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Abstract: The operation planning of a hydroelectric system, 
requires some random variables to be represented in a form 
suitable for quantitative models. Stochastic programming 
models require a scenario tree to be developed. In this paper 
a procedure to generate a scenario tree representing the time 
evolution of natural inflows in a hydroelectric system is 
presented. The procedure involves non-linear programming, 
linear regression techniques and deviation variables. 
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I. INTRODUCTION 

In decision making under uncertainty it is essential to 
represent uncertainties in a form suitable for a model. 
In the operation planning of a hydroelectric system, 
stochastic programming models are usually used. A 
good multistage scenario tree, modelling the evolution 
of natural inflows, is essential to obtain valid results.   

These inflows are considered random variables 
supposed to follow unknown continuous distributions, 
and one scenario of the tree represents all the random 
variables in every time period. 

The aim of this paper is to present a procedure to 
obtain discrete distribution approximations of the 
continuous distributions, obtaining a multistage 
scenario tree representing the uncertainty about these 
variables. This procedure involves a non-linear 
programming model and we also present an alternative 
non-linear goal programming model with a linear 
objective function. 

The scenario tree will be defined for a hydro system, 
where inflows are measured in different measuring 
points corresponding to the same or different basins, 
hence a multivariate tree must be defined.  

In section II, the basic underlying ideas when a 
scenario tree is used are presented, and the next 
sections are devoted to develop the procedure to obtain 
the scenario tree for natural inflows. 

This procedure is divided in two phases: univariate and 
multivariate. The optimisation models required for 
obtaining an univariate tree, and the moments 
estimation method and inter-period statistical analysis 
to develop it, are presented in section III and IV, 
respectively. 

Section V focuses on obtaining the multivariate tree 
from a univariate by means of spatial statistical 

analysis. 

Finally, an example to clarify the procedure and show 
the different trees obtained with the two proposed 
optimisation models, is compiled in section VI. 

II. APPROXIMATING CONTINUOUS 
DISTRIBUTIONS BY DISCRETE DISTRIBUTIONS 

When a continuous distribution is to be represented by 
a discrete approximation, it is possible to resort to 
sampling. In order to make sure that the distribution 
properties of the sample are close to those of the 
underlying distribution, the number of outcomes has to 
be large. However, stochastic programming models 
require scenario trees with limited outcomes.  
Therefore, there is a need of generating the outcomes 
in a different way, approximating by a discrete 
distribution with a prefixed number of possible values. 

The standard approach for approximating a continuous 
distribution by a discrete distribution is the following: 
1) Divide the outcome region into intervals, 2) select a 
representing point in each interval, and 3) assign a 
probability to each point. An example of such 
approach is the bracket median method described in 
[1], but in [2] it was pointed out that this method and 
similar approaches systematically underestimate the 
moments of the original distributions.  

Different authors have developed scenario generation 
systems in different contexts ([3], [4], [5], [6] and [7]). 
In this paper, we develop a method to generate a 
limited number of outcomes for inflows with statistical 
properties close or equal to those of an underlying 
multivariate distribution over multiple stages. The 
method used was defined in [8], there the basic idea is 
to minimise the square distance between the statistical 
properties of the discrete approximation and the 
underlying distribution. 

Following this method, we present a procedure to 
generate a scenario tree for natural hydro inflows. We 
use different measuring points, so a tree for every point 
could be defined. Nevertheless, randomness is not well 
represented by independent trees because there is high 
correlation between the inflows in different points. So 
multivariate trees will be defined and obtained. 

III. GENERATING UNIVARIATE TREES: 
OPTIMISATION MODELS 

Although we focus on multivariate trees, we present 
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how to obtain an univariate tree because the 
multivariate will be obtained from this one. 

Let NT be the number of stages and  Nt  the number of 
(conditional) outcomes in stage t desired. We assume 
initially a symmetrical tree, meaning that the number 
of branches is the same for all conditional distributions 
in the same stage. Let S be the set of all specified 
statistical properties and SVALi be the specified value of 
statistical property i in S. 

Define x to be the outcome vector and p to be the 
probability vector. Let fi(x,p) be the mathematical 
expression for statistical property i in S. Finally, let wi  
be the assigned weight for statistical property i in S. 

We want to construct x and p so that the statistical 
properties of the approximating distribution match as 
well as possible the specified statistical properties of 
the continuous distribution. So the general description 
of the model is as follows:  
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In general, the resulting non-linear optimisation 
problem is not convex. For this reason the solution 
might be (and probably is) a local solution. 
Nevertheless, for our proposes it is satisfactory to have 
a solution with distribution properties equal to or close 
to the specifications, so an objective value equal or 
close to zero indicates that the distribution of scenarios 
has a perfect or good match with the specifications. 

Another alternative model is proposed with a linear 
objective function and non-linear constraints, using 
goal programming and deviation variables: 
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The resulting problem is also non-convex, so a local 
optimum might be reached again. Nevertheless, non-
linearity is weaker in this model. 

The statistical properties considered for our specific 
problem are the four central moments of first four 
orders: expected value, variance, third moment 
(associated with skewness) and fourth moment 
(associated with kurtosis). Also the worst case event 
may be considered but we have not included it in this 
study. 

The moments are different for the first stage and for 
the following, because the moments in the second and 
each successive stage must be conditional moments. So 
the optimisation model is solved by stages, with 
different problems for first and successive stages. 

 

First stage: 

Let M11, M12, M13 and M14 be the specific (estimated) 
values of the continuous distribution for this stage (the 
moment estimation method may be seen in section IV). 
. Let N1 be the number of outcomes desired for this 
stage. Define x1 = (x1(1),...,x1(N1)) as the outcome 
vector and p1=(p1(1),...,p1(N1)) as the probability 
vector. 

The mathematical expressions for the central moments 
of the discrete distribution are: 
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The resulting quadratic optimisation model is: 
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In order to avoid unit effects, the weights for the 

different moments are defined as 2
1

'k
k

k

ww
M

= , where 

 represents the relevance given to the moment of 
order k. 

'kw

To develop the goal programming model new 
deviation variables must be defined. Let  and  
be the positive and negative (surplus and slack) 
deviation variables for moment k, k=1,2,3,4, defined as 

1kn 1kd
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usual in goal programming.  

So, the alternative goal programming problem is: 
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In this case, the weights for the different moments are 

defined as 
1

'k
k
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= , with the same meaning of 

 that in the first model.  'kw

Second and successive stages: 

These stages are different because there is more than 
one distribution, there are Nt-1 different conditional 
distributions. The model will be presented for the 
second stage. 

Let N2 be the number of outcomes desired for stage 2, 
and define 2 2 2 2( (1),..., ( ))x x x N=  to be the 
outcomes for any conditional distribution, because the 
stochastic decision model assumes the same outcomes 
with different probabilities. We also define  

2 2 2 2( (1),..., ( )), 1,...,h h h 1p p p N h= = N  

x1(1)
p1(1)

x1(3)
p1(3)x1(2)

p1(2)

x2(1)
p21(1)

x2(2)
p21(2)

x2(1)
p22(1)

x2(2)
p22(2)

x2(1)
p23(1)

x2(2)
p23(2)

N1=3

N2=2

Nas the conditional probability vectors associated to 
each one of the outcomes obtained in the previous 
stage (see figure 1). 

The moments considered are also the four central 
moments, but they are moments conditioned to 
previous values because of the inter-period 
dependence. Next we consider the conditional 
expected value and variance, but this is not considered 
for the third and fourth moment. In the following 
section an estimation method for conditional moments 
is explained. 

Because the stochastic model assumes the same 
outcomes in the different conditional distributions, 
only one optimisation problem has to be posed for all 
the conditional distributions in the stage.  

 Fig.1. Scenario Tree 

 

Let M2h1, M2h2, M2h3 and M2h4  be the four conditional 
specific (estimated) values for the stage 2 supposed the 
h-th scenario in stage 1 (h=1,...,N1) (see section IV for 
the estimation method).  

The quadratic optimisation model for second stage is 
the following: 
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The alternative goal programming problem, with the 
usual definition of positive and negative deviation 
variables for every distribution and every moment 
considered, is: 
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In order to avoid unit effects and measure the 
relevance of every scenario (every conditional 
distribution), the moments weights are defined as 

1 2
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Similarly, for successive stages, one problem is solved 
for each stage, taking into account previous values in 
the tree.  

 

IV. GENERATING UNIVARIATE TREES: 
CONDITIONAL MOMENT ESTIMATION AND 

TEMPORAL STATISTICAL ANALYSIS 

In this section we develop the moment estimation 
procedure when the structure of the  tree is previously 
defined. We focus on the estimation of the moments of 
the conditional distributions. 

The past history induces different conditional 
probabilities and different values of specified 
moments. A question to pose is how long does the past 
influence, i.e., how many different previous stages 
(conditional discrete distributions) must be considered 
in each stage? This question connects with moment 
estimation and previous statistical analysis will provide 
the answer. 

Due to the tree structure, we divide the estimation 
problem in three different problems: the first stage, the 
second one, and the problem for third and later stages.  

For the estimation procedure, we have daily time series 

for around thirty years. Let { }t t T
Y

∈
 be the historical 

time series of inflows in a measuring point. 

 

First stage: In this case, no previous history must be 
considered, because there is not past information in the 
tree. So, moments are estimated from the historical 
data, selecting the observations corresponding to this 
stage, by classical methods. Let T1 be the index set 
corresponding to observations in first stage and 
{ }

1
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∈

 these collected data.  
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Second stage: In this case, the distributions considered 
must be conditional distributions of previous values, 
i.e., conditioned to the first stage value in the scenario 
to generate because of time dependence. Nevertheless, 
we have considered no time dependence in the third 
and fourth moments (like in [8] and after expert 
judgement), so they are estimated in the same way as 
in the first stage. 

For the conditional average, simple linear regression is 
used to estimate it because of the high value of first 
autocorrelation in the time series. Let { }

2
t t T

Y
∈

be the 

data corresponding to second stage, then the linear 
regression line of { }

2
t t T

Y
∈

over { }
1

t t T
Y

∈
is obtained. 

So, the expected value for each one of the N1 
conditional distributions, , h=1,...,N2 1hM 1, is 
estimated from the regression line taking the 
independent variable the value of the outcome in first 
stage, i.e., x1(h). 

For the conditional variance, data of the first stage are 
classified in increasing order and divided into N1 
subsets whose sizes refer to the probabilities obtained 
for that stage, p1(h). For each of these subsets, data of 
the second stage are identified by year. They are then 
sequenced in the time series and classified in twin 
subsets (see figure 2). Finally, the variance of these 
twin sets is estimated. 
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p1(2)=0’4 p1(3)=0’3

Fig.2. Subsets to estimate conditional variance in stage 2

 

Third and later stages: We shall start by justifying 
why we consider the third stage and later stages 
similar. This is an empirical conclusion obtained after 
statistical analysis.  

We have used daily time series for around thirty years 
of some inflows in some different measuring points of 
Spanish basin rivers. Every one of these sequences has 
been studied by time series analysis.  

Furthermore, we were interested in obtaining 
conclusions independent of period lengths. So, this 
statistical study has been repeated with weekly and 
monthly time series, obtaining similar conclusions with 
each of these analyses. 

The Box-Jenkins method has been applied to the 
different time series and ARIMA models with seasonal 
factors obtained. In every model, it may be observed 
that the influence of third and prior periods of the 
current period in the same year is not relevant when 
values of the two last periods are included.   

So, the statistical analysis conclusion is that the only 
information that needs to be considered to obtain 
conditional distributions is that contained in the last 
two stages before the current one. And this conclusion 
implies that the moment estimation method will be 
equal for the third and for later stages. 

Analogously to the second stage, third and fourth 
moments will be supposed independent of previous 
values and will be estimated by equation (7). 
Conditional variance will be estimated using the same 
procedure described in second stage. 

Hence, the only difference in the process estimation 
with the second stage is found in the conditional 
average estimation. The expected value conditioned to 
past history in the tree will be obtained by multiple 
linear regression. The regression line used is such that 
two independent variables are the values in the two last 
stages before the current stage. The outcomes obtained 
in the scenario for these last two stages will be the 
input values of these variables to estimate the 
conditional expected value in the current scenario and 
current stage. 

V. GENERATING MULTIVARIATE TREES: 
SPATIAL STATISTICAL ANALYSIS  

The final aim of this paper is to provide a procedure to 

obtain a scenario tree for a stochastic programming 
model for hydrotermal coordination. The uncertainty is 
modelled for different measuring points, so the model 
works over a multivariate tree.  

A spatial statistical analysis is needed in order to 
establish the relationship between the inflow's 
behaviour in the different measuring points of the same 
and different basins. 

We started with a cluster analysis including all of the 
time series. The analysis result, how it was expected, 
shows a similar behaviour into the measuring points 
from the same basin, obtaining a different cluster for 
every one. Hence, different scenario trees will be 
generated, one tree for each basin. 

Furthermore, the correlation into each cluster is very 
high, so the following procedure is applied.  

Firstly, one point in each basin is selected (the 
measuring point with higher correlation with the other 
points in the same basin).  

Afterwards, one univariate tree is generated for this 
representing point, following the procedure explained 
in the previous sections.  

Finally, the multivariate tree is completed by simple 
linear regression, i.e., outcomes for each of the other 
basin's points are obtained by its regression line over 
the representing point, taking the independent variable 
the value of the corresponding outcome. 

 

VI. EXAMPLE 

An example for an univariate tree representing inflows 
in a Spanish basin is presented to clarify the procedure 
and realise the differences obtained with both models 
((1) and (2)). 

In this example, the tree has been generated for three 
stages (months) to show the results in a suitable way. 
Actually, yearly trees for twelve stages are being used 
in the true coordination hydrotermal model. 

Data to develop the scenario tree correspond to 28 
years and one measuring point. The weights assigned 
to the different moments (w'i) are 2, 1, 0.5 and 0.25 for 
first, second, third and fourth moments, respectively. 
These proposed values show the relevance considered 
for the moments, i.e., decreasing importance with the 
order of the moment. 

Firstly, we define the tree structure by mean of the 
number of outcomes desired in each stage. Let N1=3, 
N2=3 and N3=2. This structure with more outcomes in 
first periods is selected, because it's usual to consider 
more important closer stages than later stages, hence a 
more exhaustive description is desired at the beginning 
of the tree. 

The outcomes obtained with the quadratic model are 
presented in the next table: 
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TABLE I. OUTCOMES MODEL (1) 

Stage 1 1902 776 139
Stage 2 2277 991 368 
Stage 3 1049 295  

 

Table II shows the probabilities obtained in every stage 
with this model (Stages 1 and 2 must be read in 
horizontal way, conditional distributions of stage 3 
must be read in vertical way). 

 

TABLE II. PROBABILITIES MODEL (1) 

St1  .04   .22   .74
St2 .11 .89  .09 .41 .50 .05 .16 .79
St3 .98 .08  .98 .08 .06 1 .11 .07

 .02 .92  .02 .92 .94  .89 .93
 

For the goal programming model, the results obtained 
are presented in tables III and IV. These tables must be 
read in the same way that previously for the first 
model. 

TABLE III. OUTCOMES MODEL (2) 

Stage 1 1898 596 58
Stage 2 2277 1052 402 
Stage 3 957 195  

 

TABLE IV. PROBABILITIES MODEL (2) 

St1  .04   .39   .57
St2  1  .06 .32 .62 .07 .93
St3  .20  1 .25 .12 1 .16

  .80   .75 .88   .84
 

The obtained scenario trees are enough similar with 
small differences. Both models achieve a perfect 
adjustment to the moments in the first stage, but not in 
the next stages. This gap occurs because the model 
decision requires the same outcomes for all the 
conditional distributions. Currently, we are modifying 
the decision model to allow different outcomes in order 
to achieve a better adjustment of the scenario tree. 

 

VII. CONCLUSIONS 

The presented procedure to obtain multivariate 
scenario trees for inflows in a hydro system allows 
develop stochastic programming models for 
hydrotermal co-ordination. The multivariate scenario 
tree obtained approximates the unknown continuous 
distributions of natural inflows via their moments, so 

statistical properties of the discrete approximations and 
the underlying continuous distributions are similar. 
The procedure is being applied to validate it to some 
Spanish hydro subsystems with suitable results. 
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