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Abstract – Decomposition models with integer 
variables usually decompose into a master problem 
that comprises all the integer variables and 
subproblems, which evaluate the remaining 
variables. Subproblems with integer variables 
introduce additional difficulties and require the use 
of nonlinear duality theory. In this paper we 
address the solution of a mixed integer 
hydrothermal coordination problem combining 
nested Benders decomposition and lagrangean 
relaxation. An extensive computational study 
applied to a large-scale hydrothermal problem is 
presented. 
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1 INTRODUCTION 
Hydrothermal coordination problems with multiple 

stages usually present staircase structures that can be 
exploited to decompose the problem [8]. In this sense, 
Benders [1] decomposition appears as a natural way to 
solve LP problems, breaking up the hydro reserve 
balance equations that connect stages. 

This situation is generalized when the problem is 
divided into multiple stages via nested decomposition 
and linear stochastic problems are solved forming 
adequate subproblems. The common feature of this 
decomposition technique is the convexity requirement 
for the subproblems, which provides an easy way of 
calculating dual variables with a general algorithm. 
This requirement limits the appearance of integer 
variables in the model to those formulated at the master 
problem and simplifies further model stages because of 
the necessity of considering only continuous variables 
at subproblems. 

However, models can strictly require the use of 
integer variables at subproblems and specific 
decomposition algorithms have to be developed. This is 
the situation of the model presented in this paper, in 
which integer variables appear when modeling 
commitment decisions for thermal units and input-
output nonlinear curves for hydroelectric units. These 
curves are approximated by piecewise linear functions 
and binary variables are used to select a specific 
segment over the polygonal. 

Under the Benders framework, when subproblems 
are convex (e.g., linear) the recourse function is also 
convex. This provides the possibility of solving the 
problem by an outer approximation algorithm of this 
recourse function, together with an infeasibility 

criterion that excludes infeasible first stage solutions by 
introducing feasibility cuts. 

The situation is slightly different for nonconvex 
subproblems because the recourse function is 
nonconvex in general. Introducing lagrangean 
relaxation to solve those subproblems approximates the 
lower convex envelope of the recourse function, and is 
a natural way to solve decomposition problems with 
integer variables at all stages. 

This approach is easily extended to nested situations 
and stochastic problems formulated via a scenario tree. 
The presented algorithm divides both a deterministic 
and a stochastic problem into subproblems and 
sequentially solves them passing down variable 
decisions and receiving back dual variables obtained by 
lagrangean relaxation to form outer approximations of 
the recourse functions. 

Tree traversing strategies turn out to be quite 
different when looking for an optimal solution or just 
looking for a feasible one. In this sense, different 
strategies have been developed and tested and results 
are presented regarding execution times and quality of 
the integer solutions. The stochastic problem allows the 
aggregation of scenario tree nodes forming arbitrary 
subtrees that are solved with this technique as the 
algorithm proceeds. Numerical results of different 
aggregation techniques are also reported. 

The algorithm presented in this paper is an extension 
of decomposition theory and results from Benders [1], 
Geoffrion [5,6], Van Slyke and Wets [9] in stochastic 
programming and convex analysis. It deals with 
infeasibilities at LP and MIP subproblems and produce 
optimality cuts at feasible LP and MIP subproblems. It 
is especially suitable for very large-scale problems due 
to the possibility of solving much bigger problems than 
those accepted by current MIP solvers. 

An alternative approach to solve MIP problems 
within a decomposition framework is to consider the 
integer L-shaped method [7]. It has the disadvantage of 
incorporating extra discrete variables as the algorithm 
proceeds. On the contrary, it does not requite 
lagrangean relaxation and could also reduce time 
solutions. 

The paper presents a review of Benders 
decomposition and continues with lagrangean 
relaxation and its inclusion within a decomposition 
framework as classical theory does. Remaining sections 
are devoted to numerical implementation and results. 
Conclusion states limitations, advantages and future 
improvements of present work. 



 

2 BENDERS DECOMPOSITION 
We consider problems with the following staircase 

structure 

 (P) 

1 2

11 1

21 22 2

min
 

0, 0; ,

= +
=

+ =
≥ ≥ ∈ \n

z c x c y
A x b
A x A y b
x y x y

 (1) 

Benders decomposition turns the previous problem 
into 
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where 

 (S) { }2 22 2 21( ) min / / 0θ = = − ≥x c y A y b A x y  (3) 

and V  represents a set that guarantees second stage 
feasibility for first stage solutions. For LP problems 
strong linear duality leads to convexity of the recourse 
function because 

 { }2 21 22 2( ) max ( ),θ π π= − ≤x b A x A c  (4) 

and convexity for the feasibility first stage set V  
results in a similar way by a direct use of Farkas’ 
lemma. 

 { }2 21 22/ ( ) 0 / 0nV x b A x Aσ σ σ= ∈ − ≤ ∀ ≤\  (5) 

The difficulty is that the set V  and the function θ  
are only known by their implicit definitions. So a 
natural way to proceed consists on an outer 
approximation algorithm that solves a relaxed master 
problem RMP and introduces additional constraints 
when necessary by solving the updated subproblem S 
and obtaining an optimality cut or a feasibility cut. 
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where { }22extr 0,k A e eσ σ σ∈ ≤ − ≤ ≤ −  and 

{ }22 2extrj A cπ π∈ ≤ . 
The two-stage linear Benders decomposition 

algorithm is summarized in the following steps 
 

step 0 define tol > 0 , z = −∞ , z = ∞
step 1 solve relaxed master problem RMP

obtain ( , )n nx θ
obtain lower bound 1 n nz c x θ= +

step 2 form RHS subproblem

solve subproblem S and obtain ny
if subproblem is infeasible

obtain 1σ +k ; do { }1= ∪ +K K k

if subproblem is feasible

obtain 1π +j ; do { }1= ∪ +J J j

obtain upper bound 1 2n nz c x c y= +
step 3 (stopping rule)

if tolz z z− < ⋅ then stop
goto step 1

 
Benders decomposition algorithm is generalized to 

multistage and stochastic situations forming the 
equivalent deterministic problem and solving it via 
nested decomposition. 

3 LAGRANGEAN RELAXATION 
The assumption of continuous variables and linear 

subproblems is dropped away when other 
characteristics have to be modeled and binary or 
discrete variables are required. This situation notably 
increases problem difficulty because branch and bound 
or cutting plane methods are necessary to solve the 
problem and sensitivity analysis is no longer valid. 

The general structure of the problem remains equal 
and its staircase structure invites to proceed with an 
outer approximation algorithm in a similar way to the 
linear case. 
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Subproblem can be interpreted as a parametrized 
family of subproblems and the recourse function ( )θ x  
as the perturbation function that gives the optimal value 
of the subproblem for each first stage value. 
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This perturbation function is nonconvex and the 
solution of the master problem would require its 
convexification. Geoffrion’s results [5] establish that 
the lower convex envelope of the perturbation function 
is precisely the function 
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It should be taken into account that this 
convexification is computed over \n  and that, in case 
x  is constrained to belong to { }11 1= =X A x b , the 
previous function represents a lower approximation to 
the lower convex envelope. However, it is enough to 
obtain good first stage variable solutions. The 
difference between this approximation and the exact 
lower convex envelope can be interpreted as an 
extension of the duality gap. 

Trivially, the previous representation satisfies the 
integrality property assumption that guarantees that the 



 

value of the previous problem is not altered by solving 
it via lagrangean relaxation. So the lagrangean is 
formed as 

 ( )* 2 22 2 21( , )L y c y A y b A xλ λ= + − +  (10) 

and the dual function 

(S*) 
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The dual problem D* is defined as 
 (D*) { }max ( ), 0λ λ ≥w  (12) 

Realize that the dual function is concave and it can 
be obtained as the pointwise minimum of a family of 
linear functions. It is traditionally optimized by a 
cutting plane method forming a relaxed master dual 
problem RD* that is updated with different solutions of 
the dual subproblem S*. 
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The lagrangean relaxation algorithm is stated as 
 
step 0 define tol > 0 , z = −∞ , z = ∞
step 1 solve relaxed master dual problem RD*

obtain dual values ( , )k kw λ
obtain upper bound kz w=

step 2 form objective function subproblem S*

solve subproblem S* and obtain 1+ky
obtain lower bound 2 1kz c y +=
do { }1= ∪ +K K k

step 3 (stopping rule)
if tolz z z− < ⋅ then stop
goto step 1

3.1 Infeasibility 
In previous developments we assumed second stage 

subproblem feasibility. This condition should be tested 
prior to solving the problem, in an equivalent manner 
as phase 1 proceeds within the simplex algorithm. At 
this moment we can assume without loosing generality 
that the system 

 { }2 232 3conv , 0, n mY A y b y y′ = = ≥ ∈ ×\ Z  (14) 

has a solution. This assumption does not represent any 
extra condition for the problem because infeasibility of 
this problem implies infeasibility of the original 
problem, which is assumed to be feasible. 

Farkas’ lemma translates the concept of infeasibility 
to the solution of an optimization problem that 
represents the minimization of infeasibilities. In case of 
positive solution of this problem then the dual variables 
are used to formulate a constraint that excludes that 
infeasible solution. This idea is easily extended to the 
working case and a minimization problem is formed in 
the following way 
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which has a suitable structure to be solved via 
lagrangean relaxation. 

We consider the lagrangean 
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which turns the dual function into 
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Then, the dual problem D* consists on 
 (D*) { }*max ( ), 1 1w λ λ− ≤ ≤  (20) 

and it is solved with an outer approximation algorithm 
in an equivalent way as the feasibility problem is 
solved. Both situations are solved together in an 
algorithm that gives back correct dual variables and 
objective functions for feasible and infeasible 
situations. It takes advantage of values y , that form 
outer approximations of the dual function for the 
feasibility and the infeasibility case, by considering the 
following generalized subproblem objective function 
and the generalized constraint for the relaxed dual 
problems 

 ( )2 22 2 21(1 )c y A y b A xα λ− + − +  (21) 

 ( )2 22 2 21(1 )α λ≤ − + − +k kw c y A y b A x  (22) 

and setting 1α =  for phase 1 (feasibility) and 0α =  
for phase 2 (optimality). So the relaxed dual problem 
RD and subproblem S are defined as 

 (RD) 
( )

{ }2 2

2 22 2 21

32 3

max

(1 )

conv , 0,

:1,...,

k k

n mk

w

w c y A y b A x

y A y b y y

k K

α λ≤ − + − +

∈ = ≥ ∈ ×\ Z
(23) 

(S) 
( )

{ }2 2

2 22 2 21

32 3

( ) min(1 )

conv , 0, n m

w c y A y b A x

y A y b y y

λ α λ= − + − +

∈ = ≥ ∈ ×\ Z
 (24) 



 

The lagrangean relaxation algorithm with phase 1 
that minimizes infeasibilities is then summarized. 

 
step 0 define tol > 0 , z = −∞ , z = ∞ , 1α =
step 1 solve relaxed master dual problem RMD

obtain dual values ( , )k kw λ
obtain upper bound kz w=

step 2 form objective function subproblem S

solve subproblem S and obtain 1+ky
obtain lower bound 2 1kz c y +=
do { }1= ∪ +K K k

step 3 (switching and stopping rule)
if tolz z z− < ⋅ and 1α =

0α =
z = −∞ , z = ∞

goto step 1
if tolz z z− < ⋅ and 0α = stop

 
This algorithm provides correct values to form outer 

approximations of the recourse function for a Benders 
decomposition situation when the recourse function is 
nonconvex. Within Benders decomposition, the linear 
solution of the subproblem is replaced by its solution 
via lagrangean relaxation, where the relaxed equations 
are the hydro reserve balance equations that connect 
stages and create the RHS perturbation function. 

4 NESTED DECOMPOSITION 
Nested linear decomposition arises when a second-

stage subproblem is also solved via decomposition 
techniques, thus forming a chain of consecutive 
subproblems that are solved in an algorithm. Solutions 
of the ancestor subproblem modify RHS values for the 
current subproblem, while this gives back dual 
variables that form outer approximation of the convex 
recourse functions. Traversing strategies at this moment 
become crucial for reaching a solution in a reasonable 
time. 

The use of traversing strategies for a MIP problem 
implies that a problem has to be solved using 
lagrangean relaxation when a dual variable is required 
to obtain an outer approximation for its ancestor 
problem. 

Sequential solutions of relaxed subproblems lead to 
inappropriate primal solutions used to form outer 
approximations of the dual function and have to be 
eliminated when this is detected. 

To avoid unnecessary complicating notation just 
consider a three stage problem 
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and its solution via a three stage decomposition 
scheme. 

In this situation the second stage recourse function is 
relaxed and replaced by a partial outer approximation 
and the problem is solved by branch and bound to 
obtain a primal feasible solution for the third stage. The 
expression is generalized to deal simultaneously with 
feasibility and optimality cuts. 
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where
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However, when a correct dual variable is necessary 
to form a cutting plane for the ancestor problem, then 
the previous problem ought to be solved via lagrangean 
relaxation, maximizing an outer approximation of the 
dual function given by 
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The dual function takes the form 
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Extra planes at second stage subproblem eliminate 
primal variables obtained at previous iterations of the 
decomposition algorithm in case these variables do not 
satisfy the latest equation. These points have to be 
removed from the pool of points that forms the dual 
master problem. 

Consider a new cut created via a third-stage problem 
solution 

 1 1 3 32(1 ) ( )α θ π+ +− ≥ −j j b A y  (30) 

and ( , )θq qy  such that 

 1 1 3 32(1 ) ( )α θ π+ +− < −j q j qb A y  (31) 

then the point ( , )θq qy  has to be removed from the 
pool of points. 

Traversing strategies take profit of a lot of possible 
combinations to obtain primal or dual variables. 
Among all of them fastpass strategy [8] outstands as an 
efficient one. It consists on solving the subproblems 
from the first to the last and then solving the 
subproblems from the last to the first obtaining dual 
variables. For MIP problems a fastpass strategy 
remains almost identical, taking into account that 
lagrangean relaxation is necessary to form correct dual 
variables. 

Thus, lagrangean relaxation has been introduced 
within a Benders decomposition framework when dual 



 

variables are requested from MIP subproblems. Finding 
infeasibilities at middle stages when a forward pass is 
performed commands the algorithm to bounce and to 
start the backward pass solving all problems with 
lagrangean relaxation. 

A multistage nested Benders decomposition 
algorithm for MIP problems is summarized in the 
following steps 

 
step 0 define tol > 0 , z = −∞ , z = ∞
step 1 (forward pass)

T P=
for 1p = to 1p P= −
form RHS problem
solve MP problem using branch and bound
if problem infeasible

T p=
goto step 3

if problem feasible obtain px
if 1p = obtain lower bound 1 1z c x θ= +

Step 2 (backward pass)
for p T= to 2p =

update problem with new cut ( ≠p P )

update pool of points pQ to use

lagrangean relaxation ( ≠p P )

solve problem MP using lagrangean relaxation

obtain dual variable π j
p

obtain feasibility indicator α j
p

if p P=

obtain upper bound
1

1

P p p P
p

z c x w−

=
= +∑

Step 3 (stopping rule)
If tolz z z− < ⋅ then stop

 
where :1,...,p P  are the problem stages, px  are the 
variables of the primal problems, pc  are the objective 
function coefficients, α j

p  represents the feasibility 

indicator, π j
p  denotes dual variables, pQ  is the pool of 

points at period p  and pw  is the dual function at 
period p . 

5 STOCHASTIC DECOMPOSITION 
Stochastic problems arise when random parameters 

appear all over the model and optimum decisions are 
transformed into random variables. Usually, stochastic 
problems present a first deterministic stage and 
remaining stages where random parameters create 
multiple possibilities that are usually represented 
alongside a scenario tree, see figure 1. 

These problems maintain a matrix structure suitable 
to be solved using decomposition techniques. 
Stochasticity is introduced in our problem when 
considering inflows as random parameters. A natural 
way to solve these problems is to consider an 
equivalent deterministic problem and solve it by 
generalized Benders decomposition approach. 

 

 
Figure 1. Scenario tree. 

 
Among these generalizations, both monocut and 

multicut approaches [2] create a Benders cut once all 
descendent subproblems have been solved. We choose 
a multicut approach because it gives the possibility of 
creating a feasibility and an optimality cut 
independently, based on descendent subproblems’ 
states while a monocut approach forms a unique cut 
weighting up cuts. A monocut approach cannot deal 
with different descendent subproblem states. 

Multistage stochastic LP problems are solved in [4] 
aggregating the nodes of the tree forming arbitrary 
subtrees, as in the figure 2, which will be solved during 
the algorithm. Numerical results recommend forming 
bigger subtrees instead of smaller ones in order to 
speed up time solutions. This is due to the time 
requested by the algebraic modeling language to create 
a problem and communication time with commercial 
solvers. 

Benders’ decomposition for mixed hydrothermal 
coordination problems is immediately extended to this 
situation of subtree decomposition. This flexibility 
gives the possibility of performing a great number of 
numerical tests about time and quality of the solutions. 
Extensive numerical results are reported on section 9. 

 

 
Figure 2. Scenario tree divided into subtrees. 

6 TRAVERSING STRATEGIES 
One drawback of lagrangean relaxation is the great 

number of iterations required to reach an optimum or 
near-optimum multiplier. However, as we indicate 
later, a minor number of iterations are needed to 
identify an infeasible problem. This leads to consider 
traversing strategies that look for a feasible solution 
instead of looking for an optimum one. This section 
briefly describes natural traversing strategies suitable 
for stochastic problems as generalizations of the 
deterministic problem ones. 



 

6.1 Fastpass traversing strategy for LP problems 
This strategy consists on traversing the scenario tree 

downwards and solving subproblems associated with 
those subtrees relaxing integrality conditions. Then 
traversing the tree upwards creating cutting planes for 
the recourse functions. Once a subtree is identified to 
be infeasible at a downward pass, the algorithm 
bounces to start backward pass and create feasibility 
cuts that eliminate previous stage solutions. 

6.2 Fastpass traversing strategy for MIP problems 
This strategy generalizes the linear strategy solving 

subproblems downwards with branch and bound 
techniques and via lagrangean relaxation at backward 
pass. It also bounces when branch and bound identifies 
a subtree to be infeasible and a backward pass is started 
solving infeasible subproblems via lagrangean 
relaxation. This strategy directly generalizes the nested 
strategy for deterministic problems presented in the last 
algorithm. 

6.3 Feasibility traversing strategy for MIP problems 
When a subproblem is identified to be infeasible 

previous algorithm strategies bounce and start a 
backward pass creating optimality or feasibility cuts up 
to the root node subtree. Optimality cuts are 
computationally expensive to calculate and it is a 
natural procedure to perform an algorithm creating only 
feasibility cuts. This is done by solving subproblems at 
a backward pass by branch and bound and bouncing to 
start downward pass if these are detected to be feasible. 
In other case the subproblems are solved by lagrangean 
relaxation to create a suitable feasibility cut. This 
strategy has the drawback of solving a problem twice. 

 
These strategies are quite similar and it is worthless 

to summarize all of them schematically. We limit to 
represent the feasibility traversing strategy on the next 
steps. 

 
step 0 define tol > 0 , z = −∞ , z = ∞ , 0=Z ,

( 1, 1)=N p sc
solve problem using fastpass strategy
for LP problems

step 1 (forward pass)
for 1= +p Z to =p P
for ( , ) ∈p sc N root node

form RHS subproblem
solve subproblem using B&B
if subproblem feasible

update node pool with descendent nodes

obtain px
if 1p =

obtain lower bound 1 1 1z c x θ= +
if subproblem infeasible

solve using lagrangean relaxation

obtain dual variable π j
p

obtain feasibility indicator 1α =j
p

update node pool with ancestor node

check feasibility of problems at same period
if at least one subproblem ( , )p sc is infeasible

do T p=
goto step 3

if every problem is feasible
stop if =p P

/ deactivate nodes at level p ( , )p sc /

step 2 (backward pass)
for 1p T= − to 1p =

for ( , ) ∈p sc N root node

update problem with infeasibility cuts
solve problem using B&B
if subproblem is infeasible

solve using lagrangean relaxation

obtain dual variable π j
p

obtain feasibility indicator 1α =j
p

update node pool with ancestor node
if subproblem is feasible

update node pool with descendent nodes

obtain px

check feasibility of problems at same period
if every problem is feasible

do Z p=
goto step 2

 
where { }( , )=N p sc  active tree nodes. 

7 MODELING ISSUES 
The objective problem can be either a cost 

minimization or profit maximization depending of the 
model goal. The constraints represent the operation of 
the thermal and hydro subsystems. The reserve-balance 
equations connect consecutive periods. A period will 
approximately represent a month composed by a 
pattern weekday followed by a weekend day. The 
variables are the operation decisions of hydro and 
thermal units. Integer variables appear when modeling 
commitment decisions of thermal units and 
hydroelectric units’ input-output nonlinear curves. 
Stochasticity appears in hydro inflows. 

7.1 Commitment decisions 
These decisions are modeled with binary variables 

that indicate time periods where thermal units are 
operative 

 p p pO Oδ≤  (32) 

where pO  is the maximum output at period p , 1pδ =  
if thermal unit is operative or 0pδ =  in any other case. 

7.2 Reserve balance equations 
 1p p p pRsv O I Rsv− − + =  (33) 

where pRsv  reserve at the end of period p , pO  output 
during period p  and pI  water inflows for period p . 

7.3 Hydroelectric unit’s input-output curves 
For a hydroelectric unit the production depends both 

on the reserve levels Rsv  of the upper and lower hydro 
reservoirs and on the water discharge d . So production 
is represented as a nonlinear function of two variables 

 ( , )O g d Rsv=  (34) 



 

This is modeled by defining a grid of values [10] for 
upper and lower reserve at each hydro unit and 
approximating the input-output function by means of 
the following relations. 

A λ -form approach has been considered to model 
binary variables that approximate the input-output 
curves. Future research will focus on modeling these 
curves using a δ -form and performing numerical 
comparisons. 

Let the grid points be ( , )s t
up downRsv Rsv , :1,...,s S , 

:1,...,t T  and λst the corresponding weights. 
Then 
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where the condition that at most four neighboring 
points can be non zero should be added. This condition 
is modeled introducing extra variables sα  y tβ  

 α λ β λ= =∑ ∑s st t st
t s

 (36) 

and commanding this variables to be SOS2 variables. 

8 CASE STUDY AND MODEL 
IMPLEMENTATION 

The case study represents the medium term 
operation of the Spanish electric power system. Time 
scope is divided into 12 periods of one month each. All 
thermal units are modeled individually. Hydro units are 
grouped by basins. 

The optimization model and all the decomposition 
algorithms have been implemented in GAMS [3] with 
CPLEX 7.0 as the MIP solver. 

9 NUMERICAL RESULTS 
All tests have been performed over a midterm 

hydrothermal coordination model. We present 
numerical results about deterministic situations and 
follow with the stochastic situation. Table 1 shows 
results about a 12 period deterministic problem solved 
by a two-stage decomposition algorithm. It has been 
solved formulating different sized master and 
subproblems and different traversing strategies.  

First column indicates time periods aggregated to 
form the master problem. Problems’ characteristics are 
described on next columns, rows (r), variables (v), non-
zeros (n) and binary variables (b). Later we indicate the 
number of Benders iterations required and lagrangean 
relaxation iterations required for the first problems 
solved by lagrangean relaxation. Finally we inform 
about execution and solution times. Execution time 
refers to solver time and solution time reports modeling 
time too. Table 1 reports solution when a MIP fastpass 
strategy is used. The model has been run in a PC with 
256 MB of RAM memory and 550 MHz clock 
frequency 

Table 2 presents time comparisons between fastpass 
linear traversing strategy and feasibility traversing 
strategy, focusing on time solutions and quality of the 
optimum. It is done for the deterministic problem using 
nested decomposition for different node aggregation 
situations. First column indicates root node of the 
different subproblems, so that 1, 4, 6 indicates a three 
stage situation where master problem has periods 
number 1, 2 and 3, second stage periods 4 and 5 and 
third stage the remaining periods. Next columns report 
Benders iterations for both strategies and lagrangean 
relaxation iterations. Finally the quality of the solution 
is evaluated by means of a final stopping tolerance. 

 
 Fastpass MIP strategy Feasibility strategy 
 Bd It Time 

(s) 
Quality Bd It Time 

(s) 
Quality 

1 2 11 3365 0   
1 3 22 4646 0.1e-6 4 59 3.2e-6 

1 4 18 2908 0 5 62 3.2e-6 
1 5 40 5209 0.04e-6 4 62 158.1e-6 
1 6  42 2861 0.08e-6 5 55 158.1e-6 
1 7 4 1075 0 9 75 2.3e-6 
1 8 5 1063 0 8 88 371.5e-6 
1 9  71 5426 0 13 122 229.7e-6 

1 10 94 2771 0.29e-6 36 324 2.3e-6 
Table 2. Fastpass versus feasibility strategy. 

 
Time solutions at table 2 are small because 

subproblems turn out to be feasible and lagrangean 
iterations are avoided in order to produce a feasibility 
cut.

 
 

Master per. Master size (r,v,n,b) Subproblem size (r,v,n,b) Bd 
Iter. 

LR 
Iter. 

Exec. 
time (s) 

Solution 
time (s) 

1 1605 2183 6767 146 17127 23374 72167 1606 11 166 3365 7438
1,2 3128 4265 13165 292 15604 21292 65769 1460 22 196 4646 10065
1,2,3 4644 6342 19569 438 14089 19215 59391 1314 18 176 2908 7184
1,2,3,4 6215 8489 26179 584 12517 17068 52755 1168 40 266 5209 15264
1,2,3,4,5 7714 10541 32476 730 11018 15016 46458 1022 42 243 2861 8327
1,2,3,4,5,6 9316 12721 39238 876 9416 12836 39696 876 4 266 1075 3673
1,...........,7 10906 14890 45950 1022 7826 10667 32984 730 5 304 1063 3860
1,............8 12463 17019 52521 1168 6269 8538 26413 584 71 413 5426 32176
1,............9 15598 21306 65747 1314 3134 4251 13187 438 94 336 2771 22737

Table 1. Iterations for a MIP fastpass traversing strategy. 
 



 

Table 3 presents results for a nested decomposition 
solution of the previous model, where time differences 
are appreciated when infeasible subproblems appear. It 
has been solved aggregating periods to form two-period 
subproblems. This situation has been solved with the 
fastpass MIP strategy, the feasibility strategy and a 
combination that performs a fastpass MIP iteration 
after the linear solution and retakes feasibility strategy 
at the next iteration. 

 
 Bd It Sol. time Exec. time Quality 

Fastpass 
MIP strategy 

19 18484 2624 7e-4 

Feasibility 
strategy 

17 2705 566 14e-4 

Combined 
strategy 

21 5578 978 14e-4 

Table 3. Comparison among strategies. 
 

Finally, we present numerical results about 
stochastic problems solved with the goal of reaching a 
feasible solution. It is a stochastic version of the 
deterministic test problem we are dealing with, where 
stochasticity is introduced via a scenario tree. It is a 
four-scenario problem where the tree has been built up 
branching at periods 2 and 4. It is solved considering 
different periods as root nodes for the subtrees formed. 
These root nodes are reported on the first column of 
table 4. Remaining columns report iteration and time 
solutions as done at previous tables. Let us observe that 
the first row indicates that the whole problem cannot be 
solved without decomposition. 
 

Decomposition Feasibility strategy 
 Bd It Sol time Exec time Quality 

1 Out of memory 
1 2 2 408 294 3.2e-6
1 2 4 5 3258 2558 3.2e-6
1 2 4 6 17 2762 1056 158.1e-6
1 3 5 11 2554 1801 158.1e-6
1 2 3 5 648 340 80.6e-6

Table 4. Comparison among subtrees. 

10 CONCLUSIONS 
Lagrangean relaxation is a natural way to solve 

hydrothermal coordination problems within a Benders 
decomposition framework to approximate the recourse 
function. This paper has presented a nested Benders 
decomposition algorithm applied to stochastic 
problems that incorporate lagrangean relaxation to 
obtain correct dual variables for MIP problems. 

High time solutions are due to time requested by the 
algebraic modeling language to communicate with a 
commercial solver. Time solution increases with the 
number of subproblems the problem has been divided 
into. It is thus recommended to create big subproblems 
instead of smaller ones in order to speed up 
convergence towards the solution. 

Implemented lagrangean relaxation does not take 
advantage of repetitive solutions of the MIP problem. 
Considering lagrangean relaxation as a parametric MIP 
problem and solving it independently from an algebraic 
modeling language could reduce time solutions. 

Tested traversing strategies suggest solving the 
problem with a linear strategy before introducing 
integrality conditions to the problem. They also 
recommend the use of a feasibility strategy for really 
big problems like those derived from stochastic 
situations. 
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