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Abstract--: Daily bidding is an activity of paramount 
importance for generation companies operating in day-ahead 
electricity markets. The authors have developed a strategic 
bidding procedure based on stochastic programming to obtain 
optimal bids. In this paper, the problem is decomposed under 
the Benders framework to permit the solution of large-size 
problems. A numerical example illustrates the advantages of the 
proposed approach. 

Index Terms: Competitive electricity market, Benders 
decomposition, generation scheduling, strategic bidding. 

I. INTRODUCTION 
N an increasing number of countries, power generation is I now considered an activity that must be carried out within a 

competitive framework. Although the debate of how 
competitive electricity markets should be organized is still in 
force [4], in several relevant cases a design based on a day- 
ahead market has been implemented [I l l .  This market 
mechanism is operated by a market coordinator and consists 
on a set of hourly electricity auctions. Generation companies 
willing to sell energy through this market are asked to offer 
blocks of energy at different prices for each hour. Wholesale 
energy buyers submit bids to express the price at which they 
are ready to consume at each hour. The market coordinator 
matches the hourly aggregate supply and demand curves and 
an hourly market clearing price results. 

In this competitive environment, a generation company is 
subject to an intense short-term risk exposure. The operation 
.of its generating units and the revenue obtained for their 
production depends strongly on the strategy followed by its 
competitors, which is uncertain. Thus, generation companies 
demand new decision-support tools specifically adapted to 
meet these new short-term risk-management requirements. 
With this purpose, a strategic bidding procedure (SBP) based 
on stochastic programming was developed by the authors [2]. 
In this paper this procedure is decomposed using the Benders 
technique to allow for the solution of real-size problems. 
Together with the formulation of the algorithm, a numerical 
case is solved to illustrate the possibilities of this approach. 
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ILMODEL DESCRIPTION 
The development of a bidding procedure for a generation 

company operating in a short-term electricity market requires 
not only the usage of traditional equations typical in unit- 
commitment or economic-dispatch models [3], but also new 
market-modeling equations have to be incorporated. In fact, 
the main difference among the variety of bidding procedures 
recently proposed in the literature lies in how market clearing 
prices are included in the model [ 5 ] .  

In our approach the influence on the price of both the 
company’s own decisions and the competitors’ bids is 
specifically represented by means of the residual demand 
curve. This curve determines how the market clearing price 
changes with the variations of the company’s production [I], 
[6]. It is built using both the demand curve and the 
competitors’ offer curves. A generation company ignores the 
shape of its residual demand curve for each of tomorrow’s 
hours. However, as historic information on the competitors’ 
offers is usually available, the company can build a set of 
hourly residual-demand-curve scenarios (Fig. 1). 

I 
Energy said by the company (GWh) 

Fig. 1. Residualdemandcurve and revenue scenarios 

Fnergy sold by the company (GWh) 

Owing to the fact that the offers are decided simultaneously 
for all hours, it can be said that a recombining decision-tree is 
being considered (Fig. 2). 

Scenario 1 Sc. 1 sc. 1 sc. 1 

2 

sc. 3 sc. 3 sc. 3 sc. 3 
hour 1 hour2 hour3 hour4 

Fig. 2 .  Scenario tree. 

Once we have chosen to model uncertainty using scenarios, 
the problem comes down to selecting an optimal bid 
(quantity, price) for each scenario. Fig. 3 shows an example 
with 10 scenarios. 
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Energy sold by the company (GWh) 

Fig. 3. One offer for each residual-demand scenario 

The objective function used to search for optimal offers is 
the company's expected profit. This is calculated as the 
difference between expected revenues and expected costs. 
Revenues for each scenario are obtained by multiplying the 
energy price and the quantity offered by the company. 
Consequently, revenues constitute a non-linear function, as 
the price itself depends on the offered quantity. This is a 
drawback, because the most powerful commercial optimizers 
are those designed to solve linear programming problems. To 
overcome this difficulty we will use the linearizing technique 
described in [l]. This intuitive method divides the company's 
hourly revenue function into convex sections and 
approximates each one by a piecewise linear function. The 
slope obtained for each linear segment is the firm's marginal 
revenue at the corresponding energy output (Fig. 4). Each 
convex section is assigned a binary variable and each linear 
segment is assigned a continuous bounded variable. 

Fig. 4. Company's hourly marginal revenue function. 

A group of consecutive segments with strictly decreasing 
marginal revenues defines a convex section in the revenue 
function. When we seek the optimum we select a specific 
convex section by switching its binary variable fiom zero to 
one. Once we have chosen a convex section we fill its 
segments with continuous bounded variables. In other words, 
we obtain the hourly revenue by integrating the marginal- 
revenue function. Prices are not explicitly used to calculate 
the company's revenue. 

An important additional remark is that the bids chosen by 
the model for each generation unit must be increasing both in 
quantity and price. Thus, all the scenarios of a certain hour 
are linked by a set of increasing constraints. If A and B are 
two scenarios for hour n, the increasing constraint that links 
the quantities offered for unit g in both scenarios is: 

whereph, the price expected for scenario A, is a function of 
the total energy offered by the company for that scenario, 
C qgAn (Fig. 5) .  

Energy sold by the company (MWh) 

Fig. 5. Increasing offers. 
To linearize this increasing constraint, a binary variable, XAB,,, 

has to be defined. When curve A runs above curve B, xmn is 
equal to zero. In other case, X A B ~  = 1. 

To summarize, the expression of the SBP problem would 
be as follows: 

( 2 - ( 1 - x s s ; , ) M P ,  

where: 
load level (e.g. 1 hour), 
residual-demand-curve scenarios, 
generating unit, 
probability of scenario s in hour n,  
company's revenues in hour n and scenario s, 
quantity produced by unit g offered for scenario s in 
hour n, 
commitment state (011) of unit g in hour n and 
scenario s (input data), 
cost of unit g in hour n and scenario s, 
set of feasible schedules for unit g,  
energy price for scenario s in hour n,  
binary variable that links the offers for scenarios s and 
s ' in hour n. 

Obtaining a solution for a real-size SBP problem is 
extremely hard due to the presence of the binary variables 
used to linearize the revenue hnction and the increasing 
constraints. We suggest a decomposition approach to 
overcome this difticulty. 

111. DECOMPOSITION STRATEGY 

One of the most popular ways of addressing the solution of 
large-scale short-term generation-scheduling problems is 
through their dual, using the Lagrangian relaxation approach 
(LR) [9]. This is justified by the fact that a non-linear and 
non-concave maximization problem like this has a dual 
minimization problem that is convex. In traditional UC 
problems, the non-convexities were caused by start-up costs, 
fixed costs and minimum-up-and-down times. In the SBP 
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problem, in contrast, the start-up decisions are considered as 
given data obtained from a weekly model similar to the one 
described in [l]. On the contrary, non-concavities are found 
in the revenue functions. 

Two are the major disadvantages of the LR approach. The 
first one is algorithmic and is related to the oscillations in the 
value of the Lagrange multipliers during the first iterations. 
This problem is due to the lack of information about the dual 
function and has been partially overcome by progressive 
improvements in the algorithms that update these multipliers 
[6]. The second drawback is that the solution obtained for the 
dual problem is not feasible because the coupling constraints 
that have been relaxed are not satisfied. Therefore, a 
postprocessing of the dual solution is required to obtain a 
feasible schedule. This is usually done through heuristics. 

In the Benders framework [lo], the problem is decomposed 
into a master poblem (MP) and a zubproblem (SP), by 
breaking up the complicating constraints. These constraints, 
that link some variables of the MP, X M P ,  with those of the SP, 
are eliminated from the MP. In their place, the MP includes a 
linear approximation of the SP's objective function (recourse 
function) formed by Benders' cuts. Once a solution is 
obtained for the MP, the value given to the xMP variables is 
evaluated in the SP. The SP returns a Lagrange multiplier 
expressing how much its objective function would improve if 
the x M P  variables were slightly changed. 

Benders decomposition is not suitable for UC problems 
because this technique requires that the subproblems be 
convex (or concave, in a maximization context), which is not 
the case of the UC generation subproblems. In contrast, the 
SBP problem does not make start-up decisions. Hence, the 
decomposition strategy shown in Fig. 6 is suggested: 

MP: day-ahead market 
Decides offers: total r l  quantities and prices. 

SP: generation scheduling 
Decides how to produce the 
quantities offered by the M p  

Fig. 6.  Benders decomposition strategv 

Iv. FORMULATION OF THE PROBLEM 

The coupling constraints present in traditional short-term 
generation-scheduling problems (the demand and reserve 
constraints) disappear in the new profit-maximization 
context. The reason is that the company is free to decide the 
amount of energy and reserve that should be sold in order to 
maximize its profit. 

However, some new coupling constraints are present, such 
as those used to guarantee that offers are increasing both in 

quantity and price, (3) and (4). Additionally, the hourly 
revenues for each scenario, r,,, are calculated as a function of 
the total quantity offered by the company in the 
corresponding bid, E, qgsn . This means that the generating 

units are also linked through the objective function. The best 
way to eliminate this difference with the traditional problem 
structure is to add a new variable, the company's total offered 
quantity, qsn, and a new constraint, expressing that this total 
output must be equal to the sum of the productions of each of 
the company's units, Zg qgsn = qsn . 

decided in the MP in iteration t, g i n  : 

Thus, the SP evaluates the cost of producing the quantities 

where: 

2;s 
pi,,, , pi;,, dual variables associated to constraints (8). 

Typically, gS will take negative values, expressing that a 
decrease in the offered quantity, qtn,  permits a cost 
reduction. 

dual variable associated to constraint (6), 

The MP suggests new offers in iteration t+l according to 
the cost signals returned by the SP in the previous t iterations: 

(9) 

V(s,s'),n. (12) 

Equation (10) approximates the recourse function B by 
means of the Benders' cuts obtained &om the SP. 

Equation (12) has been incorporated to guarantee that the 
total quantities decided in the MP verify the increasing 
constraints. 

The total quantities decided by the MP may constitute an 
infeasible schedule for the company's generation system. 
There at least are two ways to deal with this difficulty: 
generating feasibility cuts or assuming that there is an hour- 
ahead market where a feasible schedule can be attained. 
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According to our results, the majority of the offers 
proposed by the MP lead to expected unfeasible schedules. 
This is either because the company's installed capacity is not 
sufficient or because its units are not flexible enough. 

Actually, it is not strange that the day-ahead generation 
schedule returned to the company by the market operator be 
infeasible. The company can then try to correct this situation 
in the subsequent hour-ahead market. The clearing price for a 
certain hour in the day-ahead market should not differ much 
from the clearing price for the same hour in the hour-ahead 
market. The residual demand curve considered in our model 
for the hour-ahead market is represented in Fig. 7. 

Hour-ahead market 
energy price for 
hour n ($/MWh) 

Net ljyrchase !Net said 
v 

Energy sold by the company in the hour-ahead market (MWh) 

Fig. 7. Hour-ahead market representation. 

If the company does not participate in the hour-ahead 
market, the hour-ahead clearing price of energy will be the 
same as in the day-ahead market. If the company sells energy 
in the hour-ahead market it will be paid at a lower price than 
in the day-ahead market. Conversely, if the company buys 
energy in the hour-ahead market it will be at a higher cost 
than in the day-ahead market. In this fashion the quantities 
decided by the MP will always be feasible, because the net 
energy sold in the hour-ahead market acts as a slack variable. 

The formulation of the SP including the hour-ahead market 
would then be: 

where: 
q,h, net quantity sold in the hour-ahead market in scenario 

s and hour n,  
r,", company's revenues in the hour-ahead market in 

scenario s and hour n. 
The company will submit the quantities given by the MP, 

{qsn},  though the net quantities that are expected to be 
produced are {qgsn}, which in some of the forecast scenarios 
are different, as can be seen in Fig. 8. This can cause an 
infeasibility in the resulting day-ahead schedule. The 
company will then have to optimize its strategy in the hour- 
ahead market, given the outcome of the day-ahead market. 

4Day-ahead market '. - 

I b 
Energy offered by the company in the day-ahead market (MWh) 

Fig. 8. Gap between the day-ahead sales and the expected generation 

V.NUMERICAL EXAMPLES 

In this section the results obtained for a generation 
company with an installed capacity of 4500 MW of thermal 
power and 1620 MW of hydro power are presented. The 
mathematical model has been formulated in GAMS language 
and solved with CPLEX 7.0. In all cases a 24-hour 15- 
scenario problem has been considered. 

A.  Case with no hydro energy 
To better analyze the results given by the model, a case 

with no hydro or pumped-storage production is first studied. 
Table I shows the evolution of the MP and the SP objective 

functions during the Benders algorithm. The MP objective 
function decreases as the recourse function is better 
approximated by the Benders cuts. The SP objective function 
has an increasing tendency, although with some oscillations. 

TABLE 1 
EVOLUI ION OF THE BENDERS ALGORITHM 

Iter MP Obj. Function (M€) SP Obj. Function (Me) 

1 3.1 060961 3 -2.544732004 
2 2.2301 83 16 -0.83130483 
3 1.478897132 -0.850319364 
4 1,459686021 -0.829655907 
5 1.459667484 -0.829663986 
6 1.459644697 -0.829663896 
7 1.459640604 -0.829663932 
8 1,459639203 -0.829663956 
9 1.459639017 -0.829663944 

The MP has 48000 eqs. and 24000 vars., 14500 of which 
are binary. The SP has 140000 eqs. And 55000 vars. Each 
iteration takes 1000 s in a Pentium I11 lGHz 384 MB. 

Fig. 9 represents the offers decided by the bidding 
procedure for three of the 24 hours. 

Off-peak hour Ramping hour On-peak hour 

1 2 3 4 5  1 2 3 4 5  1 2 3 4 5  
Energy offered by the company (GWh) 

Fig. 9. Offer curves given by the model for three ofthe 24 hours. 
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In this case an hourly minimum-expected-market-share 
constraint has been defined to prevent the model fiom trying 

nuclear and coal-fueled units. Fig. 12 illustrates the expected 
usage of the different technologies for each hour. 

El Pumped-storage 0 Hydro 0 Oil Coal 2 E3 Coal 1 .Nuclear 
to increase prices by reducing the energy offered by the 
company. This leads to vertical offer curves both for the on- 

3 7 ;  - ; - T - I -  ri-ri - I - T - I - ~ ~  - r ~ - i - T  -I-r i - I - T  -I 
I I 1  1 1 1 1  1 1 1 1  I 1  l l l l l l l  I 

peak and the off-peak hours. The ramping hour requires an 
offer curve that permits the generating groups increase their 
output without exceeding their ramp rate limits. 

Fig. 10 shows the detail of the offer curve designed by the 
model for the ramping hour (square dots). It includes the 
expected generation decided by the SP that constitutes a 
feasible schedule (circles). All the quantities decided by the 
SP coincide with the quantities offered in the day-ahead 
market except for the last one. If the residual-demand 
scenario associated to this offer occurred, the company would 
sell the quantity offered by the MP, which is lower than the 
expected generation decided in the SP. This could lead to 
some infeasibility which would have to be addressed in the 
hour-ahead market. 

Ramping hour 
0 Energy offered in the day-ahead market 0 Net generation 
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a 
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6 39 
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1.5 1.75 2 2.25 2.5 2.75 3 
Energv offered by the company (G Wh) 

Fig. IO.  Gap between the MP and the SP quantities in the ramping hour. 

To better understand the flexibility introduced by the hour- 
ahead market, Fig. 11 depicts the profile of the expected 
amount of energy sold in the day-ahead market (given by the 
MP) and the expected net generation after the hour-ahead 
market (solution of the SP). The major differences appear in 
those hours where the company's power output changes 
abruptly (hours 9 and 23 are good examples). 

....I-. Expected generation - Day-ahead expected sales 
2:1 

2.5 

2.3 

2.1 

1 3 5 7 9 11 13 15 17 19 21 23 

Fig. 1 I ,  Comparison between the MP and the SP quantities, in GWh. 

The generation facilities available for this case were 

2.5-1 - -  - - -  - 

7 
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1 
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0 
I 2 3 4 5 6 7 8 9 101112131415161718192021222324 

Fig. 12. Expected usage ofthe generation technologies. 

B. Case with hydro energy 
The proposed model is also designed to manage water 

resources. This adds the complexity of deciding in which 
hours this hydro production should be offered, although hydro 
units are more flexible than thermal ones. 

Fig. 13 shows the offers for the same three hours as the 
ones represented in Fig. 9. It can be observed that more 
energy is bid and lower prices expected. 

Off-peak hour Ramping hour On-peak hour 
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1 2 3 4 5  1 2 3 4 5  1 2 3 4 5  

Energy offered by the company (GWh) 
Fig. 13. Offer curves given by the model for three ofthe 24 hours. 

An interesting representation of the offers is given in Fig. 
14. It can be seen that, with this offers, the company is facing 
an extremely uncertain day-ahead schedule. In certain hours, 
the company's production may vary between 1.7 and 3.1 
GWh, which is a great risk. 

1 . 5 ! !  1 1  ~ I I I I \ I 1  1 1  1 1  1 1  I \ I  I I I 
1 2 3 4 5 6 7 8 9 101112131415161718192021222324 

Fig. 14. Quantities offered in the day-ahead market. 
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In contrast, the probability distribution for prices is 
relatively narrow (Fig. 15). This suggests that the variance of 
the results should be an attribute for selecting optimal bids, to 
achieve an adequate short-term risk management. 

Prices offered 
6 0 , , , , , , , ,  , , , , , , , , , , , , , , , ,  

VI. CONCLUSIONS 
In this paper a strategic bidding procedure based in 

stochastic programming is decomposed using the Benders 
technique. In this fashion the bidding problem separates 
naturally into a market master problem and a generation 
scheduling subproblem. This permits the solution of real-size 
problems and allows the user to keep a closer control on the 
optimization process. 

The bidding procedure is enriched with the modeling of 
both the day-ahead and the hour-ahead markets. This 
tolerates certain infeasibilities in the day-ahead schedule, 
making it easier for the model to obtain a solution. 
Additionally, it suggests arbitraging opportunities between 
both markets. 

Future research will be devoted to the reduction of the 
procedure’s execution time and to the analysis of its results 
under different market and technical conditions. 
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