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Abstract—Wind Energy has become the renewable energy
with the highest installed capacity in some European countries
mainly due to its advanced technology and to political incentives.
In countries such as Spain installed wind capacity amounts
17% of total installed power capacity today. As wind-produced
power is enlargening even more, some of its difficulties above
all insufficient exactness of one day-ahead wind forecasts and
its volatility will complicate the operation of the network even
more. Stochastic programming has been proposed as adequate
way to handle this uncertainty. In this paper the unit commit-
ment problem is modelled taking into account stochastic wind
production. The model is applied to the isolated power system of
Gran Canaria. The impact of increasing installed wind capacity
and the value of having to deal with the uncertainty of wind in
this power system as well as the influence of electric cars in the
system operation is analyzed.

Index Terms—Stochastic Unit Commitment, Wind prediction
error, Renewable Energies

I. INTRODUCTION

UNCERTAINTY has always been present in electrical
power systems for example through possible unit failures

and errors in demand prevision. In the last years electricity
production by wind has increased significantly and thus as well
associated problems regarding uncertainty in wind previsions.
Policy makers are willing to support renewables energies and
especially wind energy as well in the future. Thus wind
energy and its special characteristics have to be taken into
account when planning and operating electrical power systems
even more. This means on the one hand that investigation in
wind prediction has to be enforced to make wind previsions
more exact. On the other hand new flexible and fast-reacting
generation technologies as well as new types of electricity
storage have to be applied to manage the variability of wind
electricity production.

To cope with the mentioned uncertainty in wind previsions
stochastic optimization is used in this paper to obtain optimal
unit commitment decisions taking into account various repre-
sentative wind production scenarios.

New storage facilities have to be available in the future to
cope with large-scale integration of wind energy. One storage
facility might be the use of the batteries of plug-in electric
cars. These cars represent firstly an extra consumption for
the system, since batteries are charged connecting the car
to the grid. Secondly they might be used to consume wind
overproduction in offpeakhours and to reduce peaks during
the day slightly.
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The paper will be structured as follows: A short literature
review explaining modelling approaches in chapter II is di-
vided into two parts. In the first part the general modelling of
stochastic optimization problems as well as the modelling of
stochastic integer problems and the corresponding literature
is presented (part II-A). In the second part, II-B, recent
works treating uncertain wind production and its impacts on
the power system are resumed. The modelling approaches
applied to the case of unit commitment with stochastic wind
production used in this paper are described in section III.
These approaches from section III are applied to the Case of
Gran Canaria. Results are displayed in section IV and finally
conclusions can be found in section V.

II. LITERATURE REVIEW

A. Stochastic optimization

In stochastic programming optimization problems are
treated which contain uncertainty of at least one of the input
parameters. This is the opposite of a deterministic optimization
model which assumes all input parameters to be certain. Basic
textbooks on stochastic optimization can be found with [1], [2]
and [3]. In [4] stochastic programming is applied to different
application in power systems.

A special case of a stochastic program, stochastic integer
programming, has become interesting for various fields such
as capacity expansion, energy planning or power system
operation. Here either some variables are of integer nature.
In many cases these variables might be binary as in the
unit commitment case formulated and calculated in this paper
in chapters III and IV. This is expressed with a further
restriction to the stochastic optimization problem assigning the
corresponding decisions variables a solution space in integer
numbers.

Special consideration of stochastic problems with integer
variables is given to in [5]. The author looks at implications
on analysis and algorithm design of including integer variables
in stochastic programming. He remarks that the breakdown of
convexity and the inclusion of integer variables are the main
problems when changing from stochastic linear programming
to stochastic integer programming. [6] as well as [7] give an
introduction to stochastic integer programming. They survey
structural properties of this special type of problem and algo-
rithms to solve them. The authors analyse mainly linear two-
stage models with mixed-integer recourse and their multi-stage
extensions. Multistage stochastic integer programs are the
focus of the paper written by [8] who apart from looking at the
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dynamic formulation of this problem examine the conditions
for optimality and stability of the solutions. A stochastic
integer programming is used by [9] to incorporate day-ahead
trading of electricity into hydro-thermal unit commitment.

Solution algorithms to stochastic integer programs are
treated in many works ([10],[6], [7]). Stochastic programs can
get very huge due to their special characteristics with random
parameters, so that decomposition might be needed to solve the
problem by parts. Special emphasis is given to decomposition
algorithms in the thesis of [11] and in [12] a new decomposi-
tion framework is elaborated for stochastic optimization of unit
commitment. [13] proposes another decomposition methods to
solve this kind of problem.

Due to the big size and the quite complex nature of a
stochastic programm in comparison to a deterministic one, it is
interesting and important to quantify the advantage of using a
stochastic optimization program in contrast to solving a series
of deterministic optimization programs fixing in each one the
random parameter. This can be done with two measures: the
Expected Value of Perfect Information (EVPI) and the Value
of Stochastic Solution (VSS).

EVPI indicates how much perfect information about the
future would be worth. Since decision makers would benefit
greatly from having exact future data EVPI expresses their
willingness to pay. It is calculated taking into account on the
one hand the so-called wait-and-see solution (solving each
scenario with a deterministic optimization problem, WS) and
on the other hand the solution to the recourse problem (the
stochastic optimization problem, RP). The wait-and-see solu-
tion is the weighted average of all deterministic optimization
problems. These are calculated taking in each deterministic
problem one particular realization of the random parameter.

WS = Eξ[minxz(x, ξ)] (1)

Eξ is the probability of the random parameter which is
multiplied with the outcome of the deterministic problem. The
recourse problem corresponds to the stochastic problem. EVPI
results from the difference RP −WS.

The Value of Stochastic Solution can be described as the
cost of taking into account random parameters as certain
although they comprise uncertainty. It can be determined by
the difference of the Expected result of using the Expected
Value solution (EEV) with the recourse problem. The expected
value solution is simply the deterministic optimization solution
using the weighted average of the random parameter. EEV uses
this solution to fix the first-stage decisions x in the stochastic
problem, that are those variables whose outcome does not
depend on the scenario. Furtheron the stochastic problem is
only deciding on the other stages. This is expressed in equation
2.

EEV = Eξ[z(x̄ξ̄, ξ)] (2)

Finally VSS is obtained by subtracting RP from EEV.

B. Optimization of operation with wind production

In the last years the wind prediction and the wind problem-
atic in power systems has attracted the attention of various
authors.

Some authors concentrate on changes in generation schedul-
ing in a system with high wind power production. [14],
[15] and [16] look at changes in generation scheduling. [17]
and [18] model different market environments and analyse
the influence of stochastic wind input using a multi-stage
stochastic optimization. The case of some countries in Europe
and USA is treated in [19]. Other authors work furthermore
on the impacts of wind power on security. These issues in
systems with significant power generation are canvassed in
[20]. Strategies for unit commitment and dispatch for a wind
park are examined in [21].

Some authors have dedicated their work to examine how
the use of hydro plants can absorb wind over- or underpro-
duction. [22] apply a two-stage optimization model to cope
with uncertain electricity production from wind and uncertain
market prices. Here, pumped storage units are used to produce
in case wind energy is lower than the energy offered in the
market. [23] analyse the optimization of the daily operation
of a wind-hydro power plant.

A literature review of wind forecasting technology can be
found in [24].

III. THE MODELING APPROACH

Unit Commitment problems try to determine the minimum
cost scheduling for power plants to meet the system demand
in the short term and to satisfy further restrictions in the
power system. Results are startup and shutdown decisions for
each generation plant in each hour. Unit commitment problems
have received much research since poor management of power
resources can turn out very costly.

In the planned optimization problem operational cost are
to be minimized taking into account the demand balance
constraint, up- and down reserve, minimum and maximum
generation capacities, ramping constraints and the logic se-
quence for the startup and shutdown decisions.

The approach follows the structure of a two-stage stochastic
problem. The unit commitment is resolved for each day over a
period of one week (see figure 1). This problem could be ap-
plied to decisions for the day-ahead market. Unit commitment
decisions have to be reached in advance (in Spain until 14 -38
hours in advance), while exact production of generation units
is determined later on.

First-stage decisions are the startup and shutdown decisions,
arr and par respectively, and thus as well the unit commit-
ment ac. For the second stage three scenarios are considered
with the probability Prob. Production output over production
minimum, prodt, of each generation plant and non-served
energy pns is determined for a 24-hour timeframe. Depending
on the scenario these variables might have different values.
Instead of continuing the next day with each of the possible
outputs, in this approach, the outcome is sorted randomly.
Thus, only one of the possible production outputs (the one
marked in figure 1 with a darker rectangle) will be taken
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Fig. 1. Scenario tree for the two-stage model

into account as output of previous hours when starting the
unit commitment problem for the next day. In the objective
function (equation 3) operational cost of the whole power
system, costeop, is minimized.

costeop =
∑
p,t[CosteTF

tactp

+CosteTV tProdTMintpac
t
p

+
∑
s Probs[CosteTV

tprodttp,s

+CosteArrtarrtp + CostePartpartp

+CostePNSpnsp,s]] (3)

In the former equation p considers time periods, t thermal
generators and s scenarios. First-stage decisions unit com-
mitment ac, startup decisions arr and shutdown decision
par are multiplied with the corresponding cost, namely fixed
cost, CosteTF , startup costs, CosteArr, and shutdown costs,
CostePar. In the second stage the term including minimum
production is active when the generation unit is committed
in this period. Then minimum production ProdTMin and
production output over minimum prodt are multiplied with
variable cost CosteTV for all possible hours and scenarios.
Each unit of non-served energy pns will cost CostePNS in
each period and scenario.

Constraints are shown in equations 4 to 10:

Demp − ProdIp,s − pnsp,s =∑
t ProdTMintpac

t
p + prodttp,s (4)∑

t(ProdTMaxtp − ProdTMintp)ac
t
p −

prodttp,s ≥ RsSubp (5)∑
t−prodttp,s ≥ RsBajp (6)

prodttp,s ≤ (ProdTMaxtp − ProdTMintp)ac
t
p (7)

prodttp,s − prodttp−1,s ≤ ProdTSubt (8)
prodttp−1,s − prodttp,s ≤ ProdTBajt (9)

actp −
{

Acpt , for p = 1
actp−1 , for p ≥ 1

}
= arrtp − partp (10)

Equation 4 assures that demand is balanced all the time.
Demand Demp and intermittent wind production ProdIp,s
are given parameters. Up- and down-reserve (RsSubp and
RsBajp) constraints (equations 5 and 6) make sure that a
reliability margin is guaranteed for the case of failure of one
of the generation plants, errors in wind or demand prevision. In
equation 7 maximum generation output of a generation plant
ProdTMax limits production over the production minimum
prodt. Equations 8 and 9 take into account the maximum
variation of production output in two consecutive hours.
Ramps are decribed with ProdTSub and ProdTBaj for each
generation unit. Unit commitment (eq. 10) takes into account
the state of each generator in the preceding hour. While
unit commitment variables are binary, startup and shutdown
decisions can be continuous since equation 10 forces them to
take binary values.

Plug-in electric cars might be considered in two senses
in this approach: as an additional consumption since they
are plugged into the grid to charge their battery. On the
other hand they could be used under certain limitations as
well as electricity storage to supply a part of the demand in
system peaks. Including these considerations into the problem
statement means adding two extra terms in the demand balance
regarding the consumption and production of an electric car
in an hour. As the electricity is stored in the battery an extra
balance for the electric car has to be added. This balance
must take into account the battery charge level, electricity
consumption on the road, electricity consumption to recharge
the battery and electricity generation injecting into the grid.
Furthermore maximum charge and discharge rate have to be
defined similar to the ramping rates in conventional thermal
plants and the daily consumption of electric energy during the
use of the car.

A. Deterministic Equivalent Problem
To compare the stochastic problem, where uncertainty is

taken into account, to the case where future is known with
certainty, the deterministic problem formulation has to be
considered. Using this formulation the Value of the Stochas-
tic Solution and the Expected Value of Perfect Information
mentioned in chapter II on 2 can be determined.

The objective function of the deterministic two-stage prob-
lem would be formulated as follows.

costeop =
∑
p,t[CosteTF

tactp +

CosteTV tProdTMintpac
t
p + CosteTV tprodttp +

CosteArrtarrtp + CostePartpartp +
CostePNSpnsp] (11)

Production outcome prodttp and non-served energy pnsp
will not depend on the scenario.

Demp − ProdIp − pnsp =∑
t ProdTMintpac

t
p + prodttp (12)

The demand constraint, equation 12 assumes the given pa-
rameters wind production ProdIp to be scenario-independent.
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The rest of constraints stays the same as in equations 5 to 10
but neglecting the scenario dependence of the two decision
parameters prodttp and pnsp.

The deterministic problem can assume each of the scenario-
dependent parameters as given and certain to calculate the
wait-and-see solution, mentioned earlier. In this case three
different deterministic problems can be solved, one for each
scenario, alternatively an average scenario can be calculated
with the average data of the input parameters.

IV. CASE STUDY IN GRAN CANARIA

Gran Canaria is a small island in Spanish territory. It has
been chosen as case example since it has a small power
system and must cope with demand coverage on its own
as it is not interconnected with other grids. Being an island
and thus in costal area wind production is becoming an
important influencing factor in the generation mix. Over-
or underproduction caused by wind cannot be smoothed by
importing or exporting electricity, but has to be compensated
by local power generation (or demand). Gran Canaria does not
have on its disposal a hydro plant which could react to wind
production variability as proposed by some authors mentioned
in subsection II-B. Since demand management schemes are not
yet implemented to a sufficient level, the effects of uncertain
wind production on the power system will be examined in this
paper. It will be analysed which generation technologies will
be replaced by wind.

A. Data and scenarios

Gran Canarias has two generation plants consisting of a total
of 20 units. There are four types of generation technology:
Combined Cycle, Gas Turbine, Fueloil and Gasoil. Generation
cost for these units were taken from [25]. Hourly demand
and wind data is based on historic series and scaled down
considering the currently installed conventional and wind
generation in Gran Canaria. Reserves in the base case make
up 3% of demand in each hour. Stochasticity lies in the wind
prevision errors. These are deduced from historic prevision
errors and taken into account in three different scenarios.
Wind prediction errors are usually the bigger the further the
prediction reaches into the future. In a 24 hour time frame this
error in wind forecasting may grow to as much as 20% [24].
Scenarios with possible wind error correct the wind production
in each hour.

In the first scenario prevision errors were high in a negative
sense, that means that wind production was foreseen to be
higher as it actually was. The second scenario represents
variations in a positive sense and the last scenario shows little
variations in general.

scenario wind prediction error probability
1 – 0.3
2 ++ 0.4
3 +- 0.3

TABLE I
SCENARIOS AND THEIR PROBABILITY

A sensitivity analysis is realized changing the installed wind
generation going down to the one installed this year , 7% of
total generation, to the triple of the installed wind power of
today. The calculations to compare stochastic and deterministic
approaches are determined with 140 MW of installed wind
capacity.

Figure 2 shows the original demand and the demand after
substracting wind production (including wind prediction error)
for the three possible installed wind capacities and the three
wind error scenarios.
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Fig. 2. Resting demand to be supplied in different wind scenarios in hours
1 to 12

In a last calculation consumption and generation of electric
cars is considered. Herefore electric cars are to be assumed to
amount less than 10% of the current vehicle park. Different
uses are assumed (commuters and others), thus the distance
travelled per day (average of 35 km), the time of use (different
hours during the day) and the electricity consumption during
this use is approximated. Battery capacity is assumed to
amount between 10-15 kWh and electricity needed for travel-
ling is estimated to be an average of around 25 kWh/100km.
Maximum charge and discharge rates are determined. Data is
based mainly on [26],[27],[28], [29] and [30].

Taking into account that in the case of Gran Canarias 24
time periods p, 3 scenarios s and 20 generation units t, the
two-stage stochastic model has to cope with 6456 constraints,
2472 continuous and 480 binary variables.

B. Results and discussion

The stochastic unit commitment is determined for each day
of the week. Some days out of the spectrum of this week are
analyzed more in detail.

1) Comparison stochastic versus deterministic approach :
In the stochastic approach unit commitment decisions are
unique while in the deterministic equivalent these decisions
can adapt depending on the wind situation given in each
scenario. As in the stochastic approach each scenario is taken
into account with its probability unit commitments might differ
especially in peak hours with very different wind scenarios.
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Figure 3 shows the difference of gasoil and gas turbine
unit commitments between the stochastic and the deterministic
approach during the evening peak from 19 to 21 o´clock of a
friday. The combined cycle and the fueloil plant don´t show
differences, since they are coping with the base load in contrast
to gasoil and gas turbines which work mainly in peak hours
and thus change their commitment status more frequently.

As can bee seen from the figure 3 the deterministic apprach
commits one unit more of gas turbines in scenario 1 and in
two hours as well in scenario 3. These are the two scenarios
which have a negative or very small wind prediction error (see
table below). In contrast the stochastic approach commits three
units more of gasoil compared to the second scenario with
very high positive wind prediction errors. That means for the
deterministic model that more wind generation is available
and thus three gasoil plants can be turned down, while the
stochastic approach takes into account all scenarios at once
and results in the use of gasoil to be the most economic. This
results in an Expected Value of Perfect information (see page
2 of around 34.000 Euro in one day, which is a cost advantage
of 3% of the stochastic approach. That would be the value of
knowing the uncertain future with certainty.

Demand Wind prevision Wind error [MW]
[MW] [MW] Scen. 1 Scen. 2 Scen. 3

h19 586 50 -8 37 2
h20 588 52 -9 37 -1
h21 587 54 -10 33 -2

TABLE II
DEMAND, WIND AND WIND ERRORS FOR 19-21 O´CLOCK

The difference of technologies applied in the peak between
the two approaches is mainly due to the variable, fixed and
start-up cost considered. These are regulated costs based on
real plants (see subsection IV-A). The gasoil plants which
mark the difference between the two approaches in the consid-
ered hours in this discussion have higher variable costs than
the two considered gas turbines, but lower fixed and start-up
cost. As the stochastic approach is considering all scenarios at

the same time and as it has been decided to be more economic
to switch off these two gas turbines during this day, the cost-
minimization determines the two turned-on gas turbines to
supply peak demand. The deterministic case sees only one
scenario at once and thus the gas turbines are switched off in
scenario 2 with high wind input and turned on in the other
two scenarios with normal and low wind production.

2) Scenario analysis of different installed wind capcities :
A scenario analysis has been conducted changing the installed
wind capacity from 70 MW installed nowadays to double and
triple of this capacity. This high capacity might be realistic
in the long term as renewable support in Spain is given and
offshore wind capacity is supposed to rise in the coming years.
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Fig. 4. Difference of units committed between 140 and 70 MW installed
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Figure 4 indicates on the left hand side the difference of
unit commitment from the 140 MW to the 70 MW installed
wind capacity case. In almost all shown hours of a saturday
one to two gas turbines less will be committed. In some
hours additional gasoil unit reduction can be observed. Thus
additional wind generation saves thermal production of these
two technologies.

On the right hand side the difference between the 210 MW
to the 140 MW installed wind capacity case is shown. In less
hours than in the 140-70 comparison gas turbine production
can be saved. The hours where one to two gas turbines less
are needed are the hours closer to the morning production
peak. Gasoil technologies are more ambiguous to interprete:
in three hours one more unit needs to be committed in other
four hours one to two units less are needed in the 210 MW
case. In the 210 MW wind scenario, the additional gasoil plant
is producing its minimum production of 5 MW while other two
gasoil plants are reduced to minimum stable load. In contrast
in the 140 MW case where one gasoil plant is turned off while
the other two are running at higher production levels. Since the
model is optimizing over 24h it takes into account the wind
production and the resting demand to serve in all hours. In
the case of the 210 MW wind production wind error scenarios
result in resting demands that are more widespread than in the
140 MW case (see figure 2). In one case (210 MW) it is more
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economic not to turn off one gasoil unit and let it work at
its minimum while in the other case (140 MW) turning off
is the best solution. These results indicate that higher wind
production not always means less need of conventional thermal
capacity. In contrary it may be that some conventional plants
have to run on its minimum stable load to avoid extra start-up
cost to cope with variable stochastic wind input in upcoming
hours.

3) Including electric cars: Electric cars are included to
see how extra consumption affects the system. Additionally
electric car generation might lower system peaks.

In the following tables the generation mix and the parts of
consumption are shown for one day. Electricity consumption
by cars assumes around 6.5% of total consumption. For the
considered system of Gran Canaria this rise can be supplied
with the current generation without problems. Apart from the
minimal capacity which needs to be available and the times
of use of the electric cars the model takes into account the
system state when letting electric cars consume. That means
whenever possible, the electric car will be charged in offpeak
hours mainly during the night, in peak hours extra electricity
consumption by cars is minimized. When wind production
during the night is high consumption by electric cars are adapt
and charge more in very high hours.

Comb.Cycle GasTurb. CarGen Wind Gasoil Fueloil
31.97% 4.51% 0.03% 9.31% 8.63% 45.55%

TABLE III
GENERATION IN A DAY

NSE Demand CarCons
0.00% 93.59% 6.41%

TABLE IV
TOTAL CONSUMPTION IN A DAY

Generation by electric cars is limited in some ways. Cars
need to have always a minimum battery level, furthermore
depending on the type of use and thus the hour and distance
of use the battery has to have a certain level. This is to ensure
that driving is not limited by electricty production by cars.
Thus generation of electric energy by cars will always be
significantly lower than the consumption. In the considered
case generation by cars appears during some peak hours, but
is very small. Demand peaks can be reduced by car generation
only very little.

Plug-in electric cars do have an influence on the system
operation. At current generation capacities and demand levels
this extra consumption is notable but not worrisome. Extra
generation by electric cars is quite limited and further storage
facilities should be considered. The impact of these cars should
be analyzed as well with higher numbers of cars and higher
installed wind capacity during low wind production scenarios,
which is out of the scope of this paper.

V. CONCLUSIONS

Wind energy causes already today alterations in generation
scheduling. It has been shown that wind replaces expensive
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Fig. 5. Different consumption and generation profiles in one day

gas plants in scenarios with high wind production, but when
wind production is low more expensive generation plants have
to be committed due to their fast reaction ability. Furthermore
it has been observed that very high wind input might lead to
problems of thermal generation reserve. Taking into account
various wind scenarios in stochastic optimization instead of
looking at simulations with deterministic optimization, brings
advantages as it has been demonstrated with the Expected
Value of Perfect Information. A certain degree of plug-in
electric cars as to be expected in the upcoming years can
be handled by the system without problems, although peak
reduction due to extra generation by electric cars is modest.
Future research primarily in new storage possibilities and its
implementation into stochastic modelling used for operation
and planning is indispensable to cope with volatility in wind
production.
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