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INTRODUCTION 

A limitation of the classical probabilistic simulation 
models for production costing, see for instance 
Baleriaux (3, Booth (4), Finger (8) and MIT (lo), 
is their inability to account properly for some prac- 
tical constraints in the loading order of the generat. 
ing units. For instance the ones resulting fiom o p  
erating reserve considerations, technical minima or 
the fact that only a subset of the available unita are 
connected to the grid at a particular time. On the 
other hand, i t  is relatively simple to optimize the 
units loading order for any given availability sce- 
nario of the power system, but then the impact of 
the uncertainty in the availability of the generating 
units is lost. 
These limitations of the presently available models 
result in numerical errors in the estimates of pro- 
duction costs and utilization factors of each unit, 
that can be of some significance. The errors are 
typically larger for the most expensive connected 
units and also for those generators that must be 
c 0 ~ 4 . d  to the grid when some unit fails. 

This paper presents a probabilistic production cost 
model that makes use of the optimal loading order 
of the thermal units for any availability state of the 
system. This method, although needing more com- 
puting time than purely probabilistic simulation 
models or deterministic optimization models, still 
has reasonable computational requirementa for 
some applications and captures all the realistic con- 
straints related to the loading order of the units. 
The model has been applied to the Spanish electric 
system, and it has been successfully used to identify 
and quantify the errors inherent to existing tech- 
niques. 

The first section of the paper presents the overall 
approach and the detailed model formulation. The 
following section is dedicated to the simulation 
techniques that have been applied in this work, in- 
cluding variance reduction techniques. Then, the 
optimization method that is used within the model 
is presented. The validation results and, finally, the 
errors detected in classical production cost models 
that do not consider loading order variations are 
quantified and described. 

MODEL FORMULATION 

The model presented in this paper includes two 
major characteristics that are relevant and desir- 
able for production cost models: 

uncertainty in generation availability. 

loading order dependence on the specific oper- 
ating constraints and availability status. 

An availability scenario (Le., the availability status 
of each unit) is randomly generated using Monte 
Carlo techniques for a given period and its associ- 
ated demand function. An optimization algorithm 
determines the subset of available thermal unita to 
be connected to the grid no that the production cost 
of the period is minimized, see figure 1. 
The decision variables in each simulated scenario 
are the connection status of the available units, the 
power output of each unit and the unserved de- 
mand. 

- Availability status of the units in each 

Control of the number of aamples. 
Variance reduction techniques. 

Monte Carlo scenario. 

I 
Optimization model in discrete vari- 
ables. 
Initial integer solution. 
Bmch and bound method. 

I 
Optimization model in continu- 
ous variables. 
Optimization problem with non- 
linear objective .function subject 
to linear constraints. 

I 
I 1. Optimization code. I 

Figure 1. Overall framework of the model. 
For any given set of connected units the algorithm 
takes into account 

the nonlinearity of the demand, represented by 
the complementary distribution function (i.e., 
the load-duration curve) for each period. 

the economic loading of thermal units by sev- 
eral capacity blocks with different costs. 

the loading order constraints resulting fiom 
operating considerations. 

With the adequats simplifications the model can 
easily be converted into a simpler one. For exam- 
ple, if no loading order constraints are considered 
the model becomes equivalent to the classical prob- 
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abilistic simulation model, but requiring more com- 
puting time. 

The objective function to be minimized includes 
fuel and variable maintenance coats of the generat 
ing unite, costs of unserved energy, connedon cost 
of the units, and some penalties that account for vi- 
olations in operating reserve requirements and 
technical minima constraints. Nonlinearity (in the 
first two terms of the objective function) is a conse- 
quence of the nonlinear characteristic of the load- 
duration curve. The constrainta represent the load- 
ing order restrictions caused by technical minima, 
operating reserves and connection status of the 
unita. 
The model can be mathematically formulated as 
follows: 

subject to: 

i) used capacity by each connected unit must be be- 
tween ita technical minimum and its available ca- 
pacity (partial availability is allowed) 

Pil& - Pi s o  id, ..., N (2)  
P& - P, 2 0 id, ...J (3) 

ii) sum of the technical minima of the connected 
units must be equal to the minimum demand plus 
an eventual violation to be penalized 

(4) 

iii) upper bound for the excess of technical minima 
capacity over the minimum demand 

Pi s P: (5) 
iv) sum of used capacities of all unita plus unserved 
demand must be equal to the maximum demand 

v) sum of available capacities of the connected 
unita must be equal to the maximum demand plus a 
reserve margin (both an eventual deficiency to be 
penalized and a surplus are allowed) 

(7) 

vi) discrete nature of the connection status of each 
unit 

4 1 COM&d 
where 

0 d i S C O M e c t e d  
i d ,  ...,N ( 8 )  

variable indicating the connection status of 
unit i. 

connection tixed coeta of unit i per unit of 
time. 

penalty applied to any technical minima total 
capacity exceeding the minimum demand, 
per unit of power and per unit of time. 

penalty applied to the deficiency in operating 
reserve, per unit of power and per unit of 
time. 

maximum demand. 

minimum demand. 
enera  generated by block j of unit i. It can 
be obtained from the load duration curve 
once the values of the Pi are specified, see 
figure 2. 

unserved energy. 

index of a unit. 
index of a capacity block of a unit. 

number of thermal unita. 
number of capacity blocks of the unita. 

deficiency in technical minima total capacity 
with respect to the minimum demand. 

excess of technical minima total capacity 
with respect to the minimum demand. 

deficiency in available capacity of connectad 
units with respect to the maximum demand 
plus a reserve margin. 

excess of available capacity of connected 
units with respect to the maximum demand 
plus a reserve margin 

power output by unit i. 

technical minimum capacity of unit i. 
available capacity of unit i. 

unserved demand. 

reserve margin. 
duration of the considered time period. 

variable cost of block j of unit i. 

variable cost of the unserved energy. 

A branch and bound algorithm has been used be- 
cause of the discrete nature of the optimization 
problem in equation (8). The optimization problem 
has been formulated as the minimization of a non- 
linear objective function aubject to linear con- 
straints, see figure 1. 
The number of variables is 2N+6, the number of 
constraints is 2N+3 and the number of non zero co- 
efficients of the constraints is 7N+6. These numbers 
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indicate the sparsity of the constraints matrix, 
which will be exploited. 

(1+W DM 
nM 'i PN.PN,IAN 
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Figure 2. Loading of the connected units under the load- 
duration curve. 

SIMULATION TECHNIQUES 

T w o  basic methods have been proposed in power 
systems to study the uncertainty in generation: 
state enumeration and simulation. I t  can be con- 
cluded, see Wang (15) and Endrenyi (7) in the con- 
text of reliability of power systems, that the enu- 
meration method has disadvantages for systems 
with numerous units, because the computation time 
grows exponentially for the enumeration method 
and lineally for the simulation method with the 
number of units. The growth rates depend on the 
availability of the units but the advantage of simu- 
lation holds for the typical value range of availabili- 
ties and number of units. For example, in enumera- 
tion with 50 units and a contingency level of 4 unita 
the analyzed probability space is 43 % if the 
unavailability of each unit is 0.1 (and 90 % if the 
unavailability of each unit is 0.05) and the number 
of states that should be evaluated is 230300. For 
this reason the Monte Carlo simulation method has 
been used in conjunction with the proposed model. 
For each simulated scenario the current availability 
state of each unit is determined. A random number 
uniformly distributed in the interval [0,11 is gener- 
ated by means of a multiplicative congruential al- 
gorithm. Depending on the value of this random 
number each unit can be totally or partially 
unavailable or fully available. Once the availability 
status of each unit has been determined the opti- 
mization problem is solved. 

The main results of a production cost model are the 
total operating cost and the utilization factors of all 
units. Both are random variables depending among 
other factors on the units availability. The expected 
value and other statistical properties of these vari- 
ables are obtaiqed by repeated evaluations of the 
optimization problem for different availability sce- 
narios generated by Monte Carlo simulation. The 

sample mean and sample variance can be progres- 
sively computed as follows: 

where 

n current sample size (number of observa- 
tions). 

mean of n samples. 

4 variance of n samples. 

z, 
and the confidence interval (assuming that the 
random variables are normally distributed) is 

value of the variable of interest in sample n. 

where 

l O O a  the confidence level 

&.l,(l-ayl the value of the bstudent distribution 

A convergence criterion can be defined as the ratio 
between the confidence interval size and the sample 
mean: 

with n-1 degrees of freedom 

A number of techniques have been used to reduce 
the computational effort of the simulation ap- 
proach, mainly by trying to decrease the number of 
samples that are needed to attain a prespecified 
level of accuracy in the results. 

Among the methods and criteria that have been ex- 
plored and used in an integrated fashion the follow- 
ing can be mentioned: 

a) simulation with a fixed sample ske, which is 
subdivided into batches of prenpecified length. 

b) sequential simulation with a prespecified con- 
vergence criterion. 

c )  variance reduction techniques such as anti- 
thetic variables, based on complementary suc- 
cessive random numbers. 

A. FIXED SAMPLE SIZE SIMULATION. 

In this type of simulation, see Law (9) and Bratley 
(5), the total sample size is divided into batches of 
fixed length. Then each batch mean can be consid- 
ered an independent and identically distributed 
normal random variable if the batch size is large 
enough. The mean of each batch is now converted 
into an observation of the simulation process. The 
model calculates two means and variances in the 
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simulation process corresponding to each batch 
and to the set of batches. 

After a detailed exploration of alternatives, in 
which several batch lengths have been tested for 
different total number of samples, some recom- 
mendations have been obtained for the use of the 
model. The results indicate that the best conver- 
gence is achieved with 30 batches of 30 observa- 
tions each. 

B. SEQUENTIAL SIMULATION. 

This procedure, see Law (9) and Bratley (5), stops 
the simulation process when the confidence inter- 
val size is small enough with respect to the sample 
mean (both values are calculated for every batch), 
i.e., when the convergence criterion reaches certain 
prespecified value. 

The variables chosen to satisfy the convergence cri- 
terion, equation (12), are the total operating cost 
and the technical minimum generation of nuclear 
unita. The value chosen for the convergence crite- 
rion is 2 'lo for a 99 40 confidence level. 

c. VARIANCE REDUCTION TECHNIQUES. 

Variance reduction techniques try to  reduce the 
confidence interval width for a certain Simulation 
effort or alternatively reduce the effort to achieve 
the same confidence interval, see Law (9), Bratley 
(5) and Rubinatein (14). There are many and di- 
verse techniques: common random numbers, anti- 
thetic variables, control variables, stratification, 
importance sampling, indirect estimation, ete. Some 
of these techniques have been used in the context of 
stochastic chronological simulation models, see 
Breipohl (6), and composite power system reliabil- 
ity, w Allan (l), Anders (2) and Pereira (12). 
The model uses the antithetic variables technique, 
based on complementary successive random num- 
bers. This introduces a negative correlation be- 
tween successive observations, decreasing the van- 
ance of the couple of observations with respect to 
the variance of the independent observations. 

The application of this technique achieves up to a 
20 96 reduction in the confidence interval size. 

OPTIMIZATION METHOD 

The optimization problem becomes deterministic 
once the availability status of the unita has been ob- 
tained by the Monte Carlo simulation. Then the 
problem can be solved by a mixed programming 
procedure, the branch and bound technique. This 
method resorta to successive relaxed nonlinear min- 
imization problems to achieve the optimal integer 
solution. 

Certain especial characteristics have been imple- 
mented into the branch and bound technique to re- 
duce the size of the tree search, see Rao (13). For 

example, a cutoff tolerance, LIFO ordering criteria 
for non explored branches, etc. 

For each node of the tree the problem formulated 
in q u a t i o ~  (1) to (7) is solved by relaxing the con- 
nection decision @), which becomes 
OSAiSl id ,  ..., N (13) 

This problem can be directly input to a general 
purpose optimization code such as MINOS (ll), 
which can compute the solution very efficiently. 
MINOS is a well-known largascale optimization 
package for the solution of sparse linear and non- 
linear optimization problems. 

The derivatives of the objective function with re- 
spect to the decision variables are provided to in- 
crease the accuracy and speed in obtaining the so- 
lution. 

VALIDATION OF THE MODEL 

The model has been applied to a realistic example 
based on the Spanish generating system, consider- 
ing 65 thermal unit (hydro units have been ig- 
nored). 

Only BOO samples (30 batches of 30 observations 
each one) have been required to attain a conver- 
genca criterion of 1.3 % in the total production cost. 
"he utilization factore of the units have absolute er- 
rors between +0.02 and -0.02, mee figure 3. 

OM 

O.M/ 

4.M/ 4 . M  
I 

4.l' lo a0 Y ) U ) Y ) M  

Figure 3. Absolute cmr in utilization factors of the 
units. 

Both results indicate a good performance of the 
model with a reasonable simulation effort because 
the absolute errors are: 

very small. 

both positive and negative. 

kdhg ordp d .& unim 

homogeneously distributed for the set of unita. 
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LOADING ORDER OPTIMIZATION 

The model has also been used as a benchmark to 
provide interesting information concerning the im- 
pact of the simplifications introduced in the existing 
production cost models, for example in the treat- 
ment of the technical minima of the units. 

The loading order (which is used here in a broad 
sense that includes the specification of the set of 
units to be connected to the grid) depends on the set 
of available units and on the operation constraints 
that are imposed. Two types of errors can appear 
b u s s  of the simplifications that are typically in- 
troduced: 

I) if only one loading order is considered. 

II) if the constraints associated with the loading 
order are ignored. 

The first type of error is caused by the utilization of 
only one loading order (usually the most frequent 
or one just based on simple economic considera- 
tions) instead of the multiple loading orders that 
would result when considering all the sets of avail- 
able units. This simplification is intrinsic to proba- 
bilistic simulation models, very commonly used in 
production costing and in generation expansion 
planning models. Note for instance that the techni- 
cal minima of all the available ~ ~ e c t e d  units muat 
be fully base loaded. Just for economic reasons a 
deeision has to be made regarding the choice of 
C O M ~  units, which depends on the availability 
scenario. In probabilistic simulation models at most 
a unique choice of connected units can be made, 
with the consequence that the technical minima of 
the non connected units are not base loaded. 
Extansive comparisons have been done to quantify 
the errors. 

The main consequences caused by this assumption, 
as presented in figure 4, are: 

important errors in utilization factors of the 
units (up to 0.44). Technical minima of con- 
nected units have too large utilization factors 
and technical minima of non connected units 
have too small utilization factors. 

it can be shown that the a priori division of the 
set of units into two subsets of connected and 
non connected units introduces an artificial 
step in the utilization factors of the units. 

With respect to the second simplification, i.e. ignor- 
ing the operating constraints (4) and (7), the prin- 
cipal detected errors are: 

units with higher technical minima actually 
produce less energy than what is obtained 
when the constrainte are ignored. The differ- 
ences in utilization factors of the technical 
minima of the units can reach 0.8 if the con- 
straints are very restrictive, see figure 5 for 
numerical results. 

total production costs increase exponentially 
with respect to the allowed excess of technical 
minima total capacity over the minimum de- 
mand, reaching 21 % if no excess is allowed. 

in an approximate manner it can be concluded 
that the utilization factor of a unit is inversely 
proportional to the product of its technical 
minimum coefficient time6 its variable cost if 
the technical minima constraint is very tight. 
Unite with very similar variable costs can pro- 
duce very different values of energy because 
of the operating constraints, see figure 6. 

These errors can only be detected with the pre- 
sented model, since it includes multiple loading 
orders and their optimization for each scenario. 

0.7 O? 

lmjiugadrrdme~tv 

Figure 4. Utilization factors of the technical minima of 
the units. 
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Figure 5. Differences in utilization factors of the techni- 
cal minima of the units. 

CONCLUSIONS 

The paper has presented a new probabilistic pro- 
duction cost model developed as a benchmark to 
establish comparisons with classical production 
cost models. The importance of the operating con- 
straints and loading order optimization has been 
emphasized. The impact in the utilization factors of 
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the units, as a consequence of the assumptions 
made in probabilistic simulation models, has been 
evaluated and shown to be very significant in cer- 
tain cases. 

The model explicitly considers uncertainty in the 
available generation and loading order optimization 
including operating constraints. For a given period 
and its associated demand function, availability 
scenarios (Le., the availability status of each unit) 
are randomly generated using Monte Carlo tech- 
niques. Then an optimization algorithm determines 
the subset of the available thermal units that must 
be C O M & ~  to the grid so that the production cost 
of the period is minimized. Because of the discrete 
nature of the optimization problem a branch and 
bound algorithm has been u d .  "he final optimiza- 
tion problem has been formulated as the minimiza- 
tion of a nonlinear objective function subject to lin- 
ear constraints. 

A number of techniques have been used to reduce 
the computational effort of the simulation ap- 
proach, mainly by trying to decrease the number of 
samples that are needed to attain a prespecified 
level of accuracy. Among the methods that have 
been explored and used successfully in an inte- 
grated fashion the following can be mentioned: 
simulation with a fixed sample size, sequential sim- 
ulation and variance reduction techniques. 
Illustrative numerical resultn have been presented 
using a realistic example based on the Spanish elec- 
tric system. 
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