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Abstract – This document presents a finite decomposition algorithm to solve mixed integer 
linear problems. Integer variables appear at the master problem and at the subproblem. The 
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1. INTRODUCTION 

Benders decomposition algorithm [2,15] solves a mixed integer linear problem (MILP) gath-
ering the integer variables (complicating variables) into a master problem and building a sub-
problem on the remaining variables. Part of the objective function is explicitly evaluated in the 
master problem, while the rest constitutes the objective function of the subproblem and it is 
only introduced into the master problem in an approximate manner. When the subproblem 
turns out to be linear, its objective function (called recourse function) is convex, so that it is 
immediately approximated at a point building up the tangent with the optimal dual variable. 
The algorithm proceeds proposing values at the master problem and solving the subproblem to 
update the approximation of the recourse function. 

When the subproblem is non convex, then the recourse function is non convex [3], and the 
former approach is no longer valid. Then, a way to proceed consists of forming the lower convex 
envelope of the recourse function [10,14]. This lower convex envelope is traditionally constructed 
via a lagrangean relaxation (LR) procedure (also called conjugate function or Fenchel duality). 

That is the approach presented in Geoffrion’s generalized Benders decomposition [6], where 
the subproblem is solved using LR [7]. However, the simple use of LR to solve a subproblem 
only yields an approximation of the convex envelope of the recourse function, and additional 
development is needed to get the exact envelope. This further development consists of introduc-
ing into the subproblem cuts that constrain the “tender variables” space over which the con-
vexification procedure is carried out. The “tender variables” are those that connect first and 
second stage problems. The main issue of the paper consists of constructing the convex envelope 
of the recourse function restricted to the set of tender variables, which is induced by the first 
stage constraints. This construction is embedded into the Benders decomposition algorithm so 
to deal with mixed integer variables in the sub problem. 

The paper is organized in the following way. The first part reviews LR and its relation with 
the powerful concept of perturbation function. The second part presents Benders decomposition 
within a two-stage problem. S simple example to clarify the previous concepts is presented. The 
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algorithm is extended to nested decomposition and finally computational test over a large scale 
problem are reported. 

2. PERTURBATION FUNCTION AND LAGRANGEAN RELAXATION ALGORITHM 

This section introduces the concept of perturbation function and its relation with LR. Later, 
the recourse function of a Benders algorithm is interpreted as a perturbation function and solved 
via LR. 

2.1. General problem 
Consider a problem ( )P  of the form 

( )P  

min ( )

( ) 0

f y

g y

y Y

≤

∈

 (2.1) 

with Y  being the mixed integer solutions of a polyhedron Y  (i.e., a non convex region). We 
can assume without loss of generality that region Y  incorporates the non negativity constraints 
of variables y , 0y ≥ . 

It is defined the generalized graph G  of the problem as 

 { }0 0( , )/  with ( ), ( )G r r y Y r g y r f y= ∃ ∈ = =  (2.2) 

so that the problem ( )P  is reinterpreted as finding a point 0( , )r r  in G  with minimum ordinate 
and 0r ≤ , see [9]. G  is the image of Y  under the transformation ( , )g f . The generalized epi-
graph of the problem, see [9], is defined as 

 { }0 0epi ( , )/  with ( ), ( )G r r y Y r g y r f y= ∃ ∈ ≥ ≥  (2.3) 

Closely related with this idea is the concept of perturbation function. Consider that the 
right hand side (RHS) of problem ( )P  is being modified obtaining a family of problems whose 
solutions define a function on the RHS parameter introduced. This function is known in the 
literature as perturbation function or value function [1,12] 

 

( ) min ( )

( )

r f y

g y r

y Y

υ =

≤

∈
 (2.4) 

Observe that due to the inequality in problem ( )P , the perturbation function is non increas-
ing. Problem ( )P  is understood as finding (0)υ . It should be clear that finding the convex hull 
of the generalized epigraph is equivalent to finding the lower convex envelope of the perturba-
tion function. 

A LR procedure gives the value of the convexification of the perturbation function at the 
point 0r = . For any 0λ ≥  define the dual function ( )w λ  as 

 { } { }0 0 0 0 0 0( ) min ( ,1)( , ) ,( , ) min ( ,1)( , ) ,( , ) epiw r r r r r r G r r r r r r Gλ λ λ λ λ= = + ∈ = = + ∈  (2.5) 

or equivalently 

 
( ) min ( ) ( )w g y f y

y Y

λ λ= +

∈
 (2.6) 

Assume ( )w λ  has a finite value, then there exists iy Y∈  with ( ) ( ) ( )i ig y f y wλ λ+ = . This 
optimal solution determines a level curve { }0 0( , )/ ( ) ( )i iL r r r r g y f yλ λ= + = + . So that for 
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0r =  we have the point ( )0, ( ) ( )i ig y f yλ +  and it is stated that (0) ( ) ( ) ( )i ig y f y wυ λ λ≥ + = . 
The dual problem traditionally consists of finding the maximum of those minimum values ( )w λ . 

( )D  { }max ( ), 0w λ λ ≥  (2.7) 

Assume Y  is a polytope and 1,..., Ky y  the extreme points of Y . Assume f  and g  are con-
vex functions (e.g., linear), then we obtain the equivalent expression for the dual function 

 { }( ) min ( ) ( )/ 1,..., , extr( )k k kw f y g y k K y Yλ λ= + = ∈  (2.8) 

which shows concavity of the dual function and allows the dual problem to be formulated as a 
linear problem 

 

1 1

max

( ) ( )

( ) ( )

0

K K

w

w f y g y

w f y g y

λ

λ

λ

≤ +

≤ +

≥

…  (2.9) 

Clearly for large scale problems it is not possible to calculate all polytope extreme points, so 
that the dual function is usually optimized formulating a relaxed problem, denoted master dual 
problem ( )MD , whose resolution proposes multiplier values. 

( )MD  

max

( ) ( ) 1, ,

0

i i

w

w f y g y i kλ

λ

≤ + =

≥

…  (2.10) 

Evaluation of the dual function at these multiplier values obtains tangential approximations 
of function ( )w λ , which are incorporated into the master dual problem. These tangential ap-
proximations are called lagrangean optimality cuts. 

Traditional LR algorithm iterates between the master dual problem ( )MD  and the la-
grangean subproblem (evaluation of the dual function) ( )PRλ  until a certain tolerance is satis-
fied. 

( )PRλ  
( ) min ( ) ( )w g y f y

y Y

λ λ= +

∈
 (2.11) 

Assuming only bounded cases, the lagrangean relaxation algorithm is summarized on the 
next steps: 

 
Step 1. Solve problem ( )MD  and obtain λ  
Step 2. Obtain upper bound z w=  
Step 3. Solve problem ( )PRλ  and obtain kx  
Step 4. Obtain lower bound { }max , ( )z z w λ=  
Step 5. Stop if tolz z− < , otherwise do 1k k= +  and go to 1. 

2.2. Constrained perturbation region 
The problem (2.4) has been transformed into the problem (2.11) due to the nonexistence of 

additional constraints over variables 0( , )r r . If the perturbation function is defined for a con-
strained set of RHS values, then the convexification procedure has to take this constrained set 
into account and previous transformation is no longer valid. Consider the perturbation function  
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( ) min ( )

( )

r f y

g y r r R

y X

υ =

≤ ∈
∈

 (2.12) 

be defined for r R∈  and assume 0 R∈ . (If 0 R∉  then the convexification will not give an 
approximation of the optimal value { }(0) min ( ); ( ) 0,f y g y y Yυ = ≤ ∈ ). 

We consider a constrained generalized graph and epigraph as follows. 

 { }0 0( , )/  with ( ), ( ),G r r y Y r g y r f y r R= ∃ ∈ = = ∈  (2.13) 

 { }0 0epi ( , )/  with ( ), ( ),G r r y Y r g y r f y r R= ∃ ∈ ≥ ≥ ∈  (2.14) 

When calculating the value of the perturbation function convexification at 0r =  the dual 
function ( )w λ  is defined 

( )PRλ  

( ) min ( )

( )

,

w f y r

g y r

y Y r R

λ λ= +

≤

∈ ∈
 (2.15) 

and the dual problem remains as 

( )D  { }max ( )w λ  (2.16) 

From an algorithmic point of view, this dual problem is replaced by a relaxed problem, 
called master dual problem ( )MD , which is continuously updated during the LR algorithm 

( )MD  

max

( ) 1, ,

0

i i

w

w f y r i kλ

λ

≤ + =

≥

…  (2.17) 

with { }( , ) extr ( ) , , , : 1,...,i iy r g y r y Y r R i k∈ ≤ ∈ ∈  
Now it is not possible to eliminate the variable r  in the same way as it was eliminated 

when the perturbation region was the whole euclidean space. 

2.3. Phase I of lagrangean relaxation 
Previous section implicitly assumed that master dual problem ( )MD  was a bounded prob-

lem, so each resolution would give a new multiplier proposal λ . It did also assume problem 
( )PRλ  was bounded for each value λ . However, this is not the general situation and a family of 
cuts is necessary to guarantee master dual problem boundness. Those cuts will appear when 
solving the minimization of infeasibilities of the subproblem under study. From hereafter it is 
assumed that the objective function is linear and the constraints are affine. We will exhaustively 
use the Farkas’ law results. 

Let problem ( )P  take the form 

( )P  

mindy

Wy h

y Y

≤

∈

 (2.18) 

In the resolution of problem ( )P  it is necessary to test that the problem is feasible and, if 
not the case, to provide a minimization of infeasibilities. Its feasibility is equivalent to a non 
infinite value of the associated perturbation function for 0r = , which for a constrained pertur-
bation region R  is defined as 
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min

,

dy

Wy h r

y Y r R

− ≤

∈ ∈

 (2.19) 

It is clear that system { }, , , 0Wy h r y Y r R r− ≤ ∈ ∈ =  has a solution if and only if system 
{ }{ }conv , , , 0Wy h r y Y r R r− ≤ ∈ ∈ =  does. Feasibility of this region is tested formulating the 

minimization of infeasibilities problem. Assuming that infeasibility can only be caused by the 
constraints 0r =  this problem takes the form 

 

min

0

conv
,

, 0

r r

r r r

Wy h r

y Y r R

r r

+ −

+ −

+ −

+

− + =

 − ≤     ∈ ∈   
≥

 (2.20) 

Feasibility region of the above problem immediately satisfies the integrality property [7] that 
guarantees its optimal value is equivalent to the value obtained by a LR algorithm. Then, for 
any λ  consider 

*( )PRλ  

*( ) min ( )

,

, 0

w r r r r r

Wy h r

y Y r R

r r

λ λ+ − + −

+ −

= + + − +

− ≤

∈ ∈

≥

 (2.21) 

and solve the following dual problem 

*( )D  { }*max ( )w λ  (2.22) 

If this problem has positive solution, then primal problem is infeasible due to value 0r = . 
Observe that *( )w λ  verifies 

 
{ }*

1, 1
( )

min ,( , ) , , 1 1
w

r y r Wy h r y Y r R

λ λ
λ

λ λ

 −∞ <− >=  ∈ − ≤ ∈ ∈ − ≤ ≤
 (2.23) 

So that dual problem *( )D  can be rewritten as 

*( )D  { }*max ( ), 1 1w λ λ− ≤ ≤  (2.24) 

The resolution of problem *( )D  is carried out formulating a relaxed problem, called master 
dual problem *( )MD , which is being updated when necessary 

*( )MD  

max

1, ,

0 1

i

w

w r i kλ

λ

≤ =

≤ ≤

…  (2.25) 

with { }( , ) extr , , , : 1,...,i iy r Wy h r y Y r R i k∈ − ≤ ∈ ∈  
Remark 1. Observe that this cutting plane technique creates a group of planes that correspond 
to a group of planes of problem ( )MD  moved to the origin. So in case problem *( )MD  ends with 
zero solution, problem ( )MD  has a set of constraints that will guarantee its boundness. 



 6

Introducing a new parameter 0λ , with value 0 in phase 1 and value 1 in phase 21, we formu-
late lagrangean subproblem 

0
( )PRλ λ  and master dual problem 

0
( )MDλ , which will generalize the 

LR algorithm 

0
( )MDλ  0

max

1, ,

0

i i

w

w dy r i kλ λ

λ

≤ + =

≥

…  (2.26) 

0
( )PRλ λ  

0 0( ) min

,

w dy r

Wy h r

y Y r R

λ λ λ λ= +

− ≤

∈ ∈
 (2.27) 

where 0 0λ =  and 1 1λ− ≤ ≤  in phase 1 and 0 1λ =  in phase 2. 

2.4. Bounding cuts 
It may be the situation that for a particular multiplier value λ  problem ( )PRλ  ends with an 

unbounded solution. In that case, a bounding cut is introduced that eliminates that multiplier 
proposal. This technique is now described. 

Consider problem ( )P  of equation (2.27) adapted for simplicity to phase 2. 

( )PRλ  

( ) min

,

w dy r

Wy h r

y Y r R

λ λ= +

− ≤

∈ ∈

 (2.28) 

We can assume { }1 1
11 1,

n mY A y b y= ≤ ∈ ×\ ] , { }11 1R R r r= ≤ . 
Previous problem is unbounded if its linear relaxation is unbounded. On the contrary, a 

bounded linear relaxation problem implies boundness for the MIP problem. Unboundness of 
previous linear relaxation problem is equivalent to infeasibility of its dual linear problem 
( )DPRλ , which takes the form 

( )DPRλ  

1 2 1 3 1

1 2 11

1 3 11

1 2 3

max

, , 0

h b r

W A d

R

π π π

π π

π π λ
π π π

+ +

+ =

− + =

≤

 (2.29) 

A direct application of Farkas results assures problem ( )DPRλ  is feasible if and only if 

 

( )

11

11

0, , /

0

0

0

cd r y r

Wy r

A y

R r

λ+ ≤ ∀

− + ≤

− ≤

− ≤

� � �

� �

�

�

 (2.30) 

This equation constrains the set of Lagrange multipliers such that problem ( )PRλ  is 
bounded to belong to set B , denoted as bounding set. A closed form expression for this set B  is 
then 

                                            
1 Phase 2 is understood as the algorithm presented at the beginning of section 2 correspond-

ing to problems (2.10) and (2.11). 
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{ }11 11

/ 0

( , ) extreme ray 0, 0, 0

j j

j j

dy r
B

y r Wy r A y R r

λ λ + ≤   =   ∀ − + ≤ − ≤ − ≤   

� �

� � � � � �
 (2.31) 

Then, dual problem ( )D  takes the form 

( )D  { }max ( ),w Bλ λ ∈  

Calculating all the former extreme rays is an out of question matter, so that when proposing 
a new multiplier value at the master problem it should be tested if this multiplier value belongs 
to set B . In the negative case a new constraint will be added to the master dual problem 
( )MD . This new constraint is defined as a bounding cut. Before solving problem ( )PRλ  next 
problem has to be solved 

 11

11

max

0

0

0

1 1, 1 1

dy r

Wy r

A y

R r

y r

λ+

− + ≤

− ≤

− ≤

− ≤ ≤ − ≤ ≤

� �

� �

�

�

� �

 (2.32) 

and in case this problem ends with a positive solution, a constraint of the form 0j jdy rλ+ ≤� �  is 
introduced into the master dual problem ( )MD . The point ( , )j jy r� �  represents the optimal solu-
tion of previous problem. This constraint eliminates the last multiplier λ  from the feasibility set 
of problem ( )MD . Observe that the dual problem of (2.32) is precisely the minimization of in-
feasibilities of problem ( )DPRλ . 

So in a LR algorithm a master problem is solved to obtain a new multiplier proposal. This 
master dual problem is built up with constraints that outer approximate the dual function ( )w λ  
(lagrangean optimality cuts) and bounding cuts that eliminate multiplier values for which la-
grangean subproblem turns out to be unbounded. The master dual problem takes the form 

( )MD  

max

: 1,...,

0 : 1,...,

0

i i

j j

w

w dy r i k

dy r j l

λ

λ

λ

≤ +

≤ +

≥

� �
 (2.33) 

with 
{ }( , ) extr , , , : 1,...,i iy r Wy h r y Y r R i k∈ − ≤ ∈ ∈ and 

{ }11 11( , ) extreme ray 0, 0, 0 , 1, ,j jy r Wy r A y R r j l∈ − + ≤ − ≤ − ≤ =� � � � � � …  
Remark 2. Observe that the former development of bounding cuts has been done for phase 2, 
but it should also be done for phase 1. A bounding cut obtained in phase 1 is also valid for 
phase 2, in the same way as lagrangean optimality cut obtained in phase 1 provides a valid cut 
for phase 2. 

2.5. Detailed Lagrangean Relaxation Algorithm 
The perturbation function is non increasing in the case of all the constraints are inequality 

constraints. The case with equality constraints is quite similar, although concepts need to be 
redefined. We generalize the above development to the case with inequality and equality con-
straints and summarize the general relaxation algorithm for MILP problem. 

Consider now problem ( )P  
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( )P  

min

´ ´

dy

Wy h

W y h

y Y

≤

=

∈

 (2.34) 

and consider possible perturbations of the RHS of this problem for ( , )r r R′ ∈ . 

 

( , ) min

´ ´

r r dy

Wy h r

W y h r

y Y

υ ′ =

− ≤

′− =

∈

 (2.35) 

Graph and epigraph associated with problem ( )P  are defined as 

 
{ }
{ }

0 0

0 0

( , , )/  with , ´ ´, ,( , )

epi ( , , )/  with , ´ ´, ,( , )

G r r r y Y r Wy h r W y h r dy r r R

G r r r y Y r Wy h r W y h r dy r r R

′ ′ ′= ∃ ∈ = − = − = ∈

′ ′ ′= ∃ ∈ ≥ − = − ≥ ∈
 (2.36) 

Assume we want to obtain the lower convex envelope value of the perturbation function at 
0r = , 0r ′ = . We have to solve a lagrangean subproblem of the form 

0
( )PRλ λµ  

0 0( , ) min ( ´ ´)

,( , ´ ´)

w dy r W y h

Wy h r

y Y r W y h R

λ λ µ λ λ µ= + + −

− ≤

∈ − ∈

 (2.37) 

with 0 0λ =  at phase 1 of the algorithm and 0 1λ =  at phase 2. 
Lagrange multipliers are proposed solving a relaxed master dual problem whose expression is 

0
( )MDλ  

0

0

max

( ´ ´) : 1,...,

0 ´ : 1,...,

0,

i i i

j j j

w

w dy r W y h i k

dy r W y j l

λ λ µ

λ λ µ

λ

≤ + + −

≤ + +

≥

� � �
 (2.38) 

with { }( , ) extr , ,( , ´ ´)i iy r y Y Wy h r r W y h R∈ ∈ − ≤ − ∈  and ( , )j jy r� �  are extreme rays for the 
corresponding region. 

The lagrangean relaxation algorithm is summarized on the following steps: 
 

Step 1. Set 0 0λ =  and 1 1λ− ≤ ≤  
Step 2. Solve problem 

0
( )MDλ  and obtain multiplier values λ  and µ  

Step 3. Obtain upper bound 
0

z wλ =  
Step 4. If 0 0λ =  and 0w =  switch to phase 2 setting 0 1λ =  
Step 5. Solve linear relaxation of problem 

0
( )PRλ λµ  

Step 6. If linear relaxation is unbounded, then take dual values and form a bounding cut 
Obtain value ( , )k ky r� �  , set 1l l= +  and go to step 2 

Step 7. If linear relaxation is bounded, then continue solving MILP problem 
0

( )PRλ λµ  
Obtain value ( , )k ky r  and set 1k k= +  
Obtain lower bound { }

0 0 0
max , ( , )z z wλ λ λ λ µ=  

Step 8. If 
0 0

tolz zλ λ− <  then stop. Otherwise go to 2. 
Step 9. If 0 0λ =  problem ( )P  is infeasible 
Step 10. If 0 1λ =  problem ( )P  is feasible 
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The LR algorithm ends at phase 2 with the value of the lower convex envelope of problem 

( )P  at 0r = , 0r ′ = . In case of ending at phase 1, then problem ( )P  is infeasible, and the final 
value gives the minimization of infeasibilities due to the complicating con-
straints{ }, ´ ´ ´Wy h W y h≤ = . Problem infeasibility due to these constraints is identified if a la-
grangean subproblem has positive optimal value during phase 1. In that case the algorithm may 
stop or may continue to get the minimization of infeasibilities required by most optimization 
algorithms. This is necessary when incorporating a lagrangean algorithm into a Benders decom-
position scheme, producing what is defined in the literature as deepest cut. 

3. BENDERS DECOMPOSITION 

We now face the subject of solving a problem ( )P  of the form 

( )P  

min

,

cx dy

Tx Wy h

x X y Y

+

+ ≤

∈ ∈

 (3.1) 

where feasible regions for first and second stage variables, x  and y  respectively, incorporate 
integrality constraints for some variables { }1 1

1 1,
n mX Ax a x= ≤ ∈ ×\ ] , 

{ }2 2
2 2,

n mY A y a y= ≤ ∈ ×\ ] . We assume this representation incorporates the non negativity 
constraints for variables x  and y . The resolution of this problem ( )P  is equivalent to solve the 
master problem ( )MP  

( )MP  
min ( )cx x

x X

θ+

∈
 (3.2) 

with the recourse function ( )xθ  defined as 

( )xSP  

( ) minx dy

Wy h Tx

y Y

θ =

≤ −

∈

 (3.3) 

3.1. Linear problems 
For LP problems, the Benders algorithm [2] proceeds formulating a master problem that in-

corporates first stage variables and a partial description of the recourse function ( )xθ . Resolu-
tion of this master problem gives a first stage optimal value x . Evaluation of subproblem ( )xSP  
at this optimal value (modifying RHS of corresponding equations) gives a supporting hyperplane 
of the epigraph of the recourse function, named Benders optimality cut. This supporting hyper-
plane updates master problem, which is solved again. In addition to these supporting planes the 
algorithm also provides feasibility cuts that eliminate those first stage values of the master prob-
lem that turn infeasible the second stage problem. The algorithm continues until a certain toler-
ance is satisfied. Subsequently, a very briefly review for the linear case is presented. 

3.1.1. Optimality cuts 

Let us assume integrality constraints are removed from Y  so that problem ( )SP  for a fixed 
0x  takes the form 

0
( )xSP  { }0 0( ) min , ,x dy Wy h Tx y Yθ = ≤ − ∈  (3.4) 

where { }2 2
2 2/ , n mY y A y a y += ≤ ∈ \ . 

Duality in linear programming immediately derives an equivalent expression for problem 

0
( )xSP  
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0
( )xSP  

0 0 2

2

( ) max ( )

0, 0

x h Tx a

W A d

θ π ρ

π ρ
π ρ

= − +

+ =

≤ ≤

 (3.5) 

Resolution of this problem ends with optimal value iθ , achieved for dual values ( , )i iπ ρ . 
The recourse function then trivially satisfies the next constraint 

 2( ) ( )i ix h Tx aθ π ρ≥ − +  (3.6) 

Linearizing around the point of interest 0x  we have the expression 

 2 0 0 2

0 2 0 0

( ) ( ) ( )

( ) ( ) ( )

i i i i

i i i i i

x h Tx a h Tx Tx Tx a

h Tx a Tx Tx T x x

θ π ρ π ρ

π ρ π θ π

≥ − + = − + − + =

= − + + − = + −
 (3.7) 

So that expression (3.6) is written as 

 0( ) ( )i ix T x xθ θ π≥ + −  (3.8) 

and denoted in the literature as Benders optimality cut. 

3.1.2. Feasibility cuts 

Subproblem 
0

( )xSP  is infeasible if no solution exists for the region { }0 2 2,Wy h Tx A y a≤ − ≤ . 
This is equivalent to assert that there exists no 1 0s ≥ , 2 0s ≥  such that 

 { }1 0 2 2 2,Wy s h Tx A y s a+ = − + =  (3.9) 

Direct application of Farkas law implies that a necessary condition for a first stage value 0x  
to produce a feasible subproblem is 

 { }0 2 2( ) 0, , 0/ 0h Tx a W Aπ ρ π ρ π ρ− + ≤ ∀ ≤ + ≤� � � � � �  (3.10) 

This result introduces the feasible set K , as the set of first stage values that guarantee fea-
sibility for second stage problem. A closed form expression for this set is 

 { }{ }0 0 2 2/ ( ) 0, ,  extreme ray 0, 0, 0j j j jK x h Tx a W Aπ ρ π ρ π ρ π ρ= − + ≤ ∀ + ≤ ≤ ≤� � � � � � � �  (3.11) 

Once a first stage solution 0x  is obtained at the master problem ( )MP , it is solved the 
problem 

 

* 0 0 2

2

( ) max ( )

0

1 0

1 0

x h Tx a

W A

θ π ρ

π ρ
π
ρ

= − +

+ ≤

− ≤ ≤

− ≤ ≤

� �

� �

�

�

 (3.12) 

and if the objective function has positive value then a feasibility cut is introduced that excludes 
that first stage value 0x  and has the following form 

 2( ) 0j jh Tx aπ ρ− + ≤� �  (3.13) 

Linearizing around the first stage value and letting jθ  be the optimum of problem (3.12) 
and jπ�  and jρ�  its optimal values we have 

 2 0 0 2

0 0

0 ( ) ( )

( ) ( )

j j j j

j j j j

h Tx a h Tx Tx Tx a

Tx Tx T x x

π ρ π ρ

θ π θ π

≥ − + = + − − + =

= + − = + −

� � � �

� �
 (3.14) 
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This feasibility cut gets a similar expression to the optimality cut (3.8) 

 00 ( )j jT x xθ π≥ + −�  (3.15) 

Observe that problem (3.12) is precisely the dual problem of 

 

1 2

1 0

2 2 2

1 2

min

, 0

s s

Wy s h Tx

A y s a

s s

+

− ≤ −

− ≤

≥

 (3.16) 

that represents the minimization of infeasibilities of problem 
0

( )xSP . 
Observe this is the dual situation of the lagrangean decomposition scheme in which a bound-

ing cut excludes a multiplier value if this turns the lagrangean subproblem unbounded. 
Benders decomposition proceeds iterating between a linear master problem ( )MP  and a 

subproblem ( )SP  until a certain tolerance is satisfied. The master problem presents an expres-
sion 

( )MP  

{ }1 1

0

0

1 1

min

0 ( ) 1, ,

( )    1, ,

, ,

j j j

i i i

n m

cx

T x x j l

T x x i k

x X X Ax a x

θ

θ π

θ θ π
+

+

≥ + − =

≥ + − =

∈ = ≤ ∈

� …

…

\

 (3.17) 

3.2. Mixed integer linear problems 
The MILP case keeps the same procedure, but face the disadvantage of the non convexity of 

the recourse function ( )xθ . The resolution of problem ( )P  requires the convexification of this 
recourse function. Considering the recourse function as the perturbation function of a problem, 
we want to obtain the convexified expression of the perturbation function 

 { }( ) min , , ,r dy Wy h r y Y r Rθ = − ≤ ∈ ∈  (3.18) 

with { }/ /R r x X r Tx= ∃ ∈ =− . The variables r  are the “tender variables” and region R  is 
the domain of the recourse function which is induced by the first-stage constraints. 

Following results of section 2, define for any λ  the dual function 

( )PRλ  

( ) min

,

w dy r

Wy h r

y Y r R

λ λ= +

− ≤

∈ ∈

 (3.19) 

Its solution determines a level curve of the form { }0 0( , )/ ( )L r r r r wλ λ= + = . For 0r Tx= −  
the resulting point is then 0 0( , ( ) )Tx w Txλ λ− + . The dual problem consists of finding the maxi-
mum of those ordinates 

( )xD  { }0max ( ) , 0w Txλ λ λ+ ≥  (3.20) 

So, in the MILP case the linear resolution of the subproblem is replaced by the LR algo-
rithm that finds the supporting plane of the lower convex envelope of the recourse function at 
the first stage proposal. Region R  is only known through its implicit definition, and will be 
outer approximated as the algorithm proceeds. 

The resolution of dual problem ( )xD  ends with an optimal Lagrange multiplier iλ  and an 
optimal value for the dual problem given as 0( ( ) )i iw Txλ λ+ . The epigraph of the perturbation 
function then immediately satisfies 
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 ( ) ,i iw Tx x Xθ λ λ≥ + ∀ ∈  (3.21) 

Denoting 0( )i i iw Txθ λ λ= +  the optimum value of problem ( )xD  and linearizing around the 
first stage solution we have 

 0 0 0( ) ( ) ( )i i i i i i i iw Tx w Tx Tx Tx T x xθ λ λ λ λ λ λ θ λ≥ + = + − + = + − +  (3.22) 

Summarizing 

 0( ),i iT x x x Xθ θ λ≥ − − ∀ ∈  (3.23) 

This expression recovers the Benders optimality cut introduced in the master problem for 
the LP case and shows the classical result that relates the dual value of a linear problem to the 
negative of the optimal Lagrange multiplier that maximizes the dual function. 

The optimization of the dual function is carried out through a LR algorithm. The end of 
this algorithm at phase 2 produces an optimal multiplier and an optimal value of the dual func-
tion, that are used to form a Benders optimality cut. 

3.2.1. Feasibility cuts 

In order to check if the first stage proposal turns the subproblem into a feasible one, we 
have to solve the dual problem of the phase 1 LR algorithm. This dual problem takes the form 

*( )xD  { }* 0max ( ) , 1 1w Txλ λ λ+ − ≤ ≤  (3.24) 

with 

*( )PRλ  
*( ) min

,

w r

Wy h r

y Y r R

λ λ=

− ≤

∈ ∈

 (3.25) 

If the phase 1 of LR procedure indicates subproblem is infeasible (positive optimum value) 
for that first stage proposal then a feasibility cut is introduced into the master problem which 
takes the form 

 00 ( ),j jT x x x Xθ λ≥ − − ∀ ∈  (3.26) 

The master problem on a Benders decomposition algorithm presents the next form 

( )MP  

{ }1 1

0

0

1 1

min

0 ( ) 1, ,

( )    1, ,

, ,

j j j

i i i

n m

cx

T x x j l

T x x i k

x X X Ax a x

θ

θ π

θ θ π

+

≥ + − =

≥ + − =

∈ = ≤ ∈ ×

� …

…

\ ]

 (3.27) 

The values ( , )i iθ π , being i iπ λ= − , represent the optimal values of LR procedure when this 
ends at phase 2, and 0

ix  is the first stage solution used on that iteration. These values are used 
to form the outer approximation of the convexified recourse function. The values ( , )j jθ π� , being 

j jπ λ= −� , represent the optimal values of the LR procedure when this ends at phase 1, and 0
jx  

is the first stage solution used. These values are used to create feasibility cuts to exclude infea-
sible first stage solutions. 

Once the resolution of master problem ( )MP  produces a first stage value, the associated 
dual subproblem is optimized by iterating between a relaxed master dual problem 

0
( )xMD λ  and 

a subproblem ( )PRλ  whose expressions take the form 
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0
( )xMD λ  

0

0

0

max

: 1,...,

0 : 1,...,

0

i i

j j

w Tx

w dy r i k

dy r j l

λ

λ λ

λ λ

λ

+

≤ +

≤ +

≥

� �
 (3.28) 

where 0 0λ =  and 1 1λ− ≤ ≤  in phase 1 and 0 1λ =  in phase 2. 

0
( )PRλ λ  

0 0( ) min

, i

w dy r

Wy h r

y Y r R

λ λ λ λ= +

− ≤

∈ ∈

 (3.29) 

This subproblem resolution gives back the supporting hyperplane of the recourse function 
when it is interpreted as a perturbation function. This convexification considers iR  as the per-
turbation region. During the algorithm, region R  is being outer approximated with further reso-
lutions of master problem. In the next sections it is commented a way to incorporate cuts to 
approximate perturbation region R . 

3.3. Perturbation cuts 
In the general case not all the first stage variables will modify the RHS parameters of the 

second stage subproblem, only a group of first stage variables are tied with a group of second 
stage variables. Consider a problem ( )P  of the form 

( )P  
1 1 2 2

2

1 2

min

( , ) ,

c x c x dy

Tx Wy h

x x X y Y

+ +

+ ≤

∈ ∈

 (3.30) 

We define the 2x  space to be the space of coupling variables between first and second 
stages. 

Define the shadow S  of region X  over the coupling variable space as 

 { }2 1 1 2/ /( , )S x x x x X= ∃ ∈  

and define the perturbation region R  as 

 { }2 2/ /R r x S r Tx= ∃ ∈ = −  (3.31) 

So we are interested in finding S . This is the projection of set X  over the euclidean space 
of the coupling variables 2x . Let 1 2 2( , )P x x x=  this projection. We differentiate between the 
case of a linear master problem and a mixed integer one. The second case extends the first one. 

3.3.1. Linear master problem 

The idea for obtaining a constraint for region S  comes from inspection of an optimal solu-
tion of the master problem. Let the master problem at an iteration of the algorithm be given as 

( )MP  

{ }1 1

1 1 2 2

0 2

0 2

1 1

min

0 ( ) 1, ,

( )    1, ,

, ,

j j j

i i i

n m

c x c x

T x x j l

T x x i k

x X X Ax a x

θ

θ π

θ θ π
+

+ +

≥ + − =

≥ + − =

∈ = ≤ ∈

� …

…

\

 (3.32) 

and let 0 0
1 2 0( , , )x x θ  the optimal solution. As 1 1n mx +∈ \  and θ ∈ \  then the optimal point is 

given as the intersection of 1 1 1n m+ +  planes. Let 
1 1 1 11 2 1( , ,..., , )n m n md d d d+ + +  be the edges at that 

extreme point. Let 1 1 1 11 2 1( , ,..., , )n m n md d d d+ + +
� � � �

 be the projection of these edges over the euclidean 
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space of the coupling variables 2x . Then, we eliminate those projected edges that can be ob-
tained as a positive linear combination of the remaining ones. If the positive cone generated by 
those remaining projected edges generates the coupling variable space, then 0

2x  is not an ex-
treme point of region S . On the contrary, those remaining projected edges generate a cone iC  
such that iS C⊂ . See Appendix A for a detailed description. 

3.3.2. Mixed integer master problem 

In this case the problem will be solved with a B&B algorithm. The B&B algorithm ends 
with a partition of the master problem feasible region. Let { }, 1,...,nX n N=  this partition. Let 

i
nC  the cone obtained at the optimum point of each partition. Then the convex sum of these 

cones constrains region S . Observe that in case the partition { }, 1,...,nX n N=  reduces to a 
point for each set, i.e., Pure Integer Problem (PIP), then the region S  is obtained as the convex 
hull of the set of extreme points of S . More details about constraining the shadow region S  can 
be found in Appendix A. 

3.4. Outline of the Benders algorithm 
Assume we are at iteration p  of the algorithm. At this moment we have a family of opti-

mality cuts and a family of feasibility cuts for the master problem. We do also have a collection 
of cuts for the perturbation region R , so we have an approximation 1pR −  1( )pR R −⊂  of this 
perturbation region. 

 
Step 1. Solve master problem ( )MP  and obtain ( , )p px θ . Check if the projection of this point is 

an extreme point of S . In that case generate a group of constraints for region R . Then we 
have the new region approximation pR  1( )p pR R R −⊂ ⊂ . Calculate lower bound 

p pz cx θ= + . Pass value px  to the subproblem. Go to step 2. 
 
Step 2. Solve subproblem ( )pxSP . Eliminate those extreme points ( , )i iy r  i I∈  out of the master 

dual problem 
0

( )pxMD λ  (that until this moment have been used to form approximations of 
the dual function) such that i pr R∉ . Observe that it is enough to check the last constraint 
introduced into the perturbation region. 
Solve the LR phase 1 to check feasibility of the master proposal. Let jλ  and *( )jw λ  the op-
timal solution. If *( ) 0jw λ >  then generate a feasibility cut for the master problem with the 
dual value j jπ λ= − . Go to step 1. 
If *( ) 0jw λ = , then solve the LR phase 2. Let iλ  and ( )i i pw Txλ λ+  the optimal solution. 
Calculate upper bound ( )p i i pz cx w Txλ λ= + + . Stop if difference between bounds is close 
enough. Otherwise generate an optimality cut for the master problem with the multiplier 

i iπ λ= − . Go to step 1. 

3.5. Convergence proof 
Proposition. The Benders algorithm as proposed on section 3.4 is finite and ends with an opti-
mal solution of original problem ( )P . 
Proof. 

Let pR  the outer approximation of the perturbation region available at iteration p  of the 
algorithm. Let ( )pR xθ  the convexification of ( )xθ  when the perturbation region is pR . Immedi-
ately ( ) ( )pRx xθ θ≥ , x X∀ ∈ . 

Let ( )
p

xθ�  the outer approximation of ( )xθ  available at iteration p . Immediately 
( ) ( )

p
x xθ θ≥ � . 

By algorithm construction we also have that ( ) ( ) ( )p

p

Rx x xθ θ θ≥ ≥ �  x X∀ ∈ . 
Let ( , )p px θ  the solution obtained at the master problem. Then ( )

pp pxθ θ= � . 
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Let ( )p
p

R xθ  the solution obtained at the subproblem. This value represents the value of the 
convexification of the recourse function when the perturbation region is pR . Then we may have 
these cases. 

 
Case a. If ( )p

p p
R xθ θ> , then a new cut is generated. The algorithm proceeds formulating a re-

laxed master problem ( )MP  and obtaining new first stage values. 
Case b. If ( )p

p p
R xθ θ= , then px  is an optimal solution for problem { }min ( ),pRcx x x Xθ+ ∈ . In 

this case we observe that 

 
{ }

{ } { }
min ( ), ( )

( ) min ( ), min ( ),p p

p pp p p p

pp p
R R

cx x x X cx x cx

cx x cx x x X cx x x X

θ θ θ

θ θ θ

+ ∈ = + = + =

= + ≥ + ∈ ≥ + ∈

� �

�
  (3.33) 

and immediately 

 { }min ( ),p
p p

Rcx cx x x Xθ θ+ = + ∈  (3.34) 

so that this means that px  is an optimal solution for problem { }min ( ),pRcx x x Xθ+ ∈ . 

We are also interested in proving that px  is an optimal solution for problem 

{ }min ( ),cx x x Xθ+ ∈ . Assume the contrary, then 

 ( )cx x m x Xθ+ > ∀ ∈  

but 

 { }min ( ), pcx x x R mθ+ ∈ =  

which implies \p px R X∈ . This is a contradiction because px X∈ , due it has been obtained as 
a solution of the master problem. 

It only remains to proof that there can only be a finite number of iterations in which the so-
lution of master problem and the solution of the subproblem fill to satisfy situation presented in 
case a. 

Assume that no cuts for the perturbation region are generated. The function ( )pR xθ  is a 
piecewise convex linear function. This means there is only necessary a finite number of cuts 
(perhaps a high number) to build it up as the maximum of linear functions. If the same point at 
the master problem is obtained, we can assure that the point is an optimal solution because 
repetition of the subproblem ended with the situation described in case b. So that repetitions of 
master problem always give back different first stage proposals. 

In case ( )p
p p

R xθ θ> , then a new cut is generated. So that the number of iterations with no 
added constraints for the perturbation region is finite. A new perturbation cut is introduced in 
case a first stage solution results to be an extreme point of shadow S . Region S  has a finite 
number of extreme points, so that there are only a finite number of iterations in which the per-
turbation region is updated due to the non possibility of repetitions of first stage solutions. After 
that finite number of iterations situation presented in case b will then appear after a finite 
number of iterations. Considering that the lagrangean relaxation algorithm is a finite algorithm 
and then the proposed algorithm is also finite. 

4. EXAMPLE 

Consider the problem 
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min 0.3 1.5

0 5

3.7

5.2

0, 0

,

x y z

x

x y

y z

y z

y z

− − −

≤ ≤

+ ≤

+ ≤

≥ ≥

∈ ∈] ]

 

whose optimal solution is -6.71 achieved at 0.7x = , 3y = , 2z = . 
Solving this program by Benders decomposition we formulate this master problem ( )MP  

 
min 0.3 ( )

0 5

x x

x

θ− +

≤ ≤
 

and this subproblem ( )SP  

 ( ) min 1.5

3.7

5.2

0, 0

,

x y z

y x

y z

y z

y z

θ = − −

≤ −

+ ≤

≥ ≥

∈ ∈] ]

 

The expression of recourse function ( )xθ , depicted in the next figure, is 

 

3.7 ( )

(2.7, 3.7] 1 0 5 ( ) 5

(1.7,2.7] 2 1 4 ( ) 5.5

(0.7,1.7] 3 2 3 ( ) 6

( 0.3, 0.7] 4 3 2 ( ) 6.5

( 1.3, 0.3] 5 4 1 ( ) 7

1.3 5 0 ( ) 7.5

x x

x y y z x

x y y z x

x y y z x

x y y z x

x y y z x

x y z x

θ

θ

θ

θ

θ

θ

θ

> ⇒ =∞

∈ ⇒ < ⇒ = = = −

∈ ⇒ < ⇒ = = =−

∈ ⇒ < ⇒ = = = −

∈ − ⇒ < ⇒ = = = −

∈ − − ⇒ < ⇒ = = =−

≤− ⇒ = = = −

 

Figure 1. Recourse function and Master Problem 

 
 
This two stage problem presents a suitable structure to be solved with the proposed algo-

rithm. The use of the proposed method improves the solution obtained when solving the prob-
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lem relaxing the subproblem integrality conditions (traditional Benders decomposition algo-
rithm) or using the LR algorithm as the method to solve the subproblem. 

In the first case, the Benders algorithm behaves proposing as primal values 5x =  , 3.7x =  
and 0x = . For each proposal, the Benders cuts built are 3.7x ≤ , 0.5 7.05xθ ≥ − . For 0x =  
the stopping rule is satisfied, and the algorithm finishes. 

In case of solving the subproblem via a LR algorithm, the Benders algorithm behaves in a 
similar way, proposing as primal values 5x =  , 3.7x =  and 0x = . For each proposal, the 
Benders cuts built are 3.7x ≤ , 0.5 6.85xθ ≥ − . For 0x =  the stopping rule is satisfied, and 
the algorithm finishes. 

When using the proposed method, the primal values proposed are also 5x =  , 3.7x =  and 
0x = . There are also obtained the Benders cuts 3.7x ≤  and 0.5 6.85xθ ≥ − . However, the 

outer approximation of the recourse function at 0x =  is improved when incorporating the per-
turbation cuts that constrain the domain of the recourse function. The domain 0 3.7x≤ ≤  
switches to 3.7 0r− ≤ ≤ , being r  the variable that modifies the right hand side. 

Let us solve the subproblem for 0x = . We avoid testing feasibility of this point. The dual 
function is now 

 ( ) min 1.5

3.7

5.2

0, 0

3.7 0

,

w y z r

y r

y z

y z

r

y z

λ λ= − − +

− ≤

+ ≤

≥ ≥

− ≤ ≤

∈ ∈] ]

 

obtaining 

 
6.5 0.7 0 0.5

( )
5 3.7 0.5

w
λ λ

λ λ λ

− − ≤ ≤=  − − ≥
 

The dual problem now is to { } { }max ( ) , 0 max ( ), 0 6.5w Tx wλ λ λ λ λ+ ≥ = ≥ =−  for 0λ = . 
This solution generates the Benders optimality cut 6.5θ ≥− , which is introduced into a new 

resolution of the master problem. 
Now solve the relaxed master problem 

 

min 0.3

0 5

3.7

0.5 6.85

6.5

x

x

x

x

θ

θ

θ

− +

≤ ≤

≤

≥ −

≥−

 

with solution 0.7x = , 6.5θ = − . 
In order to generate a new Benders cut, or check the optimality of the solution proposed, it 

is solved the dual problem. Observe that no perturbation cut is introduced now because the 
point 0.7x =  belongs to the interior of the region S . The dual problem has to maximize the 
function 

 
6.5 0 0.5

( ) 0.7
5 3 0.5

w
λ

λ λ λ λ
− ≤ ≤+ = − − ≥

 

whose optimum is achieved at 6.5− . Observe that the stopping rule is now satisfied. 
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The solution given by the proposed method finally is 0.7x = , 6.5θ = − , 3y = , 2z = . 
 
Summary of results 
We summarize the example results on the following table and figure for the three alterna-

tives. 

 Optimal value Optimal Solution Duality gap 

Resolution of sub problem 
linear relaxation 7.05z = −  0x =  7.05θ = − 0.34 

Resolution of MIP subproblem 
by lagrangean relaxation 6.85z = −  0x =  6.85θ = − 0.14 

Resolution of MIP subproblem 
by the proposed method 6.71z = −  0.7x = 6.5θ = −  0.00 

 
 

 
Figure 2. Comparison of generated cuts 

 
The above figures represent the Benders optimality and feasibility cuts obtained when ap-

plying the decomposition algorithm to the numerical example of the beginning of the section. 
Figures on the first column plot the recourse function and the cuts obtained when solving the 
subproblem linear relaxation, the subproblem via the lagrangean relaxation algorithm and the 
subproblem via the proposed method. Observe that the proposed method finds the exact convex 
envelope of the recourse function over its domain 0 5x≤ ≤ . That is not the case of the previ-
ous methods. On the right column it is plotted the outer approximation of the master problem. 
Recall that within a decomposition scheme the resolution of the master problem is equivalent to 
the resolution of the complete problem. Those outer approximations depend on the methodology 
chosen to solve the Benders subproblem. The correct convexification given by the third method 
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provides an exact approximation of the mater problem and consequently its optimization gives 
the correct optimal point for the problem. 

5. NESTED BENDERS DECOMPOSITION 

Nested situations appear when the second stage (or the subproblem) of a two-stage problem 
is solved with decomposition. This situation creates a chain of problems that are solved propos-
ing primal solutions for the subproblem and giving back dual values to create an outer approxi-
mation of the associated recourse functions. 

In a two-stage scheme, when introducing integer variables on the process, dual values have 
to be calculated with a LR procedure. In a nested case, this scheme is also maintained. The 
feasible regions for subproblems are modified as new perturbation cuts are introduced from mas-
ter problems, and feasibility and Benders optimality cuts are introduced from subproblems. 

Consider a multi-stage problem of the form [5] 

( )TP  

1 1 2 2

1 1 2 2 2

2 2 3 3 3

1 1

min min( min )

                      

                      

                 

, 1,...,

T T

T T T T T

t t

c x c x c x

T x W x h

T x W x h

T x W x h

x X t T
− −

+ + +

+ ≤

+ ≤

+ ≤

∈ =

"

#
 (5.1) 

where tX  represents the feasible region of stage t  variables and may contain the non negativity 
constraints for some or all of the variables appearing in the problem together with integrality 
constraints for some of the variables. 

The classical L-shaped method [15] is extended to multistage problems formulating the deci-
sion problem for stage t  variables as 

( )tP  
1

1 1

( ) min ( )t t t t

t t t t t

t t

x c x x

W x h T x

x X

θ θ−

− −

= +

≤ −

∈

 (5.2) 

and proposing an extension of the two-stage algorithm, that outer approximates the above prob-
lem and solves sequentially a family of relaxed master problems ( )tRMP  written as 

( )tRMP  

1

1 1

( ) min

0 ( ) 1, ,

( )    1, ,

t t t t

t t t t t

j j j
t t t t

i i i
t t t t t

t t

x c x

W x h T x

T x x j l

T x x i k

x X

θ θ

θ π

θ θ π

−

− −

= +

≤ −

≥ + − =

≥ + − =

∈

� …

…

 (5.3) 

On expression (5.3) j
tx  and i

tx  represents the different proposals that problem ( )tRMP  has 
passed to the next problem. An equation like 0 ( )j j j

t t t tT x xθ π≥ + −�  is generated when problem 
1( )tRMP +  turns out to be infeasible for j

tx  primal value and an equation like 
( ) i i i

t t t t tT x xθ θ π≥ + −  is generated when problem 1( )tRMP +  turn out to be feasible. These are 
denoted as within the two stage situation infeasibility and optimality cuts. 

Typically nested algorithms iterate a forward pass from stage 1 to stage T  solving problem 
( )tRMP  and obtaining primal values that modify the right hand side value of problem 

1( )tRMP + . A backward pass iterates from stage T  to stage 1 solving problem ( )tRMP  and pro-
viding a dual value that augment problem 1( )tRMP−  with an optimality cut or a feasibility cut 



 20

when necessary. An upper bound is obtained when a complete forward pass is performed by 
means of evaluating optimal stage t  values in problem ( )TP . A lower bound is obtained at each 
resolution of stage 1 subproblem. The nested algorithm stops when the relative difference of 
those bounds is less than a specified tolerance. 

On the resolution of problem ( )tRMP  with LR, once a multiplier value λ  is proposed, the 
following problem that computes the dual function ( )tw λ  must be solved 

,( )tPR λ  

( ) min

0 ( ) 1, ,

( )    1, ,

,

t t t t

t t t

j j j
t t t t

i i i
t t t t t

n
t t t

w c x r

W x h r

T x x j l

T x x i k

x X r R

λ θ λ

θ π

θ θ π

= + +

− ≤

≥ + − =

≥ + − =

∈ ∈

� …

…

 (5.4) 

and a dual problem is optimized 

1,( )
tt xD
−

 { }1 1max ( )t t tw T xλ λ − −+  

Here n
tR  indicates the perturbation region of stage t  available at iteration n  of the nested 

decomposition algorithm. It is the outer approximation of the tender variable region tR , which 

is defined as 

 { }1 1 1 1/ /t t t t tR r x X r T x− − − −= ∃ ∈ =−  

The optimization of the dual problem is replaced by the iterative resolution of the la-
grangean subproblem ,( )tPR λ  and a master dual problem 

1,( )
tt xMD
−

 which is given as 

1,( )
tt xMD
−

 
1 1max

  1, ,

t t

k k k
t t t

w T x

w c x r i K

λ

θ λ
− −+

≤ + + = …
 (5.5) 

Remarks. Above description of the relaxed dual problem does not incorporate phase 1 nei-
ther bounding cuts that avoid unbounded lagrangean subproblems. Of course it is possible that 
a primal proposal turns problem ( )tRMP  into an infeasible one, and in that situation termina-
tion of the lagrangean algorithm at phase 1 will provide a feasibility cut for problem 1( )tRMP− . 
The notation has been reduced for simplicity of the exposition. 

Otherwise, on repetitive resolutions of the LR algorithm that solves problem ( )tRMP , it is 
possible that previously calculated lagrangean cuts remain valid in a new resolution of the LR 
method. Whether these cuts are valid or not may be checked before the performing the LR algo-
rithm. A code that performs this algorithm may improve its efficiency incorporating the valid 
cuts in new resolutions [4]. 

Another point that needs to be commented is the calculation of the shadow (and conse-
quently the perturbation region) for nested situations. This presents an additional complexity 
for third and future stages on a nested scheme. A description of the computation of these cuts 
can be found in Appendix B. 

Next section presents the application of the proposed decomposition algorithm to a large 
scale optimal allocation problem extracted from a large problem of optimal railway electrifica-
tion [13]. The results are focused to compare the direct resolution of the problem and the resolu-
tion by used of the proposed algorithm. 
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6. A LARGE SCALE PROBLEM 

The proposed algorithm has been codified in C\C++ using Concert Technology [8], which 
enables to solve mathematical programming problems by use of the commercial optimizer Cplex 
[8]. The code performs the Benders decomposition solving the proposed LR method when a new 
dual variable is needed to outer approximate any recourse function. The perturbation cuts in-
troduced on the code are those that incorporate the natural bounds for the tender variables. The 
remaining of the perturbations cuts, as described on this paper, have not been introduced. This 
induces a gap into the final solution that measures the accuracy of the solution obtained. That 
accuracy is compared with that obtained by the direct resolution of the problem with Cplex. 

6.1. Problem description 
This problem consists of determining the optimal division into sectors of a whole line that 

needs to be electrified. Apart from deciding the number of sectors and the length for each sec-
tor, it is also necessary to select the proper overhead power cable that will be used to cover that 
sector. On the division between sectors is allocated a substation, which provides the necessary 
power for the train consumptions. The problem introduces very simplified security constraints, 
implying that a substation must be able to feed the sector on its left as well as the sector on its 
right, in case another substation goes down. There is a fixed cost for each sector that represents 
the installation cost for a new substation and a variable cost of the type of catenary used. The 
problem is solved modelling it with a stair case structure that makes it suitable to be solved 
using the decomposition algorithm. 

The problem has been modelled focusing of the individual subproblem that appears on each 
sector. The modelling is focused so to have the minimum number of coupling constraints be-
tween sectors. In the modelling presented, this number of coupling constraints is limited to one, 
the total length coverage constraints. Let 

 
L    length of the line 
I    collection of possible sectors 
T    set of trains 
SC    set of scenarios 
C    set of catenaries 
 

the collection of sets for the problem and 
 

,t scTrainPos   Position of train t  on the scenario sc  

,t scI    Intensity of train t  on the scenario sc  

cZ    Impedance of catenary c  
iFixed   Fixed cost of employing sector i  

cCatCost   Variable cost of catenary c  
 

the collection of data necessary to solve it. In order to create the mathematical programming 
problem that solves it, the next constraints are necessary. 

Total length coverage 
This constraint it the one that connect sectors, implying that the beginning of a sector must 

coincides with the end of previous sector. 

 1i i iLength Pos Pos −= −  (6.1) 

where 
iLength   Length of sector i  
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iPos   Position of sector i . 
1 0iPos − =  if i  represents the first sector and 

iPos L=  if i  represents the last sector. 

 

Existence of sector 

Initially, the number of possible sectors is greater than the final number of sectors that the op-

timization algorithm decides to use. There is a cost associated with each sector that represents 

the fixed cost of the substation at the end of the sector. That cost is later introduced into the 

objective function through a binary variable. 

 * i iL u Length>  (6.2) 

where 
iu  Boolean variable that indicates the existence of sector i  

 
Partial length coverage 

Indicates the length of a sector may be covered by at least one catenary 

 ,i i c
c C

Length LengthCat
∈

≤∑  (6.3) 

where 

,i cLengthCat  Length of sector i  covered with catenary c  
 
Relative Positions 

The idea of the modeling is to have a pair of variables that determine, for each train and 
each scenario, the distance to the left extreme and the distance to the right extreme of its cur-
rent sector. The current sector is understood as the sector where the train is. These variables 
are obtained after the logical manipulations of coming lines. Let 

 , , ,t sc i t sc i iLeftDist TrainPos Pos Length= − +  (6.4) 

 , , , ,t sc i i t sc iRightDist Length RightDist= −  (6.5) 

where 

, ,t sc iLeftDist  indicates the distance of each train t  at scenario sc  to the left extreme of each 
sector i . Observe that this variable is positive for each train current sector and for the previous 
sectors. The distance is negative for the sectors that comes after the sector i . Symmetrically, 

, ,t sc iRightDist  indicates the distance of each train t  at scenario sc  to the right extreme of each 
sector i . This distance is positive for each train current sector and sectors that comes after it. 
The distance is negative for the sectors that precede sector i . 

Distance , ,t sc iLeftDist  to identify a binary variable that indicates the current sector and pre-
ceding sectors of each train t  of scenario sc . 

 , , , ,0 * t sc i t sc iL v LeftDist L≤ − ≤  (6.6) 

Observe that 
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, , , ,

, , , ,

if 0 then 0

if 0 then 1
t sc i t sc i

t sc i t sc i

LeftDist v

LeftDist v

 < = > =
 

That binary variable , ,t sc iv  is used to determine a positive variable , ,t sc iDefRightDist  (Defini-
tive Right Distance), that computes the distance of each train to the right extreme of its current 
sector and gets a null value for the remaining sectors. Another intermediate positive variable 

, ,t sc iRightDist+  is necessary for the logical getting of the definitive distance. The next constraints 
are then included in the modeling. 

 , , , ,t sc i t sc iRightDist RightDist+ ≥  (6.7) 

 , , , , , ,0 (1 ) *t sc i t sc i t sc iRightDist DefRightDist v L+≤ − ≤ −  (6.8) 

Observe that above group of constraints do what it is required from them. The optimization 
problem that will be constructed penalizes the variables that represent the definitive distances, 
so that, 

If the train is its current sector, then , , 1t sc iv = , and consequently 

 , , , , , ,t sc i t sc i t sc iDefRightDist RightDist RightDist+= =  

For a sector i  preceding the current sector of a train, , , 1t sc iv = , and consequently 

 , , , , 0t sc i t sc iDefRightDist RightDist+= ≡  

For a sector i  following the current sector of a train, , , 0t sc iv = , and constraint (6.8) imposes 
no condition over the variable , ,t sc iDefRightDist , so that the optimization problem will take the 
variable to it lower bound, and consequently, 

 , , 0t sc iDefRightDist ≡  

The procedure to obtain the symmetrical variable to , ,t sc iDefRightDist may follows the sym-
metrical steps followed to obtain the definitive right distance variable. An alternative that uses 
previously logical constraints is presented. 

Consider a binary variable , , 0t sc iw =  that indicates the current sector of a train through 
next expression 

 , , , ,*t sc i t sc iDefRightDist L w≤  (6.9) 

Expression that implies 

 { , , , ,If  0  then 1t sc i t sc iDefRightDist w> =  

Now, the binary variable , ,t sc iw  is used to determine the positive variable , ,t sc iDefLeftDist . 
An intermediate positive variable , ,t sc iLeftDist+  is also necessary. 

 , , , ,t sc i t sc iLeftDist LeftDist+ ≥  (6.10) 

 , , , , , ,0 (1 ) *t sc i t sc i t sc iLeftDist DefLeftDist w L+≤ − ≤ −  (6.11) 

Equations (6.10) and (6.11) do what they are required to do, 
If the train is in its current sector, then , , 1t sc iw = , and consequently 

 , , , , , ,t sc i t sc i t sc iDefLeftDist LeftDist LeftDist+= =  
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In other case , ,t sc iw  is not commanded to get any value, but a null value of this binary variable 

will allow the variable , ,t sc iDefLeftDist  to be free to reach its lower bound, so that 

 , , 0t sc iDefLeftDist ≡  

Voltage Drop 
This value depends on the catenary chosen to cover each sector. In order to avoid a nonlin-

ear modeling of the problem, the extra positive variables , , , 0t sc i cCatLeftDist ≡  and 

, , , 0t sc i cCatRightDist ≡  are introduced and related to previous positive variables through next 
expressions. 

 , , , , , ,t sc i c t sc i c
c C

DefLeftDist CatLeftDist
∈

=∑  (6.12) 

 , , , , , ,t sc i c t sc i c
c C

DefRightDist CatRightDist
∈

=∑  (6.13) 

Now, the security criterion imposed on the model requires the voltage drop to the left ex-
treme and the voltage drop to the right extreme not to exceed a determined value maxV . 

 , , , max*c t sc i c
t T c C

Z CatRightDist V
∈ ∈

≤∑∑  (6.14) 

 , , , max*c t sc i c
t T c C

Z CatLeftDist V
∈ ∈

≤∑∑  (6.15) 

Use of Catenary 
A collection of constraints must be imposed that imply the use of a catenary. 
Let ,i cCat  a binary variable that indicates if catenary c  has been used on sector i . Then, 

the next constraints are necessary. 

 , , , ,*t sc i c i cCatLeftDist L Cat≤  (6.16) 

 , , , ,*t sc i c i cCatRightDist L Cat≤  (6.17) 

 , ,*i c i cLengthCat L Cat≤  (6.18) 

 , 1i c
c C

Cat
∈

=∑  (6.19) 

Objective function 
The objective function incorporates the cost derived from the fixed cost of each sector and 

the cost associated with the catenaries employed. 

 ,*i i c i c
i I c C

Fixed u CatCost LengthCat
∈ ∈

  +   ∑ ∑  

The modeling of this problem has been done so that variables and constraints attached to a 
sector are independent from the collection of variables and constraints for another sector. With 
this modeling, the constraints matrix of this problem presents a stair case structure. As an ex-
ample consider figure 3, that represents the constraints matrix for the presented problem for a 
situation of five sectors. 
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Figure 3 . Constraints Matrix for a five sectors electrification problem 

6.2. Numerical Results 
This section presents numerical results about the application of the decomposition algorithm 

to the problem above presented. The numerical tests have been carried out over lines with 200, 
250 and 300 kilometers. A collection of scenarios is considered that represents the train positions 
along the line on different time intervals. Scenarios are a collection of possibilities that may be 
considered simultaneously so that the physical constraints of the voltage across the line is main-
tained in its security levels. 6 scenarios are considered that represent the trains separated by 24 
kilometers, with the first train starting on kilometer 0, 4, 8, 12, 16 and 20 respectively. 

The problem for different lengths has been solved with different number of sectors. In any 
case the number of scenarios has been fixed to 6. The more sectors, the bigger the size of the 
problem that has to be solved. The size of the problem also increases with the total length of 
the line, because of the number of variables that come associated with the number of trains, 
that naturally increases. 

The problems have also been solved directly with Cplex 7.5, and comparison about the di-
rect resolution and the resolution with the decomposition algorithm is presented. When using 
the decomposition algorithm, it has been considered one subproblem for each of the sectors im-
plied. 

The summary of the computational results are presented on next table, al later commented. 
 

200 Kilometers and 3 Sectors Cplex Benders 
Rows 3792    Lower Bound Upper Bound 

Columns 2797 Solution 8227.2 Iteration 7 8215.68 8227.2 
Non Zeros 11006 Accuracy 0.0% Accuracy 0.14 %  
Binaries 342 Time 5.4 secs Time 43.4 secs  

 
200 Kilometers and 4 Sectors Cplex Benders 



 26

Rows 5056    Lower Bound Upper Bound 
Columns 3729 Solution 8227.2 Iteration 9 8190.9 8227.2 
Non Zeros 14711 Accuracy 0.0% Accuracy 0.44 %  
Binaries 456 Time 40 secs Time 163.5 secs  

 
250 Kilometers and 4 Sectors Cplex Benders 

Rows 6160    Lower Bound Upper Bound
Columns 4545 Solution 10534 Iteration 10 10278.2 10534 
Non Zeros 17951 Accuracy 0.0% Accuracy 2.42 %  
Binaries 552 Time 266.5 secs Time 236.6 secs  

 
250 Kilometers and 5 Sectors Cplex Benders 

Rows 7700    Lower Bound Upper Bound
Columns 5681 Solution 10534 Iteration 13 10252 10534 
Non Zeros 22472 Accuracy 2.66 % Accuracy 2.67 %  
Binaries 690 Time 2247 secs Time 905 secs  

 
300 Kilometers and 4 Sectors Cplex Benders 

Rows 7264    Lower Bound Upper Bound 
Columns 5361 Solution 12872.6 Iteration 9 12556.9 12874.7 
Non Zeros 21191 Accuracy 2.45 % Accuracy 2.46 %  
Binaries 648 Time 203 secs Time 276 secs  

 
300 Kilometers and 5 Sectors Cplex Benders 

Rows 9080    Lower Bound Upper Bound
Columns 6701 Solution 12872.6 Iteration 10 12296.3 12840.8 
Non Zeros 26528 Accuracy 3.85 % Accuracy 4.24 %  
Binaries 810 Time 10584 secs Time 830 secs  

 
300 Kilometers and 6 Sectors Cplex Benders 

Rows 10896    Lower Bound Upper Bound
Columns 8041 Solution 12840.8 Iteration 9 12273.1 12840.8 
Non Zeros 31865 Accuracy 4.41% Accuracy 4. 42 %  
Binaries 972 Time 9300 secs Time 949.6 secs  

Table 2. Summary of Optimal Electrification Problem results 
 

Discussion about the results. 
Table 2 describes, on its left part, the problem size for the different cases tested. On the 

right part of the table appears information about the resolution of the problems with the Bend-
ers decomposition algorithm. It is presented the computation time as well as the accuracy of the 
solution obtained. The upper bound column gives the objective value that the algorithm 
achieves. On the central part of the table it is presented information about the resolution of the 
problems directly. The branch and bound algorithm is stopped as soon as the accuracy of the 
Benders method is achieved, in order to get comparable computation times. The solution given 
is that of the objective function at the moment of stopping the algorithm. 

On small problems, the objective function achieved by the decomposition algorithm is that 
of the direct resolution of the problem. However, the solution is not the same. This problem is 
highly degenerate so that multiple alternative solution exists. For example, for the case of 250 
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kilometers and 4 sectors considered, the final position for the sectors given by the direct resolu-
tion of the problem is [48,116,184,250]  while with the Benders algorithm the solution is 
[64,132,200,250] . 

When the number of introduced sectors is larger than the necessary, a sector will be as-
signed a length of zero. This is for example the situation with the case of 300 kilometers. The 
solution obtained when selecting just four sectors is worse than the one obtained when selecting 
five sectors. However, the solution with six sectors does not improve the solution of the five 
sectors case. In this case, the first sector out of six is assigned length zero and the remaining 
decision variables are exactly the same. The solution for the five sectors problems is 
[64,132,200,236, 300] and the solution for the six sectors problems is [0, 64,132,200,236,300] . 

It is necessary to comment that the larger the problem, the more efficient the decomposition 
algorithm is when applied to this problem. In the problem with 300 kilometers and 5 scenarios, 
not only the computation time outperforms that of the Cplex, but the solution obtained pre-
sents minor cost. This comparison of the computation time in terms of the size of the problem is 
roughly presented on figure 4. The horizontal axe present the number of binary variables and 
the vertical axe presents computation times in seconds. 

 

 
Figure 4. Comparison of computation times 

 
Finally, this presentation of the results is finished with a figure of the outer approximation 

of the recourse functions that the generated cuts give. Figure 5 presents those results for the 
case of 300 kilometers and 5 sectors. In this situation there exist 4 recourse functions that indi-
cate the cost of the electrification from the point where the sector ends. For instance, the upper 
subfigure of figure 5 indicates the cost of the electrification depending of the final position of 
sector 1. The same represents the remaining subfigures, but introducing in the plot those infea-
sibility cuts that where obtained in the process of the decomposition algorithm. These infeasibil-
ity cuts obtained for this particular case had next form 
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limiting the final positions of the sectors along the line. 
These infeasibility cuts are obtained in the algorithm when a subproblem turns out to be in-

feasible. A particular feature of this electrification problem is the appearance of feasible LP 
problems that turns into infeasible MIP problems. In that case the LR phase 1 provides the 
necessary feasibility cuts that the algorithm requires. In the particular case of 300 kilometers 
and 5 sectors, the expression 4 216Pos ≥  is a feasibility cut obtained via LR relaxation phase 1. 
Previously was obtained the cut 4 200Pos ≥  on previous iterations of the Benders method. Fea-
sibility cut that turn insufficient for the case. 
 

 
Figure 5. Outer approximation provided by the Benders cuts 

7. CONCLUSIONS 

This paper has presented a finite Benders decomposition algorithm for mixed integer linear 
programs. Following traditional lines about nonlinear duality theory, the non convex recourse 
function is convexified formulating a LR problem whose resolution produces correct dual values 
that outer approximate the non convex recourse function. 

In the Benders algorithm, the recourse function is understood as the perturbation function 
of the subproblem when the RHS of coupling constraints is modified. For the LR procedure, a 
family of cuts denoted as perturbation cuts is introduced that constrains the perturbation re-
gion. This perturbation function domain is precisely the projection or shadow of the first stage 
feasible region over the first stage coupling variables space and is continuously updated as 
Benders algorithm proceeds and new perturbation cuts are found. 
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The algorithm converges to the optimal value of the problem, and at the optimal solution 
there is no duality gap between the primal solution and the resolution through the LR. 

The situation is generalized to nested decomposition, with the added difficulty of calculating 
the perturbation region for third and further stages. 

The paper has finally presented an application of the algorithm to a large scale problem, 
where the advantage of applying it to large scale instances of it is appreciated. 
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APPENDIX A 

A.1 Linear problem 
Consider the problem 

( )MP  

{ }1 1

1 1 2 2

0 2

0 2

1 1

min

0 ( ) 1, ,

( )    1, ,

, ,

j j j

i i i

n m

c x c x

T x x j l

T x x i k

x X X Ax a x

θ

θ π

θ θ π
+

+ +

≥ + − =

≥ + − =

∈ = ≤ ∈

� …

…

\

 (A.1) 

Let 1 2( , , )x x θ  be the optimal solution of this problem and let 2 1 2( , , )x P x x θ=  the projection 
of this point over the coupling variable space 2n ′\ . Let 

1 1 1 11 2 1( , ,..., , )n m n md d d d+ + +  the edges of the 
feasible region at point 1 2( , , )x x θ . Let 1 1 1 11 2 1( , ,..., , )n m n md d d d+ + +

� � � �
 the projection of these edges over 
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the coupling variable space. We have then that 2x  is an extreme point of the shadow S  if and 
only if the coupling variable space cannot be expressed as a positive linear combination of the 
vectors 1 1 1 11 2 1( , ,..., , )n m n md d d d+ + +

� � � �
. This situation leads to the following criterion based on Farkas’ 

law. 
Criterion 1. 

Let 1 (1, 0,0,...,0)e = , 2 (0,1, 0,..., 0)e = , ... ,
2

(0, 0,0,...,1)ne ′ = , 0 ( 1, 1, 1,..., 1)e = − − − − . It is 
immediately that every 2nv ′∈ \  can be expressed as a positive linear combination of previous 
elements. 

Consider the family of problems 

( )iP  

min

0

1 1

ie x

Dx

x

≤

− ≤ ≤

 (A.2) 

where D  represents a matrix whose rows are the elements 1 1 1 11 2 1( , ,..., , )n m n md d d d+ + +
� � � �

. 
Positive solution of this problem ( )iP  implies ie  cannot be expressed as a positive linear 

combination of vectors 1 1 1 11 2 1( , ,..., , )n m n md d d d+ + +
� � � �

. Consequently, positive solution of at least one of 
those problems implies 2x  is an extreme point of the shadow S . Denote 2( )C x  the cone defined 
at point 2x  by directions 1 1 1 11 2 1( , ,..., , )n m n md d d d+ + +

� � � �
. 

Criterion 2. 
This criterion is modified so as to find the minimum set of projected edges that define the 

same positive cone 2( )C x . 
For 1 11 to 1k K n m= = + +  consider the problem 

( )kP  

min

0

1 1

k

k

d x

D x

x

≤

− ≤ ≤

�

�
 (A.3) 

where kD
�

 represents matrix D  with the k -row removed. 
Positive solution of this problem implies kd

�
 is not a positive linear combination of the re-

maining vectors. So it is an extreme direction of the cone at point 2x . On the contrary, negative 
or null solution of this problem implies kd

�
 can be represented as a positive linear combination of 

the remaining vectors. So it is not necessary any more and it is deleted from the family 
1 1 1 11 2 1( , ,..., , )n m n md d d d+ + +

� � � �
 and matrix D  updated with the k -row removed. This algorithm ends 

with a minimal set of extreme directions that generates the positive cone at point 2x , 2( )C x . 
These both criteria can be interchanged so as to firstly obtain a minimal set of extreme di-

rections and later to check if the positive cone generated (by the remaining vectors) is the whole 
space or not. 

A.2 Mixed integer problem 
In this case the solution of problem 

( )MP  

1 1 2 2

0 2

0 2

min

0 ( ) 1, ,

( )    1, ,

j j j

i i i

c x c x

T x x j l

T x x i k

x X

θ

θ π

θ θ π

+ +

≥ + − =

≥ + − =

∈

� …

…
 (A.4) 

ends with a set of terminal nodes N , together with a solution 1 2( , )n n
nx x x=  for each node and a 

family of edges 
1 1 1 11 2 1( , ,..., , )n n n n

n m n md d d d+ + +  for each node. Consider 0 0
0 1 2( , )x x x=  the optimal solu-

tion of problem ( )MP . Then we consider the positive cone generated by all projected edges to-
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gether with vectors connecting all the projected solutions. So we consider the positive cone gen-

erated by 
1 1 1 11 2 1( , ,..., , )n n n n

n m n md d d d+ + +

� � � �
 from 1, ,n N= …  and the vectors 0 1 0 2 0

2 2 2 2 2 2( , , , )Nx x x x x x
JJJJJGJJJJG JJJJG

… . 
We apply now criterion 2 for considering a minimal set of extreme directions and later crite-

rion 1 (over this minimal set) to check whether 0
2x  is an extreme point for S  or not. 

APPENDIX B 

B.1 Inequality constraints 
Consider a nested situation as the one presented on section 6 and let and let the problem 

( )P  take the form 

( )P  

11 1 12 2 21 1 22 2 3

1 2 2 1

2 2 3 2

1 2 1 2

min

( , ) , ( , ) ,

c x c x c y c y c z

T x W y h

T y W z h

x x x X y y y Y z Z

+ + + +

+ ≤

+ ≤

= ∈ = ∈ ∈

 (B.1) 

It is defined the shadow 1S  of the region X  over the coupling variable space as 

 { }1 2 1 1 2/ /( , )S x x x x X= ∃ ∈  (B.2) 

so that its associated perturbation region keeps the form 

 { }1 2 1 1 2/ /R r x S r T x= ∃ ∈ = −  (B.3) 

The interest on further stages lays on the next projection (particularized for three stages in 
the appendix) 

 { }2 2 1 2 1 1 2 1 2 2 1/ ( , ) , / , ( , ) ,S y x x x X y x X y y y Y A x A y b= ∃ = ∈ ∃ ∈ = ∈ + ≤  (B.4) 

so that its associated perturbation region keeps the form 

 { }2 2 2 2 2/ /R r y S r T y= ∃ ∈ =−  (B.5) 

In a nested decomposition procedure, we are interested in finding 1S  and 2S . Constraints 
for region 1S  (and consequently for 1R ) are found after solution of a first stage master problem 
and application of criterion 1 and 2. A few comments are necessary when solving the second 
stage problem. Let the master problem solved in a second stage take the form 

( )MP  

21 1 22 2 2

2 1 1 2

2 2 2

min

( )p

c y c y

W y h T x

y

y Y

θ

θ θ

+ +

≤ −

≥

∈

 (B.6) 

Let 1 2 2( , , )y y θ  be the optimal solution. The problem now is to check if 2 1 2 2( , , )y P y y θ=  is an 
extreme point of the region 2S  and, in that case, to calculate the associated positive cone to 
constrain the perturbation region. It might be pointed out that 2S  is the projection of the feasi-
ble region 

 
1 2 2 1

2 2 ( )

,

p

T x W y h

y

x X y Y

θ θ

+ ≤

≥

∈ ∈

 (B.7) 

over the coupling variable space 2y , defined by variables connecting second and third stage. 
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Definition. 2y  is a 2-extreme point of 2S  if it satisfies criterion 1 when considering 

2 1 2 2( , , )y P y y θ= , with 1 2 2( , , )y y θ  optimal solution of second stage problem. 
We immediately obtain the following results. 

Fact. If 2y  is not a 2-extreme point of 2S  then 2y  is not an extreme point of 2S . 
Assume then 2y  is a 2-extreme point of 2S . We have the following fact. 

Fact. If 2y  is a 2-extreme point and 2 1 1 2W y h T x≤ −  is not active, then 2y  is an extreme point. 
In case 2 1 1 2W y h T x≤ −  is an active constraint, then 2y  will be an extreme point if an only if 

the region { }2 2 2 1 1 2, ( ),py y W y b T xθ θ≥ ≤ −  is as biggest as possible, i.e., there is no 1 2( , )x x x′ ′ ′=  
such that the region { }2 2 2 1 1 2, ( ),py y W y h T xθ θ≥ ≤ −  is included in the region 
{ }2 2 2 1 1 2, ( ),py y W y h T xθ θ ′≥ ≤ − . 

Then consider the point 1 2( , )x x x=  obtained at first stage problem. In case 2x  is not an ex-
treme point for the region 1S  (projection of first stage feasible region over the coupling variable 
space), then 2x  can freely move alongside any direction, so that there is a vector d  with 

1 2 1 2( )T x T x d≥ + . We are assuming without lost of generality 1T  is a nonsingular matrix. 
In case x  is an extreme point for its region 1S  then consider the positive cone 2( )C x to be 

given by the extreme directions 1 2( , ,..., )kd d d
� � �

. These extreme directions are found as a result of 
applying criterion 2 to the first stage solution. 

Then, if 1 0kT d ≥
�

, : 1,...,k K∀  we can assure 2y  is an extreme point for region 2S . 
The previous results are summarized on the following proposition. 

Proposition. Let 2 1 2 2( , , )y P y y θ=  the projection of the optimal second stage solution onto the 
space of coupling variables. Then 2y  is an extreme point of 2S  if and only if: 
 
1. 2y  is a 2-extreme point and 2 1 1 2W y h T x≤ −  is not an active constraint. 
2. 2y  is a 2-extreme point, 2x  is an extreme point of 1S and 1 0kT d ≥

�
, kd∀

�
 extreme direction 

of 2( )C x . 

B.2 Equality constraints 
Now the situation is slightly different. Consider the problem 

( )MP  
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and assume its feasibility. In other case a feasibility cut will be generated and we will not be 
worried about the optimal solution. In case feasibility its resolution is equivalent to the problem 
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 (B.9) 

with M  big enough. Then we transform it to the situation presented on section B.1. 


