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Abstract—Wind Energy has become the renewable energy with
the highest installed capacity in some European countries mainly
due to its advanced technology and to existing political incentives.
In countries like Spain, installed wind capacity amounts to 17%
of total installed power capacity as of today. As power produced
from wind grows, difficulties created by its intermittency nature
(namely, the difficulty to predict wind generation output with
enough accuracy and its volatility) make the operation of the
system more difficult. Stochastic programming has been proposed
as an adequate way to handle this uncertainty. In this article,
the unit commitment problem is modelled taking into account
the stochastic nature of wind production. The model is applied
to the isolated power system of Gran Canaria island. We have
analyzed the impact of increasing installed wind capacity and
the value of having to deal with the uncertainty associated with
wind in this power system.

Index Terms—Stochastic Unit Commitment, Wind prediction
error, Renewable Energies

I. INTRODUCTION

UNCERTAINTY has always been present in electrical
power systems, in the form of possible unit failures

or errors in demand prediction. In the last years, electricity
production from wind has increased significantly and thus,
as well, the problems associated with this form of electricity
generation regarding the uncertainty about wind output and
its variability. Policy makers are willing to support renewable
energies and especially wind energy. Thus, wind energy and
its special characteristics have to be taken into account when
planning and operating electrical power systems. This has
several implications. On the one hand, significant reserach
must be devoted to making wind output predictions more
accurate. On the other, new flexible, fast-reacting generation
technologies, as well as new types of electricity storage, have
to be developed and employed to manage the variability and
unpredictability of wind electricity production.

To cope with the mentioned uncertainty in wind output
prediction, stochastic optimization is used in this paper to
obtain optimal unit commitment decisions taking into account
various representative wind production scenarios.

The paper will be structured as follows: A short literature
review explaining the different modelling approaches proposed
for this problem is presented in chapter II. This review is
divided into two parts. The first one discusses the general
modelling of stochastic optimization problems, as well as the
modelling of stochastic integer problems, (part II-A). In the
second part, II-B, recent works dealing with uncertain wind
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production and its impacts on power systems are annalyzed.
The modelling approaches used in this paper to represent the
unit commitment problem with stochastic wind production are
described in section III. The approaches described in section
III are applied to the Case of Gran Canaria. Results are
displayed in section IV. Finally, conclusions can be found in
section V.

II. LITERATURE REVIEW

A. Stochastic optimization

Stochastic programming cares about optimization problems
which contain uncertainty of at least one of the input pa-
rameters. This is the opposite of a deterministic optimization
model, which assumes all input parameters to be certain. Basic
textbooks on stochastic optimization can be found with [1], [2]
and [3]. In [4] stochastic programming is used for different
applications in power systems.

A special case of a stochastic program, stochastic integer
programming, has been employed in various fields such as ca-
pacity expansion, energy planning or power system operation.
In these problems, some integer variables are used. In many
cases, these variables are binary, as in the unit commitment
problem formulated and solved in this paper in chapters III
and IV. This is expressed using an extra restriction in the
stochastic optimization problem assigning the corresponding
decisions variables a solution space in integer numbers.

Special consideration is given to stochastic problems with
integer variables in [5]. The author looks at implications on
analysis and algorithm design of including integer variables
in stochastic programming. He remarks that the breakdown of
convexity and the inclusion of integer variables are the main
problems when changing from stochastic linear programming
to stochastic integer programming. [6] as well as [7] give an
introduction to stochastic integer programming. They survey
structural properties of this special type of problem and
algorithms to solve them. The authors analyse mainly linear
two-stage models with mixed-integer recourse and their multi-
stage extensions. Multistage stochastic integer programs are
the focus of the paper written by [8], who, apart from looking
at the dynamic formulation of this problem, examine the con-
ditions for optimality and stability of the solution. A stochastic
integer program is used by [9] to incorporate day-ahead trading
of electricity into hydro-thermal unit commitment.

Solution algorithms to stochastic integer programs are
treated in many works ([10],[6], [7]). Stochastic programs can
become of a very large size due to their special character-
istics with random parameters. Thus, decomposition might
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be needed to solve the problem by parts. Special emphasis
is given to decomposition algorithms in the thesis of [11].
In [12] a new decomposition framework is elaborated for
stochastic optimization of unit commitment. [13] proposes
another decomposition method to solve this kind of problem.

Due to the big size and the quite complex nature of
stochastic programs in comparison to a deterministic one, it is
interesting and important to quantify the advantage of using
a stochastic optimization program over solving a series of
deterministic optimization programs fixing in each one the
value of the random parameter. This can be done with two
measures: the Expected Value of Perfect Information (EVPI)
and the Value of the Stochastic Solution (VSS).

EVPI indicates how much perfect information about the
future would be worth. Since decision makers would benefit
greatly from having exact data about the future, EVPI ex-
presses their willingness to pay. It is calculated by comparing
the so-called wait-and-see solution (solving each scenario as a
deterministic optimization problem, WS) to the solution of
the recourse problem (the stochastic optimization problem,
RP). The wait-and-see solution is the weighted average of
all deterministic optimization problems. These are calculated
taking in each deterministic problem one particular realization
of the random parameter.

WS = Eξ[minxz(x, ξ)] (1)

Eξ is the probability of the random parameter which is
multiplied with the outcome of the deterministic problem. The
recourse problem corresponds to the stochastic problem. EVPI
results from the difference RP − WS.

The Value of Stochastic Solution can be described as the
cost of taking into account random parameters as certain
although they comprise uncertainty. It can be determined as the
difference between the expected result of using the Expected
Value solution (EEV) and employing the solution from the
recourse problem. The expected value solution is simply the
deterministic optimization solution considering the weighted
average of the possible values of the random parameter. EEV
uses this solution to fix the first-stage decisions x in the
stochastic problem, which are those variables whose outcome
does not depend on the scenario considered. Thus, the stochas-
tic problem is only used to decide the value of variables in
the subsequent stages. This is expressed in equation 2.

EEV = Eξ[z(x̄ξ̄, ξ)] (2)

Finally VSS is obtained by subtracting RP from EEV.

B. Optimization of operation with wind production

In the last years the prediction od the wind output and the
wind associated problems in power systems has attracted the
attention of various authors.

Some authors focus on changes in generation scheduling
in a system with high wind power production. [14], [15] and
[16] look at changes in generation scheduling. Authors in [ 17]
and [18] model different market environments and analyse

the influence of stochastic wind input using a multi-stage
stochastic optimization approach. The case of some countries
in Europe and USA dealing with wind power is treated in [19].
Other authors work furthermore on the impacts of wind power
on security. These issues are discussed in [20] for systems with
significant power generation. Strategies for unit commitment
and dispatch for a wind park are examined in [21].

Some authors have dedicated their work to examine how the
use of hydro plants can absorb wind over- or underproduction.
Thus, [22] applies a two-stage optimization model to cope
with uncertain electricity production from wind and uncertain
market prices. Here, pumped storage units are used to produce
in case wind energy is lower than the energy offered in the
market. [23] analyses the optimization of the daily operation
of a wind-hydro power plant.

A literature review of wind forecasting technology can be
found in [24].

III. THE MODELING APPROACH

Unit Commitment problems try to determine the minimum
cost scheduling for power plants to meet the system demand
in the short term and to satisfy further restrictions in the power
system. Results are startup and shutdown decisions for each
generation plant in each hour. Unit commitment problems have
been the focus of much research, since poor management of
power resources can turn out to be very costly.

In the considered optimization problem, operational costs
are to be minimized taking into account the demand balance
constraint, up- and down reserve, minimum and maximum
generation capacities, ramping constraints and the logic se-
quence for the startup and shutdown decisions.

The approach follows the structure of a two-stage stochastic
problem. The unit commitment problem here proposed is
solved for one day. This problem could be applied to com-
pute decisions for the day-ahead market. Unit commitment
decisions have to be made in advance (in Spain between 14
-38 hours in advance), while the exact production level of
generation units is determined later on.

First-stage decisions are the startup and shutdown decisions,
arrt

p and part
p respectively, and the unit commitment ones

act
p. In the second stage of the problem, three scenarios are

considered with probability Probs. Production output levels
over the technical minimum production for the corresponding
plants, prodttp,s, and non-served energy pnsp,s are determined
in a 24-hour timeframe. Depending on the scenario, these
variables might adopt different values. In the objective function
(equation 3), the operational cost of the whole power system,
costeop, is minimized.

costeop =
∑

p,t[CosteTF tact
p

+CosteTV tProdTMint
pact

p

+CosteArrtarrt
p + CostePartpart

p

+
∑

s Probs[CosteTV tprodttp,s

+CostePNSpnsp,s]] (3)

In the former equation, p refers to time periods, t to thermal
generators and s to scenarios. First-stage decisions as the
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unit commitment ones ac, startup decisions arr and shut-
down decision par are weighted with the corresponding cost,
namely fixed cost, CosteTF t, startup costs, CosteArrt, and
shutdown costs, CostePart, respectively. In the second stage,
the term including the minimum production cost is active
when the generation unit is committed in this period. Then,
minimum production ProdTMint

p and production output over
minimum prodtt

p,s are weighted with the variable production
cost CosteTV t for all possible hours and scenarios. Each unit
of non-served energy pnsp,s is deemed to cost CostePNS in
each period and scenario.

Constraints are shown in equations 4 to 10:

Demp − ProdIp,s − pnsp,s =∑
t ProdTMint

pact
p + prodttp,s (4)∑

t(ProdTMaxt
p − ProdTMint

p)act
p −

prodttp,s ≥ RsSubp (5)∑
t −prodttp,s ≥ RsBajp (6)

prodttp,s ≤ (ProdTMaxt
p − ProdTMint

p)act
p (7)

prodttp,s − prodttp−1,s ≤ ProdTSubt (8)

prodttp−1,s − prodttp,s ≤ ProdTBajt (9)

act
p −

{
Acpt , for p = 1
act

p−1 , for p ≥ 1

}
= arrt

p − part
p (10)

Equation 4 ensures that demand is balanced all the time.
Demand Demp and intermittent wind production ProdIp,s

are given parameters. Up- and down-reserve (RsSubp and
RsBajp) constraints (equations 5 and 6) make sure that a
reliability margin exists in case it is needed because of the
failure of one of the generation plants and errors in wind
or demand prediction. In equation 7 the maximum output
of a generation plant ProdTMax limits production over the
technical minimum production prodt. Equations 8 and 9 take
into account the maximum variation of production output
between two consecutive hours. Ramps are represented as
ProdTSub and ProdTBaj for each generation unit. The
formulation of the unit commitment restriction (eq. 10) takes
into account the state of each generator in the preceding
hour. While unit commitment variables are binary, startup and
shutdown decisions can be continuous since equation 10 forces
them to take binary values.

A. Deterministic Problem

To compare the stochastic problem, where uncertainty is
taken into account, to the case where future is known with
certainty, the deterministic problem must be formulated and
solved. Using the formulation provided below together with
the one for the stochastic problem, the Value of the Stochas-
tic Solution and the Expected Value of Perfect Information
mentioned in chapter II on 2 can be determined.

The objective function of the deterministic two-stage prob-
lem can be formulated as follows.

costeop =
∑

p,t[CosteTF tact
p +

CosteTV tProdTMint
pact

p + CosteTV tprodttp +
CosteArrtarrt

p + CostePartpart
p +

CostePNSpnsp] (11)

The production outcome prodtt
p and the amount of non-

served energy pnsp do not depend on the scenario.

Demp − ProdIp − pnsp =∑
t ProdTMint

pact
p + prodttp (12)

The demand constraint, equation 12 assumes that the param-
eters corresponding to wind production ProdIp are scenario-
independent. The rest of constraints stays the same as in
equations 5 to 10 but neglecting the scenario dependence of
the two decision parameters prodtt

p and pnsp.
The deterministic problem assumes each of the scenario-

dependent parameters to be given and certain in order to
calculate the wait-and-see solution mentioned earlier. In this
case, three different deterministic problems can be solved,
one for each wind output scenario. Alternatively, an average
scenario may be considered using average values of the input
parameters.

IV. CASE STUDY IN GRAN CANARIA

Gran Canaria is a small island in Spain. It has been chosen
as the case example system because it has a small power
system and must cope with demand coverage on its own,
since it is not interconnected with other grids. Being an island,
wind production is becoming an important influencing factor
in the generation mix. Over- or underproduction caused by
wind cannot be smoothed by importing or exporting electricity,
but has to be compensated by local power generation (or
demand). Gran Canaria does not have at its disposal hydro
plants which could react to wind production variability as
proposed by some authors mentioned in subsection II-B. Since
demand management schemes are not yet implemented, only
the effects of uncertain wind production on the operation of
power generation and reliability variables will be examined
in this case example. We shall identify which generation
technologies will be replaced by wind.

A. Data and scenarios

The generation park considered in the case example corre-
sponds to the one possibly available in 2011. Precast data is
based on the Energetic Plan of the Canary Islands [25]. Gran
Canaria has two generation sites, one in Jinamar close to the
capital of Gran Canaria and another one in Barranco Tirajana,
consisting of a total of 20 units nowadays. By 2011 an
additional unit will be available. There will be two combined
cycle plants, one of which is not yet in operation. The already
existing combined cycle consists of two gas turbines and a
steam turbine and is currently used with gasoil. The currently
existing plant and the plant to be constructed can be run as
well with natural gas, which is not yet available on the Canary
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islands. In total there are four types of generation technology:
combined cycle, gas turbine, steam turbine and diesel motor.
Electricity generation is mainly based on heavy fuels such as
gasoil and fueloil. Generation cost for these units are regulated
in Canarias and were taken from [26]. Generation cost for the
additional CCGT plant to be installed was assumed to be the
same as for the existing CCGT plant. Hourly demand and
wind data are based on historic series in Spain which have
been scaled down considering the annual demand, the peak
demand and installed wind generation in Gran Canaria. Annual
demand and peak demand provisions are taken from [ 25]. For
2011 they are assumed to be 4.183 TWh and 768.38 MW,
respectively, which corresponds to an increase of 17.9% and
19.4% compared to 2007 levels. Further expected increases
for 2015 are in similar ranges. In this case study, the reference
year is 2011. Being an island, wind potential is high in Gran
Canaria. [25] states that the installed wind capacity in 2007
was 76 MW and predicts that it will more than triple to 272
MW in 2011 and will amount to 411 MW in 2015 .

Stochasticity lies in the wind prediction errors. These are de-
ducted from historic prediction errors and realizations of them
are considered in three different scenarios. Wind prediction
errors are usually bigger the further the prediction reaches into
the future. In a 24 hour time frame, the error of wind forecasts
may grow to as much as 20% [24] of installed capacity.
Wind prediction errors are used to correct the actual value of
wind production when computing the amount of production
considered in the dispatch.

In the first scenario, prediction errors were positive. This
means that wind production was foreseen to be lower than it
actually was. The second scenario considers as well positive
prediction errors and the last scenario shows during the first
part of the day negative and at the end positive errors.

scenario wind prediction error probability
1 + 0.3
2 ++ 0.4
3 -+ 0.3

TABLE I
SCENARIOS AND THEIR PROBABILITY

A sensitivity analysis has been carried out changing the
installed wind generation capacity. Values assumed for wind
capacity range between the one installed in year 2008, the pre-
viewed in 2011 and 2015. Computations to compare stochastic
and deterministic approaches have been carried out assuming
211 MW of installed wind capacity.

Figure 1 shows the original demand and the demand after
substracting wind production (including the wind prediction
error) for the three possible installed wind capacities and the
three wind prediction error scenarios.

Taking into account that the Gran Canaria case example
considers 24 time periods p, 3 scenarios s and 20 generation
units t, the two-stage stochastic problem to be solved has
6456 constraints, 2472 continuous variables and 480 binary
variables.

Fig. 1. Resting demand to be supplied in different wind scenarios

B. Results and discussion

The stochastic unit commitment problem for the results
presented here has been calculated for one specific day during
winter (a Thursday in the end of february).

1) Comparison stochastic versus deterministic approach :
In the stochastic approach unit commitment decisions are
unique while in the deterministic equivalent these decisions
can adapt depending on the wind situation given in each sce-
nario. As in the stochastic approach each scenario is taken into
account with its probability, unit commitments might differ
especially in peak hours with very different wind scenarios.

Fig. 2. Difference of units committed and production levels between
stochastic and deterministic approach in hours 13 to 24

Figure 2 shows the difference of unit commitments and
production between the stochastic and the deterministic ap-
proach during the evening from 13 to 24 o´clock. On the left
axis unit commitments are shown. Combined cycle have one
more unit committed during all hours which results on average
in 140 MW more production in scenario 1. On the contrary
diesel motors and steam turbines have fewer units commited
in this first scenario. In the three deterministic scenarios unit
commitments and thus production levels are very different.
The outcome of the stochastic scenario shows little difference
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to scenarios 2 and 3 of the deterministic approach but high
differences in scenario 1, where stochastic considerations seem
to use less expensive power plants. So, high wind prediction
errors may be smoothed using a stochastic approach and unit
commitments can be adapted to very different wind prediction
situations.

This results in an Expected Value of Perfect information
(see page 2) of around 13.200 Euro in one day, which is a cost
advantage of 1% of the stochastic approach. That would be
the value of knowing the uncertain future with certainty. The
Value of the Stochastic Solution expressing the cost of taking
into account the random parameter wind error as certain has
been determined to 5.420 Euro.

Demand Wind prevision Wind error [MW]
[MW] [MW] Scen. 1 Scen. 2 Scen. 3

h13 653 109 24 36 -21
h14 605 111 23 36 -20
h15 601 117 23 38 -19
h16 601 124 23 41 -11
h17 611 123 22 44 0
h18 618 126 21 47 10
h19 681 130 19 46 15
h20 696 129 14 41 13
h21 672 128 10 34 10
h22 624 125 10 26 5
h23 608 118 12 20 4
h24 534 108 -1 -5 6

TABLE II
DEMAND, WIND AND WIND ERRORS FOR 13-24 O´CLOCK

The difference of technologies applied in the peak between
the two approaches is mainly due to the variable, fixed and
start-up cost considered. These are regulated costs based on
real plants (see subsection IV-A).

2) Scenario analysis of different installed wind capacities :
A scenario analysis has been conducted changing the installed
wind capacity from 76 MW installed nowadays to more than
triple this capacity to 272 MW and 411 MW. This high
capacity is taken from the energy plan previsions and may
be true in 2011 and 2015 as renewable support in Spain is
given and offshore wind capacity is supposed to rise in the
coming years.

Figure 3 indicates on the left hand side the difference of unit
commitment from the 272 MW to the 76 MW installed wind
capacity case. First of all only unit commitment reductions and
no increases can be observed during all hours as was expected
when more installed wind generation is available and thus less
demand has to be covered. In all shown hours one, two or
even three diesel motors less will be committed. In some hours
additional steam turbine unit reduction can be observed. As gas
turbines act only in few hours as marginal units gas turbine
unit commitment reduction occurs only in hours during the
evening peak (20 and 22). Thus additional wind generation
saves thermal production of marginal units.

On the right hand side the difference between the 411 MW
to the 272 MW installed wind capacity case is shown. In the
results it can be observed that in the case of 411 MW one
unit less of the combined cycles is replaced by one or two
units of steam turbines. In the merit order combined cycles
stand before steam turbines. But steam turbines seem to be

Fig. 3. Difference of units committed between 411/272MW and 272/76MW
installed wind capacity in hours h13 to h24

more flexible to react to a higher wind production and thus to
a possibly higher wind error to be considered.

Since the model is optimizing over 24h it takes into account
the wind production and the resting demand to serve in all
hours. In the case of the 411 MW wind production wind error
scenarios result in resting demands that are more widespread
than in the 272 MW case (see figure 1). In one case (411 MW)
it is more economic not to turn off one combined cycle and
let it work at a lower production level while in the other case
(272 MW) turning it off is the best solution. These results
indicate that higher wind production not always means less
need of conventional thermal capacity. On the contrary, it may
be that some conventional plants have to run on their minimum
stable load to avoid extra start-up cost to cope with variable
stochastic wind input in upcoming hours.

V. CONCLUSIONS

Wind energy causes already today alterations in generation
scheduling. It has been shown that wind replaces more ex-
pensive diesel motors in scenarios with high wind production,
but when wind production is low more expensive generation
plants have to be committed due to their fast reaction ability.
Furthermore it has been observed that very high wind input
might lead to problems of thermal generation reserve. Taking
into account various wind scenarios in stochastic optimization
instead of looking at simulations with deterministic optimiza-
tion, brings advantages as it has been demonstrated with the
Expected Value of Perfect Information and the Value of the
Stochastic Solution. Future research primarily in new storage
possibilities and its implementation into stochastic modelling
used for operation and planning is indispensable to cope with
volatility in wind production.
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