Characterizing the Spanish hydro basins for their use in openTEPES

Jesús David Gómez Pérez Andrés Ramos Galán

Wörld

open**TEPES** Conference 2nd World openTEPES Conference | Madrid, 19th of July 2023

1. Introduction

- The Significance of Hydropower Generation
- Challenges in Modeling Hydropower Generation

2. Methodology

- Our first approximation: Regression models
- Model Training and Validation

3. Results

- Results
- Model Interpretation and Insights

4. Conclusions

Future directions and challenges

1. Introduction

- 2. Methodology
- 3. Results
- 4. Conclusions

The Significance of Hydropower Generation

Advantages of hydropower

4

Challenges in Modeling Hydropower Generation

REAL LIFE

ENVIRONMENTAL CONSTRAINTS

OPERATIONAL CONSTRAINTS

MATHEMATICAL MODEL

- · Natural water inflows uncertainty
- Minimum and maximum power and reservoir levels
- Minimum number of units on line
- Upward and downward ramping rates
- Reservoir level restrictions

REGULATORY CONSTRAINTS

• Total release volume

And if we want to conduct a planning study, considering the model configured in openTEPES, how can we incorporate these features?

1. Introduction

2. Methodology

3. Results

4. Conclusions

Our first approximation: Regression models

"Simplicity and Transparency in Power Systems Planning"

Modeling dynamic minimum and maximum power and dynamic upward and downward ramping rates as a function of other variables

* UGH: "Unidad de gestión hidráulica" (Hydro management unit)

Model training and validation

Predictor variables

Data set 2011 – 2019 hourly

Production: 2011 – 2019 hourly Producible: 1991 – 2023 monthly Wind, solar, and demand: 2012 – 2020 monthly Water reserve level: 1988 – 2023 weekly Training set: 70% Test set: 30%

Linear model

Linear or more complex model

- 0LS
 - Bayesian linear regression (OLS with Lasso)

Neural networks (MLP)

* UGH: "Unidad de gestión hidráulica" (Hydro management unit)

1. Introduction

2. Methodology

3. Results

4. Conclusions

Minimum and maximum power

ext2

What production value should we choose to model the minimum and maximum in an operational context?

Procedure (duration curve):

- 1. The production will be clustered into 15 groups
- 2. Plot the empirical probability distribution for each centroid
- 3. Select the first and last clusters as Pmax and Pmin, respectively

DUER: Pmax = quantil 99 Pmin = quantil 15

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

- -0.4

Linear regression analysis

DUER	1.00	0.39	0.18	-0.06	0.10	0.62	0.45	0.17	0.45	0.34	0.33	0.46	0.44	0.30	0.40	0.42	0.53	0.59	-0.29	0.36
EBRFEN	0.39	1.00	0.51	0.26	0.22	0.34	0.40	0.65	0.63	0.79	0.66	0.55	0.50	0.49	0.70	0.69		0.57	0.23	0.20
GDLQ	0.18	0.51	1.00		0.47	0.04	0.43	0.50	0.51	0.53	0.42	0.54	0.52	0.50	0.56	0.61	0.56	0.17	0.46	-0.17
GDNA	-0.06	0.26		1.00	0.42		0.15	0.36	0.38	0.33	0.21	0.36	0.36	0.44	0.37	0.39	0.33		0.53	-0.38
JUCA	0.10	0.22	0.47	0.42	1.00	0.01	0.23	0.12	0.31	0.28	0.27	0.36	0.28	0.34	0.29	0.27	0.34	-0.07	0.33	-0.19
SIL	0.62	0.34	0.04		0.01	1.00	0.35	0.19	0.24	0.22	0.33	0.26	0.20	0.19	0.30	0.23	0.37		-0.41	0.56
TAJO	0.45	0.40	0.43	0.15	0.23	0.35	1.00	0.17	0.42	0.40	0.29	0.45	0.45	0.28	0.33	0.55	0.49	0.36	-0.07	0.11
B_CANTABRICO	0.17		0.50	0.36	0.12	0.19	0.17	1.00	0.49	0.73	0.79	0.17	0.11	0.19	0.80	0.49	0.42	0.42	0.48	0.13
B_DUERO	0.45	0.63	0.51	0.38	0.31	0.24	0.42	0.49	1.00	0.79	0.64			0.57	079	0.91	0.93	0.32	0.40	-0.03
B_EBRO	0.34	0.79	0.53	0.33	0.28	0.22	0.40	0.73	0.79	1.00	0.78	0.51	0.46	0.41	0.78	0.76	0.73	0.42	0.39	0.10
B_GALICIACOSTA	0.33		0.42	0.21	0.27	0.33	0.29	0.79	0.64	0.78	1.00	0.27	0.20	0.17	0.91	0.51	0.60	0.55	0.35	0.23
B_GUADALQUIVIR	0.46	0.55	0.54	0.36	0.36	0.26	0.45	0.17		0.51	0.27	1.00	0.97	0.88	0.41	0.74	0.84	0.27	0.09	0.03
B_GUADIANA	0.44	0.50	0.52	0.36	0.28	0.20	0.45	0.11		0.46	0.20	0.97	1.00	0.86	0.37	0.76	0.83	0.24	0.08	0.01
B_JUCAR	0.30	0.49	0.50	0.44	0.34	0.19	0.28	0.19	0.57	0.41	0.17	0.88	0.86	1.00	0.32	0.62	0.73	0.18	0.20	0.06
B_SIL	0.40		0.56	0.37	0.29	0.30	0.33	0.80	0.79	0.78	0.91	0.41	0.37	0.32	1.00	0.69		0.52	0.46	0.12
B_TAJO	0.42	0.69	0.61	0.39	0.27	0.23	0.55	0.49	0.91	0.76	0.51	0.74	0.76	0.62	0.69	1.00	0.90	0.35	0.38	-0.01
relative_reserve	0.53	0.68	0.56	0.33	0.34	0.37	0.49	0.42	0.93	0.73	0.60	0.84	0.83		0.73	0.90	1.00	0.49	0.24	0.14
relative_producible	0.59	0.57	0.17	-0.20	-0.07	0.65	0.36	0.42	0.32	0.42	0.55	0.27	0.24	0.18	0.52	0.35	0.49	1.00	-0.34	0.71
solar_demand_portion	-0.29	0.23	0.46	0.53	0.33	-0.41	-0.07	0.48	0.40	0.39	0.35	0.09	0.08	0.20	0.46	0.38	0.24	-0.34	1.00	-0.52
wind_demand_portion	0.36	0.20	-0.17	-0.38	-0.19	0.56	0.11	0.13	-0.03	0.10	0.23	0.03	0.01	0.06	0.12	-0.01	0.14	0.71	-0.52	1.00
	DUER	EBRFEN	CDLQ	GDNA	JUCA	SIL	TAJO	B_CANTABRICO	B_DUERO	B_EBRO	B_GALICIACOSTA	B_GUADALQUIVIR	B_GUADIANA	B_JUCAR	B_SIL	B_TAJO	relative_reserve	relative_producible	lar_demand_portion	nd_demand_portion

openTEPES Open Generation, Storage, and Transmission Operation and Expansion Planning Model with RES and ESS "Simplicity and Transparency in Power Systems Planning"

11

Exogenous model

	OLS	Regress	sion R	esults			
Dep. Variable:		DUER	R-sq	uared:		0.730	
Model:		OLS	Adj.	R-squared:		0.726	
Method:	Least S	quares	F-sta	atistic:	173.4		
Date:	Mon, 17 Ju	1 2023	Prob	(F-statisti	6.09e-89		
Time:	19	:32:11	Log-I	Likelihood:	-248.89		
No. Observations:		327	AIC:			509.8	
Of Residuals:		321	BIC:			532.5	
Of Model:							
Covariance Type:	non	robust					
	coef	std	err		P> t	[0.025	0.975
const	0.0058	0	.029	0.201	0.841	-0.051	0.06
relative_producible	0.2339	0	.050	4.714	0.000	0.136	0.33
wind_demand_portion	-0.0751	0	.044	-1.690	0.092	-0.162	0.01
solar_demand_portion	-0.0990	0	.034	-2.954	0.003	-0.165	-0.03
DUERlag1	0.5742	0	.056	10.258	0.000	0.464	0.68
DUERlag2	0.1491	0	.054	2.737	0.007	0.042	0.25
		7 515	Durb	in-Watson:		1.946	
Prob(Omnibus):		0 023	Jaro	le-Bera (1B)		12,267	
Skew:		0.031	Proh	(78):		0.00217	
Kurtosis:		3.947	Cond	No		4.32	

5/5 [====================] - 0s 750us/step R^2 score neural network in the test set: 0.6718192231708278

- R² Training set: 0.73
- R² Test set: 0.75

Significant variables:

- Producible
- Solar/demand
- Lag 1
- Lag 2

.

.

Wind/demand (p-value > 0.05)

- R² Training set: 0.709
- R² Test set: 0.742
- R² Training set: 0.845
- R² Test set: 0.672

Model interpretation and insights

Open Generation, Storage, and Transmission Operation and Expansion Planning Model with RES and ESS "Simplicity and Transparency in Power Systems Planning"

1. Introduction

- 2. Methodology
- 3. Results

4. Conclusions

Conclusions

- Modeling the time-dependent maximum and minimum power, as well as the ramp-up and ramp-down rates, is a first approximation to capture many of the constraints of hydropower
- The duration curve is a useful tool to determine the percentile associated with the minimum and maximum values of a variable
- Linear models adequately represent the objective of this study
- How to improve the prediction of models that considers temporal correlation?

Thank you

Jesús David Gómez Pérez

jdgomez@comillas.edu

Break 10 min

