optimized) and of 
the competitors’ parameters (which are estimated). They 
then formulate the company’s optimal bidding problem 
and decompose it using Lagrangian Relaxation, which 
leads to a set of individual generation unit subproblems 
and an additional bidding subproblem. 

Thus, the general trend indicates that offering electric 
energy to a day-ahead market must be considered as a 
twofold problem. 

On the one hand, the company’s revenues are subject 
to the future price of energy, which depends on the un-
known behavior of its competitors. Consequently, the 
problem has a stochastic nature and a set of market 
scenarios has to be considered, which enlarges the size 
of the problem. In addition to this, due to the fact that 

electricity cannot be stored and to the frequent lack of 
response from the demand side, the company might have 
the ability to affect the price of electricity by changing 
its market position. However, increasing prices above 
long-term average costs might not be a good policy, as it 
leads to the entry of new competitors. In this context, the 
company’s revenues can be expressed as a non-concave 
function of its production [3]. 

On the other hand, the strategy followed by the com-
pany results in a generation schedule. Hence, both fuel 
costs and operating constraints must be contemplated, 
which emphasizes the important role still played by 
traditional short-term planning tools such as unit-
commitment or economic-dispatch models. 

The development of profit-maximizing bidding 
strategies requires the usage of specific mathematical 
programming methods due to the non-concave nature of 
this large problem. In our paper two powerful tech-
niques (Benders decomposition and Lagrangian relaxa-
tion) are evaluated and compared. 

Benders algorithm ([4] [5]) is a straightforward ap-
proach to this problem by formulating a master market 
problem and a generation scheduling subproblem. This 
procedure has given excellent results when solving the 
stochastic day-ahead-bidding problem [6]. 

Lagrangian relaxation (LR) is the alternative for large 
non-convex problems with complicating constraints [7]. 
In the bidding problem the decisions taken by the com-
pany for each market scenario are used to build offer 
curves, which must be increasing (low-cost generation 
should be offered beforehand). This establishes a link 
between each pair of scenarios, which would be inde-
pendent otherwise. By relaxing these increasing con-
straints the problem naturally decomposes into as many 
subproblems as scenarios are being considered. The 
iterative solution of the Lagrangian dual problem yields 
a very good approximation for the company’s optimal 
weekly bidding strategy. 

In this paper, computational results are reported 
about the performance of Benders decomposition and 
LR in the solution of the optimal bidding problem. We 
begin by formulating the complete optimal bidding 
problem and identifying complicating variables and 
complicating constraints. The problem structure is then 
exploited to decompose it under the Benders and LR 
frameworks. Two numerical cases are solved with both 
approaches to illustrate the features of these techniques. 



 

2 PROBLEM STATEMENT 
We consider the problem of developing optimal bid-

ding strategies for a power generation company operat-
ing in a day-ahead electricity market, which consists of 
24 hourly auctions. Assuming risk neutrality, the com-
pany decides its offers in order to maximize its expected 
profits, given as the difference between expected reve-
nues and expected costs. 

After the day-ahead market clears, the company is in-
formed about its net energy sales in MWh for each time 
period (typically one hour). The company then has to 
decide how to produce this energy. This results in an 
hourly generation schedule for the company’s generation 
system, which must observe the units’ technical con-
straints. The company must also consider the possibility 
of changing its net energy sales by participating in the 
subsequent hour-ahead market, which also consists of 24 
hourly auctions 

2.1 Day-ahead market model 
In our model, the uncertain market outcome is char-

acterized by a collection of hourly residual-demand 
realizations. We assume that the randomness of this 
collection of residual-demand curves has finite support. 
Index k is used to denote the possible realizations or 
scenarios. Thus, market scenario k is represented by a 
collection of hourly residual-demand curves both for the 
day-ahead and the hour-ahead market. 
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Figure 1:  Market scenarios characterized by residual-demand 
collections. 

The company faces a finite set of possible hourly re-
sidual-demand scenarios and has to decide the hourly 
offer curves that must be submitted to the day-ahead 
market in order to maximize its expected profit, assum-
ing that the shape of the offer curve between each two 
residual-demand scenarios is irrelevant. Therefore, se-
lecting a bidding strategy is limited to deciding the posi-
tion of the intersection points between the offer curve 
and the residual-demand scenarios. 

Accordingly, bidding strategies will be characterized 
hereafter by a set of quantities and their corresponding 
prices. If the company decides to bid the pair ( ),kn knq p  
and the residual-demand curve corresponding to sce-
nario k actually occurs in hour n, then the company will 
sell knq  MWh and the market clearing will be knp . 

Bidding strategies must be formed by increasing of-
fers to be admissible. Thus, the following conditions 
hold for each pair of offers ( ),k k ′  submitted for hour n: 

, ,q
kn k n kk nq q x M k k K′ ′ ′− ≥ − ∈ , (1) 

( )1 , ,q
k n kn kk nq q x M k k K′ ′ ′− ≥ − − ∈ , (2) 

, ,p
kn k n kk np p x M k k K′ ′ ′− ≥ − ∈ , (3) 

( )1 , ,p
k n kn kk np p x M k k K′ ′ ′− ≥ − − ∈ , (4) 

where 'kk nx  is a binary variable and qM  and pM  are a 
big quantity and a big price, respectively. These con-
straints link the different market scenarios and compli-
cate significantly the solution of the problem. 

The company’s revenues, knr , for scenario k and hour 
n are approximated by a piecewise linear function using 
binary variables. As a result, expected revenues in the 
day-ahead market are estimated as follows: 

( ) ( )k kn kn
k K n N

R x r qπ
∈ ∈

= ∑ ∑E , (5) 

2.2 Modeling the generation system 
A typical generation system is formed by a combina-

tion of thermal units and hydro plants [8]. 
The cost of producing with a thermal unit, t T∈ , in 

scenario k and hour n, ctkn, has several contributions. 
Every thermal unit has a fuel consumption characteristic 
that can be approximated as a linear function of its 
power output, qtkn. Additional costs are due to operation 
and maintenance, self-consumption and start-ups, 
though we assume that unit commitment decisions are 
assessed with a weekly model. Thermal units also have a 
maximum capacity, a minimum stable output, and ramp 
rate limits. 

A hydro unit, h H∈ , transforms a water flow into 
electric energy, qhkn. We consider a constant energy/flow 
ratio for the current day. This is equivalent to modeling 
hydro reserves in terms of stored energy, expressed in 
MWh. Some hydro units can also operate in pumping 
mode, consuming electric energy, bhkn, to drive water 
back to the upstream reservoir. Hydro units have also 
upper and lower bounds for their operation variables, 
and reservoirs have minimum and maximum levels. We 
assume that a certain amount of energy is available for 
the considered day. 

2.3 Modeling the hour-ahead market 
The hour-ahead market allows agents to adjust the 

positions taken in previous markets. For example, a 
generation company that has suffered the outage of a 
unit after the clearing of the day-ahead market can buy 
in the hour-ahead market the energy that this unit was 
supposed to produce. Thus, the hour-ahead market guar-
antees that any position adopted by the company in the 
day-ahead market is feasible. In our model hour-ahead-
market residual-demand curves are represented as linear 
functions of the company’s net energy sales, h

knq . Ex-
pected revenues in the hour-ahead market are calculated 
based on the revenues estimated for each scenario and 
each hour, h

knr : 

( )h h h
k kn kn

k K n N
R r qπ

∈ ∈

= ∑ ∑E , (6) 



 

2.4 Modeling contracts 
Frequently, generation companies have the possibility 

of selling part of their energy through bilateral contracts, 
as an alternative to the spot market. If we consider a 
contract for c

nq  MWh at c
np  $/MWh, where cn N∈  and 

cN  is the set of hours affected by the contract, the ex-
pected revenues associated to this contract are given by: 

( )
c

c c c
k n kn n

k K n N

R p p qπ
∈ ∈

= −∑ ∑E  (7) 

2.5 Energy balance equation 
The strategies chosen by the company for the day-

ahead and the hour-ahead market, its bilateral contracts 
and its scheduling decisions are linked by an energy 
balance equation of the form: 

, ,h c
kn kn n gkn hkn

g G h H

q q q q b k K n N
∈ ∈

+ + = − ∈ ∈∑ ∑ . (8) 

2.6 Problem formulation 
The optimal bidding problem, as a result of previous 

comments and assumptions, has the following formula-
tion: 

( ) ( ) ( )Max h h c c
k kn kn kn kn n kn n tkn

k K n N t
r q r q p p q cπ

∈ ∈

  + + − − 
  

∑ ∑ ∑  

s.t.: day-ahead-market constraints, 
 generation-system constraints, 
 hour-ahead-market constraints, 
 energy balance equation. 

3 SOLUTION PROCEDURES 

3.1 Problem structure 
The optimal bidding problem comprises two distinct 

decision levels. On the one hand, the expected revenues 
of bidding strategies for the day-ahead market are evalu-
ated by means of a MIP model. On the other hand, gen-
eration costs and revenues in the hour-ahead market are 
estimated using a LP model. 

Obviously, the difficulty arises from the first part, due 
to the existence of binary variables introduced to deal 
with the non-concave nature of the problem. However, 
binary variables would not constitute a problem if cer-
tain constraints, such as those that establish a link be-
tween the offers presented for different market scenar-
ios, were not present. 

Two solution procedures can be considered as natural 
approaches given this problem structure: Benders de-
composition and Lagrangian relaxation. 

3.2 Benders decomposition 
Benders approach [4] is based on partitioning the 

given problem into a master problem, which includes the 
complicating variables, and a LP subproblem, which 
results from fixing the complicating variables. At each 
iteration, the master problem suggests values for the 
complicating variables. The subproblem then returns the 
corresponding optimal value of the objective function 
and a linear outer approximation of the influence of 
those variables on the objective function. This method 

has become a standard in stochastic programming to 
address multiple-stage problems in which some deci-
sions have to be made before some uncertain events take 
place, but where subsequent recourse actions are also 
possible [9], [10]. First-stage decisions are kept in the 
master problem, while second-stage recourse actions for 
each scenario are evaluated in the subproblem. If first-
stage decisions never yield infeasible subproblems the 
recourse is said to be complete. The optimal bidding 
problem can be expressed as a two-stage stochastic 
program with complete recourse. 

The master problem takes the following form: 
(MP) ( ) ( ){ }

,
Max

kn

c c
k kn kn n kn n

q k K n N
r q p p q

θ
π θ

∈ ∈
+ − +∑ ∑  

s.t.: day-ahead-market constraints, 
 ( ), 1,...,v vv

kn kn kn
k n

q q v Vθ θ λ≤ + − =∑∑  

where θ  is the outer linearization of the recourse func-
tion, vθ  is the value of the recourse function given by 
the subproblem at iteration v, v

knλ  is the dual variable of 

the energy balance equation and v
knq  is the energy de-

cided in (MP) at iteration v. 
The corresponding subproblem is expressed as: 

(SP) ( )
, ,
Max

h
kn gkn hkn

h h
k kn kn tkn

q q b k K n N t
r q cπ

∈ ∈

  − 
  

∑ ∑ ∑  

s.t.: generation-system constraints, 
 hour-ahead-market constraints, 
 energy balance equation. 

At each iteration, the master problem decides a bid-
ding strategy for the day-ahead market in the form of a 
quantity for each scenario k in each hour n, knq . The 
subproblem then evaluates the cost of producing this 
energy and chooses a strategy for the hour-ahead mar-
ket. As a result, an optimality cut is returned to the mas-
ter problem. A commercial solver can be used to itera-
tively solve both the MIP master problem and the LP 
subproblem. 

An interesting feature of the master problem in this 
particular case is that the bids chosen for different hours 
are only linked by the recourse function, θ . The re-
course function can also be expressed as the sum of 
hourly recourse functions, as follows: 

( ) , 1,...,v v v
n n kn kn kn

n n k
q q v Vθ θ θ λ = ≤ + − = 

 
∑ ∑ ∑ (9) 

where v
nθ  is the value of the recourse function for hour 

n given by the subproblem at iteration v. 
It is because of the recourse function that the master 

problem is not separable into hourly problems of the 
form: 
(MPn) ( ) ( )Max c c

k kn kn n kn n n
k K

r q p p qπ θ
∈

 + − +
 ∑  

s.t.: day-ahead-market constraints, 
 ( ), 1,...,v v v

n n kn kn kn
k

q q v Vθ θ λ≤ + − =∑  



 

However, it can be easily proven that any feasible so-
lution for (MPn, n N∈ ) is also a feasible solution for 
(MP). Therefore, a feasible startpoint can always be 
easily obtained by solving (MPn, n N∈ ). 

3.3 Lagrangian relaxation 
Lagrangian relaxation is a natural approach for large-

scale mixed-integer programs with complicating con-
straints. Instead of addressing the primal problem, which 
is non-convex and has complicating constraints, the 
Lagrangian dual is constructed in such a form that in 
each step of its iterative solution easier problems have to 
be solved. The main disadvantage of this approach is 
that the optimal solution for the Lagrangian dual is not a 
feasible solution for the primal maximization problem, 
though it constitutes an upper bound and a good ap-
proximation. In addition to this, it provides correct dual 
information about the MIP primal problem, which can-
not be obtained otherwise. 

In the optimal bidding problem two sets of complicat-
ing constraints can be identified: the one that forces 
offers to be increasing and the energy balance equation. 
The Lagrangian dual is formulated as follows: 

(LD) ( )
'

', ,
,

Min Max , , , , ,
h

kn kk n kn kn

gkn hkn

h
kn kn gkn hkn kn kk n

q q
q b

q q q b
λ µ

λ µ
 
 
 
 
 

L  

s.t.: day-ahead-market constraints, 
 generation-system constraints, 
 hour-ahead-market constraints, 
where knλ  is the Lagrange multiplier associated to the 
energy balance equation, 'kk nµ  are the Lagrange multi-
pliers associated to the constraints that force offers to be 

increasing and ( )', , , , ,h
kn kn gkn hkn kn kk nq q q b λ µL  is the 

Lagrangian, defined as: 

( )
( ) ( ) ( )

'

' ''
'

, , , , ,

 

          

          

                   

h
kn kn gkn hkn kn kk n

h h c c
k kn kn kn kn n kn n tkn

k K n N t

c h
kn gkn hkn kn n kn

g G h H

q q
kn k n kk nkk n

k k

q q q b

r q r q p p q c

q b q q q

q q x M

λ µ

π

λ

µ

∈ ∈

∈ ∈

>

=

   + + − − 
   

 
+ − − − − 

  

 + − +
 

∑ ∑ ∑

∑ ∑

∑

L

( )

( )

' ''

' ''

' ''

   1

                      

                      1

q q
k n kn kk nkk n

p p
kn k n kk nkk n

p p
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q q x M
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µ

µ

µ

−

−

 + − + −
 

 + − +
 

 + − + −  


 

The Lagrangian dual has been formulated so that the 
complicating constraints are relaxed. At each iteration v 
of the solution process, given a set of Lagrange multipli-
ers, the inner maximization can be performed by sepa-
rately solving the following set of subproblems. Firstly, 
a MIP day-ahead market subproblem (MSPkn) is ob-
tained for each scenario k and each hour n. 

(MSPkn)

( ) ( )

( )

( )

''
'

''

''

''

Max

   

  

                1

                

                1

kn

c c
k kn kn n kn n

q

v c
kn kn n

vq q
kn kk nkk n

k k
vq q

kn kk nkk n

vp p
kn kk nkk n

vp
kn kk nkk n

r q p p q

q q

q x M

q x M

p x M

p x

π

λ

µ

µ

µ

µ

≠

−

−

 + −
 

 − +
 

  + +  

 + − + −
 

 + +
 

+ − + −

∑

' '

' '

                

                

p

v vq q
knk kn k kn

v vp p
knk kn k kn

M

q

p

µ µ

µ µ

−

−

 
 

 + − +  

 + − +    

 

s.t.: day-ahead-market constraints. 
Notice that the binary variable 'kkx  is calculated 

when solving for scenario k, while 'k kx  is calculated 
when solving for k’. 

LP scheduling subproblems are formulated for each 
thermal unit (GSPt) and each hydro unit (GSPh): 

(GSPt) Max
tkn

v
kn gkn k tkn

q k K n N
q cλ π

∈ ∈
−∑ ∑  

s.t.: unit t’s constraints. 

(GSPh) [ ]
,

Max
hkn hkn

v
kn hkn hkn

q b k K n N
q bλ

∈ ∈
−∑ ∑  

s.t.: unit h’s constraints. 
Finally, a LP problem for each scenario k and each 

hour n is formulated for the hour-ahead market (HSP): 
(HSPkn) ( )

, ,
Max

h
kn gkn hkn

vh h h
k kn kn kn kn

q q b k K n N
r q qπ λ

∈ ∈
−∑ ∑  

s.t.: hour-ahead-market constraints. 
Lagrange multipliers are updated at iteration v by 

solving an outer linearization of the Lagrangian dual 
problem: 
(DP)

', 0
Min

kn kk n

w
λ µ ≥

 

s.t.: 

( )

( )
' ''

'

' ''

         

         

                       1

vv v vh c c
k kn kn n kn n tkn

n N t

v vv v v c h
kn gkn hkn kn n kn

g G h H

v v vq q
kn k n kk nkk n

k k

v v vq q
k n kn kk nkk n

w r r p p q c

q b q q q

q q x M

q q x M

π

λ

µ

µ

∈

∈ ∈

>

−

 
≥ + + − − 

  

 
+ − − − − 

  

 + − +
 

+ − + −


∑ ∑

∑ ∑

∑

( )
' ''

' ''

                       

                       1

v v vp p
kn k n kk nkk n

v v vp p
k n kn kk nkk n

p p x M

p p x M

µ

µ−


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 + − +
 

 + − + −  

 



 

4 NUMERICAL RESULTS 

4.1 Implementation 
The optimal bidding procedure has been implemented 

in GAMS language [11], together with the Benders and 
Lagrangian relaxation algorithms. All subproblems have 
been solved with CPLEX 7.0. 

4.2 Study case 1 
A small study case for a generation company facing 

two residual-demand scenarios in each hour is solved in 
this section to illustrate the performance of both algo-
rithms. Residual-demand data have been obtained from 
the Spanish Market Operator [12] to replicate the prob-
lem faced by Iberdrola on July 18th, 2001. The historic 
information used to build the two residual-demand sce-
narios corresponds to July 13th and July 17th. Residual-
demand curves are represented by piecewise linear ap-
proximations formed by 25 segments between 0 €/MWh 
and 100 €/mWh (Figure 2). 

0

10

20

30

40

50

60

70

80

90

100

0 2000 4000 6000 8000 10000 12000 14000
Energy (MWh)

Pr
ic

e 
(€

/M
W

h)

Scenario # 1 Scenario # 2

 
Figure 2:  Residual-demand scenarios for hour 21. 

This case has 12399 equations and 10813 variables, 
1910 of which are binary. It has been solved in 20.89 s 
and the resulting expected profits are 6.822952 M€. 

Using Benders decomposition, the same solution is 
obtained in 41 s and 30 iterations. The master problem 
is kept partitioned in hourly problems until iteration 28. 
As can be seen in Figure 3, the partitioned master 
problem is more restrictive and cannot be considered as 
an upper bound for the original problem. However, any 
feasible solution for the partitioned master problem is 
also a feasible solution for the master problem. 

 

6

6.5

7

7.5

8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
It eration

O
bj

ec
tiv

e 
fu

nc
tio

n 
(M

€)

Objective funct ion Master problem

 
Figure 3:  Evolution of the objective function in Benders. 

The strategy suggested by the model for scenario # 1 
is shown in Figure 4. Net sales in the day-ahead market 
are constrained by a minimum-market-share limit. 
Additional sales are carried out through the hour-ahead 
market, mainly during off-peak hours. Energy purchases 
for pumping take place in the day-ahead market. 
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Figure 4:  Strategy for market scenario #1 in Benders. 

The dual variables obtained for both scenarios are 
shown in Figure 4. Marginal revenues for scenario #1 
are higher than for scenario #2. 
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Figure 5:  Dual variables returned by Benders algorithm. 

Solving the dual problem using Lagrangian relaxation 
requires an intense computational effort. Among the 
variety of methods commonly used to update Lagrange 
multipliers, we have chosen to solve an outer lineariza-
tion of the dual problem. Convergence is accelerated by 
dynamically updating the multipliers’ feasibility region 
[13]. 
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Figure 6:  Evolution of the objective function in LR. 



 

284 iterations and 261 s are needed to reach a dual 
solution of 6.842557 M€ with a tolerance of 10-6 M€. 
Figure 7 shows the resulting Lagrange multipliers. Table 
1 summarizes the performance of both algorithms for 
this numerical case. 
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Figure 7:  Lagrange multipliers reurned by LR. 

 Benders LR 
Time (s) 41 614 
Iterations 30 284 

Table 1:  Performance of the algorithms for study case 1. 
Due to non-concavities of the primal maximization 

problem, in general the dual solution is not a feasible 
primal solution, because the relaxed constraints do not 
usually hold. In our case the energy balance equation 
and the increasing constraints have been relaxed. Figure 
8 shows that energy production for scenario #º does not 
correspond to energy sales in the day-ahead and hour-
ahead markets. In addition to this, the production profile 
seems rather unstable. This effect has already been re-
ported by Guan et al. [14]. However, Table 2 shows that 
both solutions are almost equivalent in terms of energy. 
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Figure 8:  Strategy for market scenario #1 in LR. 

Benders LR  
Sc. 1 Sc. 2 Sc. 1 Sc. 2 

Generation 146.11 144.73 146.39 144.77
Pumping 1.67 1.99 2.40 2.40 
Day-ahead market 137.99 135.64 137.99 135.07
Hour-ahead market 6.45 7.20 6.37 7.25 

Table 2:  Energy balance in GWh for study case 1. 

4.3 Study case 2 
We now consider a six-scenario version of the previ-

ous case. This problem has 38552 equations and 33007 
variables, 6259 of which are binary. CPLEX 7.0 is un-
able to obtain a feasible solution for it. 

Benders algorithm gives a feasible solution of 
5.688405 M€ to this problem in 360 s and 19 iterations, 
keeping the master problem partitioned until iteration 17 
(Figure 9). In iterations 18 and 19 the execution time of 
the branch and bound algorithm used to solve the MIP 
master problem was limited to 60 s, so optimality cannot 
be guaranteed. However, the quality of this solution has 
been evaluated by using it as initial point to solve the 
original MIP problem with CPLEX 7.0. After 4000 s of 
execution, CPLEX is unable to improve this solution 
and its branch and bound algorithm reports a best possi-
ble solution of 5.7160 M€. This means that, at worst, 
Benders algorithm solution is suboptimal in 0.49 %. 
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Figure 9:  Evolution of the objective function in Benders. 

Solving this problem with the LR algorithm requires 
tuning the multipliers’ dynamic feasibility region [13]. 
When the multipliers are allowed a maximum variation 
of 0.01 c€/kWh, 14 hours of LR execution are insuffi-
cient to reach the solution. As shown in Figure 10, the 
outer linearization gives an approximation of 5.801604 
M€ for a point where the dual objective function is 
5.827910 M€. On the contrary, if the multipliers’ maxi-
mum variation is narrowed in each iteration according to 
the formula 0.02 c€/kWh

number of  current iterationmax. variation =  until 
iteration number 500 and then is kept fixed, the dual 
solution, 5.807063 M€ is reached in 643 iterations. 
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Figure 10:  Evolution of the objective function in LR. 



 

Figure 11 shows the evolution of the LR algorithm 
when the maximum variation that Lagrange multipliers 
are allowed is reduced in each iterarion until iteration 
500. It seems clear that Benders algorithm is a better 
choice for this problem, given that it returns a primal 
feasible solution in less time and does not require tuning 
to improve its performance. 
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Figure 11:  Detail of the objective function’s evolution in LR. 

5 CONCLUSIONS 
In this paper two solution strategies have been tested 

to address the optimal bidding problem of a generation 
company operating in a day-ahead electricity market. 

According to our results, Benders decomposition is 
more suitable than Lagrangian relaxation for solving this 
particular problem. Benders decomposition guarantees a 
feasible solution in significantly less time. Additionally, 
an upper bound can always be obtained by solving the 
LP problem that results from relaxing the integrality 
constraints. 

The major drawback of Benders algorithm lies in its 
inability to deal with the weekly stochastic unit-
commitment problem, where the size of the master prob-
lem becomes unmanageable and the scheduling sub-
problem is non-concave due to start-up costs. On the 
contrary, Lagrangian relaxation seems the best approach 
to make start-up decisions on a weekly basis taking into 
account residual-demand scenarios. Future research will 
be oriented to the development of such a model and the 
usage of advance techniques to update the multipliers. 

Eventually, we conclude that both techniques happen 
to be complementary and can be coordinated to address 
the optimal bidding problem. 
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