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Benders’ method usually divides the collection of decision variables of a two-

stage mathematical problem into two sets: a first set that comprises the collection of 

variables that represent first-stage decisions and a second set that includes the collection 

of variables that represent recourse actions or second-stage decisions. Usually, integer 

variables appear in the first set whereas the second set is formed by continuous variables 

with the purpose of having a convex recourse function. Convexity is then exploited in 

the construction of algorithms to obtain an optimal solution. In this paper we present an 

extension of Benders’ method to deal with multistage problems with integer variables in 

any stage. This extension is based on the idea of sequentially refining the linear cuts that 

are used to represent an approximation of the recourse function in the master problem. 

Computationally cheaper cuts are obtained first and more expensive ones are calculated 

only if the desired tolerance is not reached. The paper includes an application of the 

proposed method to a stochastic weekly power generation unit commitment model. 
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1 INTRODUCTION 

Stochastic programming (SP) deals with mathematical programming problems 

where some of the input data are random parameters (Birge and Louveaux (1997)). The 

method employed to solve an SP problem highly depends on the underlying 

characteristics of the random parameters. SP problems involving random parameters 

whose probability distributions are approximated with continuous functions are mainly 

solved via scenario sampling and simulation including variance reduction techniques. 

On the other hand, SP problems where probability distributions are approximated by 

discrete functions may in principle be solved with conventional optimization software 

via the formulation of their deterministic equivalent problem. 

Many SP problems may be formulated as multiperiod or multistage problems, 

where each period indicates a moment in which a decision has to be made. The natural 

manner of representing uncertainty in this type of problems when probability 

distributions are approximated with discrete functions is through a scenario tree 

(Dupacová, Consigli and Wallace (2000)). 

The introduction of stochasticity into a mathematical programming problem and 

its solution through a deterministic equivalent problem greatly increases the 

computational effort required. Not surprisingly, decomposition techniques appear as 

alternative or complement strategies to the direct solution of these problems 

(Ruszczynski (1997)). For linear situations with two decision stages, Benders’ 

decomposition technique is the most extended one (Benders (1962; Van Slyke and Wets 

(1969)). The introduction of three or more decision stages leads to the immediate 

generalization of the method to nested decomposition schemes (Morton (1993)). When 

stochasticity is introduced in the form of a scenario tree, the decomposition method can 
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also be extended and used with a monocut version or with a multicut version (Birge and 

Louveaux (1988)). When stochasticity is introduced through continuous probability 

distribution functions, the deterministic version is extended to accept simulation and 

sampling in the decomposition algorithm (Birge and Louveaux (1997)). 

The introduction of integer variables in such a decomposition scheme complicates 

the development of a solution method. The original two-stage or L-shaped method 

(Benders (1962)) formulates the first-stage problem so that it comprises the collection 

of integer variables whereas the second-stage problem deals with the rest of decision 

variables with the first-stage integer decisions fixed. The method exploits the linearity 

of the second-stage problem in order to outer approximate the convex recourse function, 

which represents the dependence of the second-stage objective function with respect to 

the first-stage decisions. However, when integer variables are included in the second-

stage problem this recourse function is in general non convex and non continuous. 

Many efforts have been done to overcome this difficulty. 

The integer L-shaped method of Laporte and Louveaux (1993), uses an adequate 

expression to outer approximate the recourse function for problems with only 0-1 first-

stage decision variables and mixed-integer second-stage decision variables. Its 

disadvantage is that not all problems fit within such structure. 

The specific method developed by Van der Vlerk (1995) for simple integer 

recourse problems exploits the pseudo-convexity properties of the recourse function for 

this type of problems including an extension to nested situations when each subproblem 

presents a simple integer recourse structure. Again, not every problem can be 

formulated in a natural way as a simple integer recourse problem. 

Other extensions of the method to deal with nonconvex recourse functions that 

have been developed are oriented to solve problems with general structures. For 
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example, the branch-and-bound subproblem solution of Birge and Louveaux (1997) 

computes one Benders’ cut at each terminal node of the ramification tree. This 

procedure has the purpose of treating the collection of cuts generated at each iteration 

by means of a disjunctive logic constraint: only one of these cuts is allowed to be active 

in subsequent iterations. Other authors such as Flippo and Kan (1993) use generalized 

duality instead of linear duality with the purpose of approximating the recourse 

function. Carøe and Tind (1998) generate a non-continuous approximation of the 

recourse function by using subbadditive theory in the solution of the second-stage 

problem. However, their technique generates cuts that are neither convex nor 

continuous, which complicates its use with algorithmic purposes. 

Convexification is a natural approach to address the solution of these problems. 

Generalized Benders’ decomposition (GBD), originally proposed by Geoffrion, A. M. 

(1972), uses nonlinear duality to approximate the convexification of the recourse 

function. An extension of GBD is the sequential cut refinement method presented in this 

paper. 

Alternative to L-shaped methods, that exploit the block structure of decision 

variables, Lagrangean methods exploit the block structure of constraints to eliminate 

those that complicate the solution of the problem (Geoffrion, Arthut M. (1974)). 

Stochastic programming is a suitable field to apply these Lagrangean methods. The 

usual approach is to derive an extended formulation of the stochastic problem that 

includes copies of the decision variables for each scenario and explicitly incorporates 

the formulation of the non-anticipativity constraints. These constraints force the 

decisions taken at each period to be independent of future realizations of the 

uncertainty. Non-anticipativity constraints introduce a link between the copies of the 

decision variables corresponding to different scenarios. The Lagrangean relaxation of 
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these constraints leads to a Lagrangean subproblem that is separable into individual 

subproblems, each one corresponding to one scenario. This technique is commonly 

known as scenario decomposition, or progressive hedging algorithm when a regularized 

term is added to the subproblem objective function (Rockafellar and Wets (1991)). 

The vast majority of these methods are not computationally efficient and 

frequently require heuristics to improve their performance. In this paper we suggest a 

sequential approach to execute Benders’ algorithm by generating computationally 

cheaper approximations of the recourse function prior to other more computationally 

expensive ones. This sequential method stems from our experience with the solution of 

mixed-integer programming (MIP) problems. The closer to the optimal solution the 

algorithm is, the more effort is required to improve the achieved solution. The 

sequential approach makes it possible to stop the algorithm as soon as a certain 

tolerance has been reached. This idea is particularly interesting in a stochastic integer 

programming (SIP) environment, where the difficulty of obtaining a solution for an 

integer programming (IP) problem is combined with the curse of dimensionality typical 

of stochastic programming (SP) problems. 

We include an application of this algorithm to solve a stochastic unit commitment 

(UC) problem. In Takriti and Birge (2000), the traditional Lagrangean relaxation of the 

demand constraint is complemented with the use of mixed integer programming 

techniques in order to obtain a final feasible schedule. In Nowak and Römisch (2000), 

Lagrangean relaxation is used to relax the non-anticipativity constraints that link the 

different scenarios of a stochastic UC problem. In the work presented in this paper, the 

weekly stochastic UC problem is decomposed into individual subproblems each one 

representing one day of operation. This decomposition perfectly fits within our 
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extension of Benders’ method. The binary (or integer) commitment decisions for 

thermal units are the source of nonconvexities in the resulting recourse functions. 

The rest of the paper is organized as follows. Section 2 briefly reviews Benders’ 

decomposition or L-shaped meted, GBD and the extension of GBD that is used here. 

Section 3 presents the sequential cut refinement method as well as its natural extension 

to multistage problems via nested decomposition. We include an academic example to 

illustrate the method. Section 4 tests the efficiency of the proposed method over 

different stochastic instances of a particular UC problem. Finally, section 5 presents the 

main conclusions of this research. 

2 L-SHAPED DECOMPOSITION METHODS 

2.1 The L-Shaped Method 

Benders’ or L-shaped decomposition considers two-stage optimization problems 

that can be formulated in the following form. 

( )P  
min

,

cx qy
Tx Wy h
x X y Y

+
+ =
∈ ∈

 (1) 

where x  represents first-stage decisions and y  comprises second-stage variables whose 

feasible regions are respectively given by { }1
1 1, nX A x a x += ≤ ∈  and 

{ }2
2 2, nY A y a y += ≤ ∈ . The solution of problem ( )P  is equivalent to the solution of 

the following master problem ( )MP . 

( )MP  { }min ( ),cx Q x x X+ ∈  (2) 

where ( )Q x  is the recourse function which is defined by the following subproblem 

( )xSP : 
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( )xSP  { }( ) min , ,Q x qy Wy h Tx y Y= = − ∈  (3) 

The L-shaped algorithm replaces the recourse function ( )Q x  in the master 

problem ( )MP  by a partial description that is updated as the algorithm proceeds. This 

description of the recourse function is derived by application of linear duality. Indeed, 

the recourse function ( )Q x  may also be represented as { }2max ( )i i
i I h Tx aπ ρ∈ − + , 

where { }( , )i i
i Iπ ρ ∈  is the collection of extreme dual solutions of problem (3). Observe 

that this representation of the recourse function is based on linear cuts. This outer 

approximation of the recourse function is complemented in the decomposition 

algorithm by the outer approximation of the first-stage feasibility region, which is given 

by the collection of first-stage solutions such that Benders’ subproblem ( )xSP  is 

feasible. This feasibility region can be represented as { }2 *
/ 0 ( )i i

i I
x h Tx aπ ρ

∈
≥ − + , 

where { }*( , )i i
i Iπ ρ ∈  is the collection of extreme dual solutions that result from the 

minimization of infeasibilities of ( )xSP , (Birge and Louveaux (1997)). 

An alternative formulation for Benders’ cuts can be derived that will prove useful 

later on. Let iπ  and iθ  be the optimal dual value and optimal solution of a feasible 

subproblem ( )ixSP  when a certain first-stage solution ix  has been proposed. Then, the 

following is a lower bound for the recourse function: 

 2 2

2

( ) ( ) ( )

( ) ( ) ( )

i i i i i i

i i i i i i i i

Q x h Tx a h Tx Tx Tx a

h Tx a Tx Tx T x x

π ρ π ρ

π ρ π θ π

≥ − + = − + − + =

= − + + − + = + −
 (4) 

The decomposition algorithm solves at each iteration a relaxed master problem 

( )RMP  given by 
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( )RMP  

min

0 ( ) *

( )

i i i

i i i

cx

T x x i I

T x x i I
x X

θ

θ π

θ θ π

+

≥ + − ∈

≥ + − ∈
∈

%

%
 (5) 

where I%  is a subset of I , *I%  is a subset of *I  and ix  is the master proposal that 

generated cut i . 

Each iteration of the method starts with the solution of ( )RMP  and the proposal 

of a first-stage solution, ix . This first-stage solution is then used to evaluate the 

recourse function by solving the corresponding subproblem ( )ixSP . The description of 

the recourse function in ( )RMP  is enhanced with an optimality cut in case of 

subproblem feasibility. In the other case, the feasibility region of ( )RMP  is constrained 

with a feasibility cut. Simultaneously, the algorithm computes a lower and an upper 

bound for the objective function of ( )P  and stops when the relative difference is less 

than an appropriate tolerance. 

Step 0 Set 0i = . Set 0θ ≡  at the initial iteration 
Step 1 Solve ( )RMP  and obtain solution ix  and lower bound ( )z v RMP=  
Step 2 Solve ( )ixSP  

 If ( )ixSP  is infeasible let *i I∈ % , and obtain iπ  

 If ( )ixSP  is feasible set i I∈ % , obtain iπ  and compute upper bound 

( )i
i

xz cx v SP= +  
Step 3  (stopping rule) 
 If ( ) /z z z tol− <  stop, ix  is the optimal solution, else go to Step 1 

Algorithm 1. L-Shaped method. 

The two-stage L-shaped method is immediately extended to multistage situations 

via nested decomposition and to stochastic situations with the use of the multicut or the 

monocut version of the method. 
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As commented before, this method was originally conceived to address two-stage 

problems with a linear second stage. The introduction of integrality requirements for the 

variables of the subproblem significantly complicates the application of the previous 

approach, given that the recourse function turns out to be non-convex. If the L-shaped 

method is applied to such a two-stage problem by simply relaxing these integrality 

requirements the approximation that is obtained for the recourse function may be too 

inaccurate to guide the relaxed master problem toward the solution of the original 

problem. 

2.2 Generalized Benders Decomposition 

The generalized Benders’ decomposition algorithm (Geoffrion, A. M. (1972; 

Holmberg (1994)) consists of iterating between the relaxed master problem and the 

Lagrangean Relaxation of the subproblem, where the relaxed equations are those that 

connect both stages. The solution of the subproblem via Lagrangean Relaxation (LR) 

has the effect of convexifying the recourse function in case the subproblem incorporates 

integrality requirements. This convexification considers the domain of the recourse 

function to be the complete Euclidean space. Given a first-stage solution, ix , the 

Lagrangean dual of subproblem ( )ixSP  is solved 

( )ixPR  { }max min ( ),i i
y qy Tx Wy h y Yλθ λ= + + − ∈  (6) 

where the inner minimization problem in ( )ixPR  is known as the Lagrangean 

subproblem. The optimal solution iλ  and optimal value iθ , are used to build up the cut 

that outer approximates the recourse function in ( )RMP  

 ( )i i iT x xθ θ λ≥ − −  (7) 
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Notice that iλ  can be interpreted as the opposite of the dual variable obtained for the 

linear situation. 

The generalized Benders’ decomposition treats infeasibility situations in a similar 

manner as the traditional algorithm does. For the MIP situation, the solution of (6) is 

preceded by the solution of the subproblem that minimizes the sum of infeasibilities. 

Noticing that infeasibilities can only be caused by the coupling constraints, the 

minimization of infeasibilities subproblem for a certain first-stage solution, ix , can be 

formulated as: 

 { }*
, ,( ) min , , , , 0i i

yQ x Wy h Tx y Yδ δ δ δ δ δ δ δ+ −
+ − + − + −= + + − = − ∈ ≥  (8) 

The method exploits the fact that it is equivalent to identify that the subproblem is 

infeasible ( *( ) 0iQ x > ), or that the convexification of *Q  for the first-stage proposal ix  

has a positive value. For this reason, and in order to obtain an infeasibility cut for non-

valid solutions, the direct solution of (8) is replaced by solving its LR formulation: 

 { }, ,max min ( ), , , 0i i
y Tx Wy h y Yλ δ δθ δ δ λ δ δ δ δ+ −

+ − + − + −= + + − + + − ∈ ≥  (9) 

It is immediate that the above problem is equivalent to 

( )*ixPR  { }[ 1,1]max min ( ),i i
y Tx Wy h y Yλθ λ∈ −= + − ∈  (10) 

an expression that recovers the necessary condition for feasible solutions in the 

generalized Benders’ algorithm (Geoffrion, A. M. (1972)). To summarize, the GBD 

method iterates between the relaxed master problem formulated in (5) and the pair of 

problems ( )*ixPR  and ( )ixPR . The algorithm proceeds as the traditional algorithm 

does. The extension of this algorithm to a nested situation is immediate. 



 12

2.3 Generalized Benders’ Decomposition Extension 

The extension of the generalized Benders decomposition presented in this section 

is based on a geometrical interpretation of the LR method proposed by Lemarechal and 

Renaud (2001). According to this extension, the recourse function 

{ }( ) min , ,Q x qy Wy h Tx y Y= = − ∈  may be seen as the lower envelope of the epigraph 

associated to the problem, epiG  

 { }0 0epi ( , ) /  with ,G r r y Y r Wy h r qy= ∃ ∈ = − ≥  (11) 

It is important to notice that this expression of the epigraph does not take into 

account the fact that the values that r  can take are restricted to the set { },Tx x X− ∈ . 

Based on the preceding expression of the epigraph, the Lagrangean dual of problem 

( )ixSP  can be alternatively formulated as follows 

( )ixPR  { }{ }0, , 0 0max min , , , i
y r r r r r qy r Wy h y Y Txλ λ λ+ ≥ = − ∈ +  (12) 

Where 0r  and r  simply are two auxiliary variables. It is evident that the solution 

of (12) satisfies 0r qy= . An interesting geometric interpretation of problem ( )ixPR  is 

that it provides the convexification of epiG . However, as indicated before, this 

convexification does not take into account the fact that the values that r  can take are 

restricted to the set { },Tx x X− ∈ . Due to this, the inner minimization in (12) has a 

solution with smaller objective value than desired. This implies that the convexification 

derived from ( )ixPR  provides an approximation for the recourse function that runs 

below the optimal one. 

Let us consider now the possibility of restricting the feasibility region of r . As 

mentioned, the feasibility region for r  depends on the range of values that x  can take. 
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This establishes a stronger link between the master problem and the Lagrangean dual of 

the subproblem and transforms r  into a perturbation variable. The inclusion of this 

feasibility set yields the following perturbation problem: 

( )ixPPR { }{ }{ }0, , , 0 0max min , , , , , i
x y r r r r r qy r Wy h y Y r Tx x X Txλ λ λ+ ≥ = − ∈ ∈ − ∈ + (13) 

Given the feasibility region defined for r , it is clear that r Tx= −  for some 

x X∈ . Additionally, the solution of ( )ixPPR  still satisfies 0r qy= . Hence, the 

following equivalent formulation can be considered: 

( )ixPPR  { }{ },max min , , , i
x y qy Tx Tx Wy h x X y Y Txλ λ λ− + = ∈ ∈ +  (14) 

Prior to solving problem ( )ixPPR , it is necessary to check its feasibility for the 

proposed value ix  by means of the following auxiliary problem. 

( )*ixPPR  { }{ }[ 1,1] ,max min , , , i
x y Tx Tx Wy h x X y Y Txλ λ λ∈ − − + = ∈ ∈ +  (15) 

The proposed perturbation problem improves the approximation of the lower 

convex envelope of the recourse function compared to the one the LR method of the 

GBD algorithm obtains. 

The solution of problem (14) may be considered inefficient. On the one hand, it 

seems to have the same number of variables than the original problem, (1). On the other 

hand, it is embedded in an iterative algorithm that requires its solution an indefinite 

number of times. However, in practical applications, the collection of first-stage 

variables that perturb the right hand side of the second-stage problem is usually a small 

subset of the set of first-stage variables, which reduces the size of (14) in comparison to 

that of (1). The proposed method is also adequate for nested situations. 
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3 SEQUENTIAL CUT REFINEMENT METHOD 

3.1 A description of the method 

The sequential method that we propose in this section executes Benders’ 

algorithm computing Benders’ cuts in different ways as the algorithm proceeds. Easier 

cuts are calculated first and more expensive cuts are calculated later. The method is 

organized in five phases where each phase is characterized by the way of computing the 

Benders’ cuts. 

3.1.1 Phase 1 

In Phase 1 we remove integrality requirements from the subproblems and we 

apply the traditional linear Benders’ decomposition algorithm. Hence, in forward and 

backward passes we solve the linear relaxation of the ( )RMP  problem. In each iteration, 

the accuracy of the linear solution achieved is calculated as the relative difference 

between a linear upper bound and a linear lower bound, as usual in Benders’ algorithm. 

The linear lower bound is given by the objective value of the relaxed master problem 

whereas the linear upper bound is obtained by evaluating the objective function of the 

complete problem with the latest solution. Phase 1 ends when the relative difference 

between these two bounds is smaller than a certain tolerance. 

3.1.2 Phase 2 

In phase 2 we reincorporate the integrality requirements that we removed in phase 

1. When we traverse the chain of problems forward, we solve their MIP version, 

( )RMP  (this also holds for phases 3 to 5). In contrast, when we traverse the chain of 

problems backward, we relax integrality requirements. Hence, Benders’ cuts in this 

second phase also correspond to those of the traditional Benders’ decomposition 
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algorithm. The difference with phase 1 lies in that the cuts for each subproblem are 

calculated for points that satisfy the integrality requirements of its ancestor. The cost of 

this improvement is the effort required to solve the MIP version of the subproblems in 

the forward pass. 

In the nested Benders’ decomposition algorithm for linear problems, the forward 

pass stops as soon as an infeasible subproblem is found (there is no sense in proposing 

values that come from previous stages with infeasible solutions). When passing from 

phase 1 to phase 2, a subproblem may turn out to be infeasible for two reasons. On the 

one hand, the linear relaxation of the subproblem may be infeasible. In that case its MIP 

version is not solved and an infeasibility cut is generated as in phase 1. On the other 

hand, the subproblem may be linear feasible but MIP infeasible. In that case a feasibility 

cut must be generated as in the GBD method, via the solution of ( )*ixPR . 

In each iteration, a lower bound is given by the solution of the master problem and 

an upper bound is determined by the evaluation of the objective function of the 

complete problem for the current solution. Observe that as long as the method to 

approximate the recourse function does not produce the exact convexification, the lower 

bound may never reach the upper bound. Phase 2 finishes when the difference of the 

primal values obtained in two consecutive iterations is lower than a specified tolerance.   

3.1.3 Phase 3 

This phase presents a refinement of the method for computing linear cuts with 

respect to previous phases. In backward passes, we first solve the subproblems with the 

integrality requirements relaxed. Then we take the dual variables corresponding to the 

coupling constraints and we evaluate the objective function of the Lagrangean dual of 

the subproblem. To do so we solve the Lagrangean subproblem (the Lagrangean 
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subproblem is the inner minimization of problem ( )ixPPR ) for that value of the 

multipliers. A more accurate linear cut is obtained because the value of the objective 

function of the lagrangean dual of the subproblem for those multipliers will be greater 

or equal than the objective function of the subproblem with its integrality requirements 

relaxed. 

In a two-stage situation, this technique shifts the linear Benders cut until it touches 

the recourse function. The cut obtained will in general not be tangent to the lower 

convex envelope at the point proposed by the master problem but, in any case, it is a 

valid cut and it is stronger than the linear Benders cut. This improvement has the 

computational cost of solving a MIP subproblem instead of a LP subproblem. 

This phase finishes when the difference of the primal values obtained in two 

consecutive iterations is lower than a specified tolerance. 

3.1.4 Phase 4 

The cuts calculated in this phase are certainly harder to compute than those of 

phase 3 although not necessarily better. In backward passes, the values of the dual 

variables selected to evaluate the Lagrangean dual objective function are the ones 

obtained from the solution of the MIP version of the subproblem. More precisely, these 

dual variables are obtained solving the LP problem that results when integer variables 

are fixed to the optimal values achieved so far for the MIP problem (as in a branch-and-

bound method). 

The computation of these cuts is suggested by the typical shape of one-

dimensional recourse functions (Wets (1996)) and by the necessity of constraining the 

computation of the convexification to the domain of the recourse function imposed by 

the first-stage variables. 
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The computational cost of computing this cut is higher than the cost of the cut 

presented in phase 3 because it implies the solution of two MIP problems and the 

evaluation of the Lagrangean dual objective function, while the cut of phase 3 requires 

the solution of one LP, one MIP, and the evaluation of the Lagrangean dual objective 

function. 

3.1.5 Phase 5 

In this last phase the extension of the GBD method that we have presented in the 

previous section must be applied. This requires a significant computational effort. 

3.1.6 Summary and observations 

In the cut refinement method, as soon as we are in the phase 2 we have feasible 

solutions for the complete problem and we can obtain an upper bounds for the solution 

by evaluating the objective function of the complete problem at any of these feasible 

solutions. Additionally, a lower bound is provided by the master problem. 

The cut refinement method may be stopped at any phase if the tolerance required 

for the solution is reached. This is useful because it permits avoiding phases 4 or 5, 

which are radically more time consuming than the previous ones. 

A major drawback of the sequential cut refinement method that must be 

highlighted is the possibility of having an LP feasible subproblem that turns out to be 

MIP infeasible. Although this rarely happens, in such case the algorithm triggers the 

execution of problem ( )*ixPPR , which is computationally expensive. 

The following table summarizes the sequential cut refinement method. 
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 Forward Solution Backward Solution 
Phase 1 LP LP 
Phase 2 MIP LP 
Phase 3 MIP LP + MIP Lagrangean Subproblem 
Phase 4 MIP MIP + MIP Lagrangean Subproblem 
Phase 5 MIP Max-Min Subproblem 

Table 1. Cut refinement method. 

3.2 Example 

We now present a small academic example to illustrate the performance of the cut 

refinement method. Consider the problem 

 

min 0.3 1.5
0 5

3.7
5.2

0, 0
,

x y z
x

x y
y z
y z
y z

− − −
≤ ≤
+ ≤
+ ≤
≥ ≥
∈ ∈

 

with optimal solution 6.71−  reached at 0.7x = , 3y = , 2z = . 

In order to solve this program by Benders decomposition we formulate the 

following master problem 

 min 0.3 ( )
0 5

x Q x
x
− +

≤ ≤
 

and the subproblem 

 

( ) min 1.5
3.7

5.2
0, 0

,

Q x y z
y x
y z
y z
y z

= − −
≤ −
+ ≤
≥ ≥
∈ ∈

 

The recourse function ( )Q x  is depicted in the next figure together with the 

objective function of the master problem. 



 19

 
Figure 1. Recourse function and objective function of the master problem. 

Let us now solve this problem by using the sequential cut refinement method. 

Phase 1, that solves the linear relaxation of above problem, finishes with an optimal 

solution given by 0x = , 3.7y = , 1.5z = . The relaxed master problem provides the 

following approximation for the complete problem when phase 1 finishes: 

 

min 0.3
0 5

3.7
0.5 7.05

x
x

x
x

θ

θ

− +
≤ ≤
≤
≥ −

 

In phase 2 we solve the MIP version of the master problem. However, as this 

example considers a continuous first-stage variable the value proposed by the master 

problem is again 0x = . Additionally, the subproblem is integer feasible for this 

proposal with solution 3y = , 2z = . Hence, no iterations of phase 2 are needed. 

In phase 3, the linear relaxation of the subproblem is solved for the last value 

proposed by the master problem ( 0x = ). 

 

(0) min 1.5
3.7 :

5.2
0, 0

Q y z
y
y z
y z

π
= − −

≤
+ ≤
≥ ≥
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The solution of this problem yields 0.5π = −  for the dual variable of the coupling 

constraint. As a consequence, Phase 3 continues with the solution of the Lagrangean 

subproblem for 0.5λ =  

 

min 1.5 0.5
3.7
5.2

0 5
0, 0

,

y z x
x y
y z

x
y z
y z

θ = − − −
+ ≤
+ ≤
≤ ≤
≥ ≥
∈ ∈

 

The solution of this Lagrangean subproblem is 6.85θ = − , which leads to an 

approximation of the recourse function at 0x =  given by 

0.5 6.85 0.5 0 6.85iTxθ + = − + × = − . With this, the Benders cut takes the following form 

 0.5 6.85xθ ≥ −  

This cut improves the approximation of the recourse function provided at the end 

of phase 1. The solution of the master problem yields the same first-stage proposal, 

0x = . Hence, the stopping criterion for phase 3 is satisfied and the algorithm switches 

to phase 4. 

In phase 4, we solve the MIP version of the subproblem to obtain a new multiplier 

value, 0π = . The Lagrangean subproblem for 0λ =  is given by 

 

min 1.5
3.7
5.2

0 5
0, 0

,

y z
x y
y z

x
y z
y z

θ = − −
+ ≤
+ ≤
≤ ≤
≥ ≥
∈ ∈

 

The solution for this Lagrangean subproblem is 6.5θ = − . The new cut has now 

the form 6.5θ ≥ − . This new cut improves the outer approximation provided by phases 

1 to 3. Due to this, the new solution of the master problem gives a different proposal, 
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0.7x = . The solution of the subproblem for this proposal is 3y = , 2z = . The final 

stopping criterion is satisfied because the lower bound (solution of the master problem) 

and the upper bound (evaluation of the objective function of the complete problem) 

coincide. 

In the next figures we depict the evolution of the recourse function approximation 

that the sequential cut refinement method produces. The figures of the left column 

represent the approximation of the recourse function and the figures of the right column 

show the approximation provided by the relaxed master problem. The figures of the first 

row represent the approximation provided at the end of phase 1. Those of the second 

row depict the approximation provided at the end of phase 3. The final row depicts the 

approximation at the end of phase 4.  

 

Figure 2. Outer approximation of the recourse function and of the objective function of the master problem. 
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4 APPLICATION TO A POWER GENERATION UNIT 

COMMITMENT PROBLEM 

The power generation unit commitment (UC) problem consists of determining the 

optimal commitment schedule of a system of generation units in order to cover the 

demand for power of a region during a certain time horizon (e.g. one week). Given that 

power generation must meet the demand for power at every moment, the UC problem 

must take into account not only the commitment status of the generation units, but also 

the power they will provide in each time interval (e.g. one hour). 

A generation system typically consists of different type of units, including nuclear 

plants, fossil-fueled thermal units (e.g. coal-fired units or combined-cycle gas turbines 

CCGTs), hydro plants and others. These types of units present differences both in their 

cost structure and in their operation constraints that must be considered when deciding a 

generation schedule. In general, the UC problem is oriented to minimize the cost of 

power production while meeting the demand for power at every load level and 

satisfying the operation constraints of the committed units. 

The UC problem is a MIP problem due to the presence of the binary or integer 

variables that represent the commitment status of the generation units. A variety of 

approaches have been adopted to solve the UC problem (Sheblé (1994)). In recent 

years, authors have focused on the development of new solution methods and on the 

introduction of new modeling features (Hobbs et al. (2001)). 

The stochastic UC problem has also received much attention. The main source of 

uncertainty that authors have considered is the demand for power (Nowak and Römisch 

(2000)). The increasing importance of wind power, together with its inherent stochastic 

nature, can be seen as another contribution to the uncertainty of the demand for 
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conventional power generation. A different line of research has been oriented to 

represent uncertainty in the revenues obtained by generators for their power production 

in the new deregulated environment (Valenzuela and Mazumdar (2003)). 

Even with modern commercial mixed-integer programming codes the direct 

solution of stochastic UC problems of realistic size would consume excessively much 

time and computer memory. Hence, decomposition techniques have traditionally been 

used for this purpose. Two main approaches are typically adopted. The first one is 

scenario decomposition, which splits the stochastic problem into as many deterministic 

problems as scenarios are being considered by relaxing non-anticipativity constraints 

(Takriti and Birge (2000), Carøe and Schultz (1998)). The alternative is to relax the 

constraints that link the operation of the generation units (e.g. the demand constraint, 

which forces the sum of the power output of the different units to meet the demand for 

power at each load level). This yields a collection of stochastic subproblems, one for 

each generation unit (Carpentier et al. (1996), Dentcheva and Römisch (1998), Takriti, 

Krasenbrink and Wu (2000)). 

The decomposition approach that we propose yields one subproblem for each 

node of the scenario tree and coordinates the solution of these subproblems by means of 

the method described in previous sections. This section presents the application of our 

approach to the solution of a realistic UC problem. 

The particular problem that we have solved is the UC problem of the German 

utility Vereinigte Energiewerke AG (VEAG). Its total capacity is about 13,000 

megawatts (MW) including a hydro capacity of 1,700 MW; the system peak loads are 

about 8,600 MW. The particular problem of the VEAG system consists of 168 periods, 

representing a weekly horizon, 35 thermal units and 22 pumped-storage units. Pumped-

storage units pump water from their lower reservoir to their upper reservoir during low-
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demand hours in order to prevent thermal units from stopping and losing the thermal 

energy accumulated in their boilers. Pumped-storage units release this water during 

high-demand hours, thus reducing the need for thermal power. 

The matrix staircase structure of this problem for a one-scenario case has been 

represented in Figure 3, where each block corresponds to one day.  

Variables

C
on

st
ra

in
ts

 

Figure 3. Constraints matrix for the deterministic seven-day UC problem. 

We have coded the decomposition algorithm, including the sequential cut 

refinement method, in Concert Technology 1.2, an optimization library that connects 

with the optimizer CPLEX 7.5 (ILOG (2003)). 

4.1 Problem formulation 

We present a simplified formulation of the UC problem because the purpose of 

this paper is not to propose a novel formulation or a new modeling feature. In particular, 

we omit the representation of uncertainty in our formulation to avoid the complexity 
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this would incur. One way to do this would be to represent the operation of the 

generation system in each possible scenario and explicitly formulate non-anticipativity 

constraints. An alternative would be to use a formulation based on the nodes of the 

scenario tree that establishes links between each node and its ancestor.   

The objective of the stochastic UC problem is to minimize the expected short-

term operational cost of the generation system 

 ( )min i it i it
t T i I

C c S s
∈ ∈

+∑∑  (16) 

where t T∈  represent time intervals (hours), i I∈  refer to thermal units and j J∈  

correspond to hydro units. The short-term cost of the generation system only includes 

the cost due to fuel consumption in thermal plants: iC  is the fuel cost of thermal unit i  

per unit of fuel consumed, in €/Tcal, itc  is the fuel consumed by thermal unit i  during 

time interval t , in Tcal, iS  is the cost of the fuel consumed during the startup of unit i , 

in €, and its  represents the start-up decision for thermal unit i  at the beginning of time 

interval t  (0/1). 

The net power output of the generation system must meet the demand for power 

in each time interval t : 

 ( )it jt jt t
i I j J

p p w D
∈ ∈

+ − =∑ ∑  (17) 

where itp  is the power output of thermal unit i , in MW, jtp  is the power produced by 

hydro unit j , in MW, jtw  is the power consumed by hydro unit j  due to pumped 

storage, in MW, and tD  is the demand for power in time interval t , in MW. 

To prevent the collapse of the system in case of the outage of a generation unit, a 

certain level of power reserve is typically required in each time interval t : 
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 max max( ) ( )it i it j jt t
i I j J

u p p p p R
∈ ∈

− + − ≥∑ ∑  (18) 

where itu  is the commitment status of thermal unit i  (0/1), max
ip  is the net maximum 

power output of thermal unit i , in MW, max
jp  is the net maximum power output of 

hydro unit j , in MW, and tR  is the level of power reserve required in time interval t , 

in MW. We assume that hydro units have the possibility of providing their full power 

output within a few minutes with essentially no cost. Hence, we neglect commitment 

decisions for hydro units. 

The limits for the net output of each generation unit depend on its commitment 

status: 

 min max
i it it i itp u p p u≤ ≤  (19) 

where min
ip  is the minimum net power output of thermal unit i  when it is committed. 

Hydro units also have limits for their net output, when they operate as generators, 

and for their net consumption, when they operate as pumps: 

 max0 jt jp p≤ ≤  (20) 

 max0 jt jw w≤ ≤  (21) 

where max
jw  is the maximum net power consumption of hydro unit j  when operating 

as a pump. 

A relationship exists between start-up decisions and the commitment status of 

thermal units in consecutive time intervals: 

 1it it its u u −≥ −  (22) 
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We approximate the fuel consumed by each thermal unit in each time interval by 

an affine function of its net power output: 

 it i it i itc u pα β= +  (23) 

The level of the upper reservoir of each hydro plant in each time interval depends 

on its operation: 

 1jt jt jt jt j jtl l I p wη−= + − +  (24) 

where jtl  is the level of the upper reservoir of hydro plant j  at the end of time interval 

t , in MWh, jtI  are the natural inflows received by the upper reservoir of j  during t , in 

MWh, and jη  is the cycle (or pumping) efficiency of plant j , in p.u. An efficiency 

coefficient is necessary because not all the energy that is consumed to pump a certain 

amount of water is obtained when that amount water is released for production 

As mentioned, this is a simplified representation and it does not consider features 

such as minimum up (down) time requirements for thermal units that start up (stop), or 

ramp limits for the power output of thermal units between consecutive time intervals. 

In many power generation systems there are groups of identical thermal or hydro 

units. Although each of the units of one of these groups can be operated in an 

independent manner, it is reasonable to represent them in an aggregate manner, since it 

makes no difference which ones of identical units are in operation. This removes 

symmetries from the problem. Under such an aggregate representation, the commitment 

state of a group of N  thermal units is represented with an integer variable ranging from 

0  to N , rather than with N  binary variables. We call each of these groups of units a 

generalized unit. In the VEAG case considered in this paper, the collection of 35 

thermal units and 22 pumped-storage units may be aggregated into 14 generalized 
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thermal units and 8 generalized hydro units. Problem sizes, for an individual unit 

representation and an aggregated representation, are shown in Table 2. 

 Rows Columns NonZero Integer 
Disaggregated units 29902 40152 104440 5712 

Aggregated units 12769 16466 44163 2520 

Table 2. Problem sizes for the VEAG UC problem. 

4.2 Computational results 

This section presents the computational results obtained when applying the 

proposed method to solve different stochastic instances of the numerical example. In 

addition to comparing the decomposition method with the direct solution of the problem 

we have explored the convenience of formulating large or small subproblems. 

We have introduced uncertainty in the load profile by means of scenario trees, 

built from the original data with clustering techniques. In particular we have used 

scenario trees with 4, 7 and 12 scenarios (see Figure 4). An example of generation 

schedule is shown in Figure 5 for a four-scenario tree, which reflects the effect of 

pumped-storage units. In this example, with a thin style it has been depicted stochastic 

demand profile and with a large style it has been depicted the thermal production 

obtained. The load profile above the thermal production profile is covered with hydro 

generation. A thermal profile greater that the demand profile in off-peak hours indicates 

pumping in pumped-storage hydro units. 
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0 24 48 72 96 120 144 168

 

Figure 4. A scenario tree with twelve scenarios. 

Demand            
                  
Thermal Production

 

Figure 5. 4-scenario problem production schedule. 
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We have solved these numerical examples using the decomposition algorithm 

until a relative tolerance of 0.1 % was achieved. The sequential cut refinement method 

reached such tolerance in phase 2, so that phases 3 to 5 of the algorithm were not 

necessary. We have also carried out a direct solution of the problem to analyze the 

required time to achieve a similar tolerance. Table 3 presents the results for the VEAG 

system with disaggregated units (VD) and Table 4 the equivalent results for aggregated 

units (VA). In both cases we indicate the required time to achieve a certain tolerance. 

 Direct Our method 
Time (s) 4003 Time (s) 730 

VD 1 Scenario 
Accuracy (%) 0.03 Accuracy (%) 0.07 

Time (s) 60000 Time (s) 3945 
VD 4 Scenarios 

Accuracy (%) 0.1 Accuracy (%) 0.06 
Time (s) - Time (s) 13730 

VD 7 Scenarios 
Accuracy (%) - Accuracy (%) 0.06 

Table 3. Execution times for the VEAG system with disaggregated units. 

 Direct Our method 
Time (s) 51 Time (s) 30 

VA 1 Scenario 
Accuracy (%) 0.02 Accuracy (%) 0.06 

Time (s) 680 Time (s) 104 
VA 4 Scenario 

Accuracy (%) 0.05 Accuracy (%) 0.04 
Time (s) 817 Time (s) 228 

VA 7 Scenarios 
Accuracy (%) 0.04 Accuracy (%) 0.05 

Time (s) 1840 Time (s) 329 
VA 12 Scenarios 

Accuracy (%) 0.04 Accuracy (%) 0.04 

Table 4. Execution times for the VEAG system with aggregated units. 

These results show that the solution of the problem with our extension of Benders 

algorithm together with the cut refinement method clearly outperforms the direct 

solution of the problem. Figure 6 confirms this by comparing computation times for the 

direct solution and the Benders’ solution of the VA problem with different tree sizes. 
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Figure 6. Execution times of the Benders method and the direct solution. 

5 CONCLUSION 

This paper has presented an extension of Benders’ decomposition algorithm to 

face the solution of multistage problems with integer variables at any stage. The 

extension is based on the idea of sequentially improving the approximation of the 

recourse function by computing computationally cheaper cuts prior to more expensive 

cuts. 

Although this may seem a trivial result, the particular sequence of phases that we 

have proposed is an original contribution. We have illustrated the importance of the 

proposed sequential approach by means of an academic example that requires four of 

the five phases to reach the exact solution. We have also presented an application of the 

method to a real-size weekly stochastic UC problem. In this case, we have only had to 

execute two phases to reach a tolerance lower than 0.1 %. Our method clearly 
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outperforms the direct solution of the problem. An advantage of our method with 

respect to other solution approaches is that the solution obtained satisfies all the 

constraints of the original problem. 
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