

openTEPES

Open Generation, Storage, and Transmission Operation and Expansion Planning Model with RES and ESS

Instituto de Investigación Tecnológica andres.ramos@comillas.edu erik.alvarez@ri.se https://pascua.iit.comillas.edu/aramos/Ramos_CV.htm https://www.iit.comillas.edu/people/aramos

comillas.ec

January 2025

- 1. Introduction
- 2. Modeling
- 3. Case studies

Introduction

openTEPES

Go

version 4.18.1

Search

Navigation

Introduction

- Electric System Input Data Hydropower System Input Data Hydrogen System Input
- Data
- Heat System Input Data
- Output Results Mathematical Formulation
- Research projects
- Publications

Contact Us

Download & Installation

COMILLAS Open Generation, Storage, and Transmission Operation and Expansion Planning Model with RES and ESS (openTEPES)

"Simplicity and Transparency in Energy Systems Planning"

https://opentepes.readthedocs.io/en/latest/index.html

The openTEPES model has been developed at the Instituto de Investigación Tecnológica (IIT) of the Universidad Pontificia Comillas.

The openTEPES model presents a decision support system for defining the integrated generation, storage, and transmission expansion plan (GEP+SEP+TEP) of a large-scale electric system at a tactical level (i.e., time horizons of 10-20 years), defined as a set of generation, storage, and (electricity, hydrogen, and heat) networks dynamic investment decisions for multiple future years.

It is integrated into the open energy system modelling platform, helping model Europe's energy system and in the list of energy models published under open source licenses.

It has been used by the Ministry for the Ecological Transition and the Demographic Challenge (MITECO) to analyze the electricity sector in the latest Spanish National Energy and Climate Plan (NECP) Update 2023-2030 in September 2024.

Reference: A. Ramos, E. Quispe, S. Lumbreras "OpenTEPES: Open-source Transmission and Generation Expansion Planning" SoftwareX 18: June 2022 10.1016/j.softx.2022.101070

openTEPES: summary presentation (English), présentation (French), and installation guide

Index

- Introduction
- Electric System Input Data
- Acronyms
- Dictionaries. Sets
- Input files
- Options
- Parameters
- Period
 Scenario
- Stage
- Adequacy reserve margin
- Maximum CO2 emission
- Minimum RES energy
- Duration
- Electricity demand
- System inertia
- Upward and downward operating reserves
- Generation
- Variable maximum and minimum generation
- Variable maximum and minimum consumption
- Variable fuel cost
- Variable emission cost
- Energy inflows
- Energy outflows
- Variable maximum and minimum storage

openTEPES-tutorial

downloads 136k

https://github.com/IIT-EnergySystemModels/openTEPES-tutorial

INIVERSIDAD PONTIFICIA

IC.

DOI: https://doi.org/10.24433/CO.8709849.v1

<u>GitHub - IIT-EnergySystemModels/openTEPES: Open</u> <u>Generation, Storage, and Transmission Operation</u> <u>and Expansion Planning Model with RES and ESS</u> <u>(openTEPES)</u>

Case studies provided

- 9 nodes, single year
- 9 nodes, 7 years, 13 representative weeks
- Nigeria 2030
- Reliability Test System, 24 nodes
- Reliability Test System Grid Modernization Lab Consortium (GMLC), 73 nodes, single-year
- Reliability Test System Grid Modernization Lab Consortium (GMLC), 73 nodes, 6 years, 13 representative weeks
- Small Mainland Spanish System, with a hydro basin

comillas

9n

9n7y

NG2030

RTS-GMLC

RTS-GMLC_6y

RTS24

SSEP

January 2025

Simplicity

Robust and scalable optimization model

- Simplicity and transparency
- Code written to be read by humans (easy to understand)
- Scalability: from small- to large-scale cases
- Careful implementation and orientation to computational efficiency
 - Numerical stability. Scaling variables and constraints around 1
 - Tight and compact formulation of some constraints
- Highly detailed model documentation
- Developed in Python/Pyomo
- Installable as a Python library
- Input data and output results in text format (csv)

5

comillas.<mark>edu</mark>

Variety of case studies High temporal and spatial resolution

Spain ES2030

Case Spain SEP2030 2999548 rows, 3513436 columns, 11508142 nonzeros Case Mainland Spain ES2030 5162243 rows, 6832942 columns, 21554828 nonzeros Case Mainland Spain 2023,2025,2030,2040,2050 11281454 rows, 11676523 columns and 39548590 nonzeros Case Europe TF2030 39700167 rows, 34702184 columns and 123300396 nonzeros

- Introduction 1.
- 2. Modeling
- 3. Case studies

Electricity/hydrogen/heat/water networks Multi-energy carriers. Sector coupling

Generation, Storage, and Transmission Expansion Resource Planning (IRP, GEP+SEP+TEP)

- Determines the optimal investment/retirement plans of new assets for supplying the forecasted demand at minimum total cost.
- User pre-defined candidate generators, ESS, and transmission lines.
 - Candidate lines can be HVDC or HVAC circuits.

January 2025

Main modeling trade-offs

comillas

Source: FPRI

GUROBI

OPTIMIZATION

HIGHS

Modeling overview

- Bottom-up paradigm
- Medium- and long-term analysis
- Time domain
 - Multiyear (dynamic, perfect foresight) scope with 8736 hours/year or representative stages
 - Period (e.g., year), scenario (e.g., climate year), load level (e.g., hour), stage (e.g., representative days/weeks)
 - Flexible duration of the time step (e.g., bi-hour, 3-hour, 4-hour time step)
- It uses mixed-integer linear programming (solvers GUROBI, CPLEX, HiGHS, GAMS, GLPK, or CBC)

January 2025

Time resolution

- Period/year
 - Period weight allows replication of a year (weight 5 for the year 2030 represents years 2030 up to 2034)
- Stage
 - Optimization problem formulated consecutively for each stage
 - No constraint connection between two consecutive stages (ramps, up/down time ignored)
 - Used for creating representative days/weeks; e.g., case 9n7y uses one week per year for seven years.
 - Stage weight allows the replication of each stage (weight 4 of stage/week 1 represents the first moon month)

comillas.ec

Geographical representation

Modeling options

		 Binary generation investment decisions 	ltem
	Generation & Storage	 Binary generation retirement decisions Binary reservoir expansion decisions 	Ind <mark>BinGe</mark> nInve
	investment		Ind Bin Gen Reti
		Binary electric network expansion decisions	IndBinRsrInves
	Network	 Binary hydrogen network expansion decisions Binary heat network expansion decisions 	IndBinNetInve
	investment		IndBinNetH2Ir
		Binary generation operation decisions	IndBinNetHeat
	Generation	 Considering up/down ramp constraints 	IndBinGenOpe
	operation	 Considering minimum up/down time constraints 	IndBinGenRam
~			IndBinGenMin
		Single node case study	IndBinSingleNo
	Electric	 Binary transmission switching decisions 	IndBinLineCon
	network	Network losses	IndBinNetLoss
200	operation		

C O

COM

ICAL

UNIVERSIDAD PONTIFICIA ICADE

Description {0 continuous, 1 binary, 2 ignore Binary generation expansion decisions est investments} {0 continuous, 1 binary, 2 ignore irement Binary generation retirement decisions retirements} Binary reservoir expansion decisions (only used for {0 continuous, 1 binary, 2 ignore st reservoirs modeled with water units) investments} {0 continuous, 1 binary, 2 ignore Binary electricity network expansion decisions st investments} {0 continuous, 1 binary, 2 ignore nvest Binary hydrogen network expansion decisions investments} {0 continuous, 1 binary, 2 ignore Binary heat network expansion decisions tInvest investments} erat Binary generation operation decisions {0 continuous, 1 binary} nps Considering or not the up/down ramp constraints {0 no ramps, 1 ramp constraints} {0 no min time constraints, 1 min Time Considering or not the min up/down time constraints time constraints} ode Single node case study {0 network, 1 single node} Binary transmission switching decisions nmit {0 continuous, 1 binary} ses Network losses {0 lossless, 1 ohmic losses}

Dealing with uncertainty

- Several stochastic parameters that can affect the optimal expansion decisions are considered
- The operation scenarios are associated with:
 - Natural hydro inflows/outflows
 - Max/min generation/consumption of generating units
 - Max/min energy per generating unit
 - Max/min storage per generating unit
 - Fuel/emission cost
 - Electricity demand
 - Up/down operating reserves
 - Inertia requirements

comillas.edu

Policy and resource constraints

- Minimum electricity adequacy reserve margin [p.u.]
- Minimum synchronous must-run power (inertia) [s]
- Maximum system carbon emissions [tCO2]
- Minimum system RES energy (Renewable Portfolio Standard RPS) [GWh]

comillas.<mark>ed</mark>

Demand and operating reserves

- Balance of generation and demand [GW]
- Upward and downward operating reserves (aFRR, mFRR) [GW] provided by controllable generators (CCGT, storage hydro) and ESS (pumped-hydro storage, batteries), including reserve activation [GWh]
- Reserve activation parameter: a proportion (e.g., 25-30 %) of the power provided as operating reserves which is asked to be deployed as energy
- Demand response (interruptibility)

S. Huclin et al. "*Exploring the roles of storage technologies in the Spanish electric system with high share of renewable energy*" Energy Reports 8:4041-4057, November 2022. <u>10.1016/j.egyr.2022.03.032</u>

Thermal subsystem

- Minimum output and second block of a committed unit (all except the VRES units) [p.u.]
- Total output of a committed unit [GW]
- Logical relation between commitment, startup, and shutdown status of a committed unit [p.u.]
- No load, variable, operating reserve, and startup costs.
- Maximum ramp up and down for the second block of a thermal unit [MW/h]
- Minimum up/down time of a thermal unit [h]
- Minimum stable time of a thermal unit
- Min/max unit energy generation for a time scope (weekly, monthly, yearly)
- Mutually exclusive units

F. Labora et al. "An efficient model for Nuclear Power Plant constraints to flexible operation" working paper

comillas.<mark>ed</mark>i

Variable renewable energy (VRE)

- Solar PV, on- and off-shore wind, biomass, biogas, run-of-the-river hydro
- Minimum and maximum hourly variable generation

Hydro and energy storage subsystems

- Operation scheduling of medium- and short-term storage (i.e., pumped-hydro storage, batteries).
- Hydro, open- and closed-loop pumped-hydro storage (PHS), PHS treated individually, and system battery storage, demand side management (DSM), and solar thermal
- EV (V1G, V2G)
- ESS energy inventory [GWh] [hm³]
- Energy outflows to represent H2 production or km for EV
- Minimum and maximum charge of an ESS [p.u.]
- Incompatibility between charge and discharge of an ESS [p.u.]
- Maximum ramp up and down [MW/h]
- Minimum and maximum hourly storage [GWh]

Hydro cascade basins

Network flow modeling

- **DC power flow** (DCPF) with/without ohmic losses
- Network-constrained unit commitment (NCUC)

comillas.ec

Hydrogen energy carrier

- Hydrogen demand
- Electrolyzer (consumes electricity to produce hydrogen)
- Hydrogen network

comillas.edu

Heat energy carrier

• Heat demand

- Minimum heat adequacy reserve margin [p.u.]
- Heat pump, electrical heater (consumes electricity to produce heat)
- CHP. Cogeneration (produces electricity and heat simultaneously)
- Fuel heater, boiler (consumes fuel to produce heat)
 - Hydrogen heater can be used as a fuel (connecting both carriers)
- Heat network

comillas.e

January 2025

Electric, hydro, hydrogen, and heat systems input data

https://opentepes.readthedocs.io/en/latest/InputData.html#hydro-system-input-data

Electric System Input Data

All the input files must be located in a folder with the name of the case study.

open

0	penTEPES	Acronyms
re	rsion 4.17.9	
s	earch Go	
N	Javigation	
	traduction	
	Inoduction	
E.	lectric System Input Data	
•	Acronyms	
•	Dictionaries, Sets	
•	Input files	
1	Deputons	
•	Pariod	
1	Seenario	
1	Stago	
1	Adequacy recerve margin	
	Maximum COo amission	
2	Minimum RES anarov	
2	Duration	
	Electricity demand	
2	System inertia	
	Upward and downward	
	operating reserves	
	Generation	
	Variable maximum and	
	minimum generation	
	Variable maximum and	
	minimum consumption	
	Variable fuel cost	
	Variable emission cost	
•	Energy inflows	
•	Energy outflows	
•	Variable maximum and	
	minimum storage	
•	Variable maximum and	
	minimum energy	
•	Electricity transmission	
	network	
•	Node location	
H	ydropower System Input	
D	ata	
•	Dictionaries. Sets	
•	Natural hydro inflows	
•	Natural hydro outflows	
•	Reservoir	
•	Variable maximum and	
	minimum reservoir	
	volume	

Judrogen System Innut

comillas.ed u

Output results https://opentepes.readthedocs.io/en/latest/OutputResults.html

openTEPES version 4.17.9

Hydrogen System Input

Heat System Input Data Output Results • Investment/Retirement • Electricity generation

operation - ESS operation - Reservoir operation - Electricity balance - Electricity network operation - Hydrogen balance and network operation - Heat generation operation - Heat balance and network operation

Costs and revenues

comillas

Navigation Introduction Electric System Input Data Hydropower System Input

Data

Data

Go

Output Results

Some maps of the electricity transmission network and the energy share of different technologies is plotted.

Power Network: E52030 Period: 2030; Scenario: base; LoadLevel: 01-01-01-00-00+01-00

Power Network: ES2030 Period: 2030; Scenario: base; LoadLevel: 01-01 01:00:00+01:00 4.20

Power Network: NG2030 Period: 2030; Scenario: sc01; LoadLevel: 01-01 01:00:00+01:00

N 12 PM 08 PM TUE 02 00 AM 12 PM 08 PM Wed 03 06 AM 12 PM 08 PM Thu 04 08 AM 12 PM 08 PM FR 05 08 AM 12 PM 08 PM 54108 08 AM 12 PM 08 PM Jun 07 08 AM 12 PM 08

Output results

- Investment: (generation, storage, hydro reservoirs, electric lines, hydrogen pipelines, and heat pipes) investment decisions
- Operation: unit commitment, startup, and shutdown of non-renewable units, unit output and aggregation by technologies (thermal, storage hydro, pumped-hydro storage, RES), RES curtailment, electric line, hydrogen pipeline, and heat pipe flows, line ohmic losses, node voltage angles, upward and downward operating reserves, ESS inventory levels, hydro reservoir volumes, power, hydrogen, and heat not served
- Emissions: CO2 emissions by unit
- Marginal¹: Locational Short-Run Marginal Costs (LSRMC), stored energy value, water volume value, reserve margin, emission cap, minimum RES, operating reserve
- Economic: investment, operation, emission, and reliability costs and revenues from operation and operating reserves
- Flexibility: flexibility provided by demand, by the different generation and consumption technologies, and by power not served

1 Computing the marginal information (dual variables) involves solveing first with binary variables, fixing them, and rerunning it again.

- 1. Introduction
- 2. Modeling
- 3. Case studies

openTEPES module structure

comillas.e

UNIVERSIDAD PONTIFICIA

ICADE

ICAL

33

January 2025

Many and varied research projects

https://opentepes.readthedocs.io/en/latest/Projects.html

IBERDROLA

ICADE

Studies conducted. Energy transition analysis (i)

- National Energy and Climate Plan (NECP) 2030 for Spain
 - Exhaustive analysis of the 2030 scenarios of the Spanish electric system
 - Prospective analysis of the 2050 Spanish electric system
- Linkage with energy system models (integrated assessment models IAM) to refine the representation of the power sector (e.g., focused on the transmission network)
 - Analyze the 2030-2050 energy transition at the European scale and specifically the impact of the transmission lines in the long-term generation investment decisions

D.S. Oliveira, S. Lumbreras, E.F. Alvarez, A. Ramos, L. Olmos *Model-based energy planning: a methodology to choose and combine models to support policy decisions*. International Journal of Electrical Power and Energy Systems, 159, August 2024, 110048 <u>10.1016/j.ijepes.2024.110048</u>.

Studies conducted. Storage analysis (ii)

- Cost-benefit analysis (CBA) of candidate pumped-hydro storage units
 - Economic and operational impact of new pumped-hydro storage units in the electric system
- Future ESS role (batteries vs. pumped-hydro storage vs. CSP)
 - Analysis of the competition between batteries (2-4 h of storage), pumped-hydro storage units (8-60 h of storage), and solar thermal (6-9 h of storage)
- Penetration of EV and type of charge
 - Impact of the EV in the system operation and the charge type (V1G, V2G)
- Impact of local energy communities (LEC) on transmission investments and storage (BESS and H2) investments with detailed representation of storage hydro in Norway and Spain

D. Santos-Oliveira, J. Lecarpentier, S. Lumbreras, L. Olmos, A. Ramos, M. Chammas, Th. Brouhard *The impact of EV penetration on the European Power System: the Tradeoffs in Storage*. Social Science Research Network 2024 <u>10.2139/ssrn.4700642</u>

Studies conducted. Security of supply (iii)

- Technologies providing firmness and flexibility to the system
 - How much is each technology contributing to the security of supply (electric load-carrying capability) at critical hours?

comillas.ed

- 1. Introduction
- 2. Modeling
- 3. Case studies

Mainland Spain 2030

Mainland Spain 2024

Installed capacity [MW]

Hydro
 Pumped storage
 Nuclear
 Coal
 Fuel + Gas
 Combined cycle
 Wind
 Solar photovoltaic
 Thermal solar
 Other renewables
 Cogeneration
 Non-renewable waste

Renewable waste — Total capacity

Installed capacity [%]

		2025	LULT
	Hydro	25,337	31,298
	Pumped storage	5,205	4,995
	Nuclear	54,276	46,828
	Coal	3,808	2,491
	Fuel + Gas	0	0
	Combined cycle	39,283	22,828
Enorm	Wind	61,341	52,638
chergy	Solar photovoltaic	36,748	40,566
[GWh]	Thermal solar	4,696	4,010
[0111]	Other renewables	3,586	3,252
	Cogeneration	17,291	14,376
	Non-renewable waste	1,185	1,049
	Renewable waste	707	565
	Total generation	253,463	224,896
		2023	2024
	Hydro	10.0	13.9
	Pumped storage	2.1	2.2
	Nuclear	21.4	20.8
	Coal	1.5	1.1
	Fuel + Gas	0.0	0.0
Energy	Combined cycle	15.5	10.2
Energy	Wind	24.2	23.4
[%]	Solar photovoltaic	14.5	18.0
[,0]	Thermal solar	1.9	1.8
	Other renewables	1,4	1.4
	Cogeneration	6.8	6.4
	Non-renewable waste	0.5	0.5
	Renewable waste	0.3	0.3
	Total generation	100.0	0 100.0

Mainland Spain 2030 National Energy and Climate Plan (NECP)

- Installed capacity: 203 GW
- Only three nuclear units remain at the end of 2030 (3.1 GW), no coal units, existing CCGT (24.5 GW)
- Significant investments in solar PV (42.3 GW) and onshore wind (26.8 GW)
- Existing storage hydro and pumped-storage hydro (20.4 GW)
- Additional pumped-storage hydro (2.5 GW)
- Additional batteries (2.5 GW)

comillas

	MIVV	%
Nuclear	3041	1%
Carbón	0	0%
Ciclos	24499	12%
Hidráulica (sin bombeo)	14562	7%
Eólica terrestre	57737	28%
Eólica offshore	2800	1%
Solar FV	72130	35%
Termosolar	4804	2%
Resto RES	1964	1%
Cogeneración y otros	4205	2%
Almacenamiento	17612	9%
Total sistema	203353	100%
Electrolizadores	11980	

		attinzacioni	
36881	10%	7224	
0	0%	0	201 5
19750	5%	806	3%
28932	8%	1987	
117450	31%	2034	
9695	3%	3463	
125377	33%	1738	224
11426	3%	2378	33%
10993	3%	5597	
17859	5%	4247	
378362	100%		2%
	0 19750 28932 117450 9695 125377 11426 10993 17859 378362	0 0% 19750 5% 28932 8% 117450 31% 9695 3% 125377 33% 11426 3% 10993 3% 17859 5% 378362 100%	0 0% 0 19750 5% 806 28932 8% 1987 117450 31% 2034 9695 3% 3463 125377 33% 1738 11426 3% 2378 10993 3% 5597 17859 5% 4247 378362 100%

Firmness/Electric Load-Carrying Capability (ELCC) Equivalent Firm Capacity (EFC)

Capacity factors of the different technologies at peak hours of demand and net demand.

Pumped-storage hydro contributes more at critical hours than

S. Huclin, J.P. Chaves, A. Ramos, M. Rivier, T. Freire-Barceló, F. Martín-Martínez, T. Gómez San Román, Á. Sánchez Miralles *Exploring the roles of storage technologies in the Spanish electric system with high share of renewable energy* Energy Reports 8:4041-4057, November 2022. <u>10.1016/j.egyr.2022.03.032</u> A. Ramos, S. Huclin, J.P. Chaves *Analysis of different flexible technologies in the Spain NECP for 2030*. Frontiers in Built Environment 9, October 2023 <u>10.3389/fbuil.2023.1065998</u>

National Energy and Climate Plan (NECP) Flexibility

Contribution of each flexible technology to the variation of the weekly net demand with respect to the mean net demand

A. Ramos, S. Huclin, J.P. Chaves Analysis of different flexible technologies in the Spain NECP for 2030. Frontiers in Built Environment 9, October 2023 10.3389/fbuil.2023.1065998

comillas.e

- 1. Introduction
- 2. Modeling
- 3. Case studies

Europe. National Trends 2030

3.2

TYNDP 2024. National Trends 2030 (https://tyndp.entsoe.eu/)

comillas.<mark>ed</mark>

Power Network: NT2030 Period: 2030; Scenario: Scen1; LoadLevel: 01-01 00:00:00+01:00

TYNDP 2024 Generation and consumption

MM

08AM 12PM 08PM Tue 28 08AM 12PM 08PM Wed 29 08AM 12PM 08PM Thu 30 08AM 12PM 08PM Fri 31 08AM 12PM 08PM June 08AM 12PM 08AM 12P

TYNDP 2024 Emissions and RES curtailment

- 1. Introduction
- 2. Modeling
- 3. Case studies

Europe. TYNDP 2024. National Trends 2040

Role of Utility-Scale Storage and Grid for Europe

E. Alvarez "Improving Modelling for Optimal Expansion Planning of Power Transmission Systems" PhD Thesis. Comillas Pontifical University. January 2025

- Demand-side management
 - Load shifting
 - Max shift capacity: #% of hourly profile
 - Number of shifting hours: 4
 - Total daily electricity demand is fixed
- Hydrogen subsystems:
 - Production by using electrolyzers
 - Storage in H2 tanks
 - Consumption by thermal power plants
 - Pipelines

European system

comillas.

Case study

- European-scale electric system (84 buses)
 - Representative week for each season (summer, winter, etc.)
- Predefined candidates: utility-scale storage
- Algorithm to define transmission lines candidates
 - AC and DC
- Execution performance
 - Problem size
 - 3853859 rows and 2669399 columns
 - Computation time approx.: 30 min

Assessment of different case studies

				Investment type					
	Scenario de	nominations		Pathway	National Line	International Line	BESS	H2 subsyster	m
Scenario	Demand Increase [%]	DSM Participation [%]		1 2 3	√ -	- - - 0	nly transmi	ssion lines	
$\frac{1}{2}$	0 0	0 10		4	-	-	~	-	
3 4	$0 \\ 2.5$	20 0	X	5 6	Focus o	on storage	- √	✓ ✓	
5	2.5 2.5	10 20		7 8	-	~	-	~	_
7	5	0		9 10		✓ -	~	 - 	
12	 7.5	20		11 12	-	× ×	~	-	Everything,
	Input Da	ta		13	\checkmark	-	1	V	except
				14	1	✓ ✓	v	v	lines
						Formula	ation		

comillas.ed

January 2025

Results. Feasibility

comillas.e

Results. Capacity deployed

comillas.<mark>ed</mark>

Role of Utility-Scale Storage. Conclusions

- Utility-scale BESS and H2 subsystems provide flexibility for grid operation, especially in high-RES scenarios.
- Reduced RES curtailment and improved management through joint operational coordination.
- The strategic deployment of BESS increases the flexibility and resiliency of the grid and enables operators to meet rising demand with minimal infrastructure investments.

comillas

- 1. Introduction
- 2. Modeling
- 3. Case studies

Africa. East African Power Pool (EAPP) 2030

OpenMod4Africa Project Case studies for East and West African Power Pools

- Generation and/or transmission expansion planning
- Operational analyses of flexibility technologies

EAPP 2030

Nigeria 2030 Period: 2030; Scenario: sc01; LoadLevel: 01-01 01:00:00+01:00

Africa Transmission Network

comillas.ed

сом

UNIVERSIDAD PONTIFICIA

https://www.geni.org/globalenergy/library/national_energy_grid/africa/africanelectricitygrid.shtml

- 1. Introduction
- 2. Modeling
- 3. Case studies

Linking IAM models with openTEPES

openENTRANCE Project Impact of LECs on the power system functioning

- Open ENergy TRansition ANalyses for a lowcarbon Economy (openENTRANCE), developed for the European Union. May 2019 - June 2023. L. Olmos, S. Lumbreras, A. Ramos, E. Alvarez
 - It aims to develop, use, and disseminate an open, transparent, and integrated modeling platform for assessing European low-carbon transition pathways.

openENTRANCE Project Scope of the analysis

- Analysis of the impact on the system operation, the transmission network development, the level of use of the several flexibility sources, and wholesale electricity prices of local energy communities (LECs)
- Assessing to what extent the flexibility provided by LECs is a substitute for that to be provided by centralized storage (batteries, pumped hydro) and the grid
- LECs are only considered within the Spanish and the Norwegian systems, which are represented with a higher level of detail (several areas per country and more detailed modeling of storage management). The rest of the European system is only represented at an aggregate level (single node per country and more simplified management of storage)
- Only the development of the transmission grid is affected by an increase in the penetration of LECs
- TechnoFriendly Scenario considered: high environmental awareness, bottom-up societal revolution, and top-down technology revolution
- Static planning: 1 year (2030 horizon) with hourly resolution

comillas.<mark>ed u</mark>

January 2025

openENTRANCE Project Workflow

comillas.ed

TIMES-SINERGIA \rightarrow openTEPES Connection of an ESM with a power-sector model

- Improving energy system modelling tools and capacity, developed for the European Commission. October 2020 - June 2022. S. Lumbreras, A. Ramos, P. Linares, D. Santos, M. Pérez-Bravo, A.F. Rodríguez Matas, J.C. Romero
 - It aims to improve the description of the Spanish energy system in model TIMES-SINERGIA, from the technologies considered or a higher time resolution to the detailed modeling of the power sector, such as including transmission constraints, with openTEPES.

comillas

TIMES-SINERGIA \rightarrow openTEPES Workflow

comillas.

74

Unidirectional soft-linking

TIMES-SINERGIA → openTEPES Scope of the analysis

- Development of additional features of the energy system model TIMES-SINERGIA to improve the Spanish energy system
- Top-down connection with power sector model openTEPES
- Both models are the core for the update of the Spain NECP

January 2025

ECEMF Project

On the tradeoff between hydrogen and electricity for heat production

- <u>European Climate and Energy Modelling Forum (ECEMF)</u>, developed for the European Union. May 2021 -December 2024. S. Lumbreras, A. Ramos, L. Olmos, C. Mateo, D. Santos Oliveira
 - It aims to provide the knowledge to inform the development of future energy and climate policies at national and European levels. In support of this aim, ECEMF proposes a range of activities to achieve five objectives and meet the four challenges set out in the call text. ECEMF's program of events and novel IT-based communications channel will enable researchers to identify and co-develop the most pressing policy-relevant research questions with various stakeholders to meet ambitious European energy and climate policy goals, particularly the European Green Deal and the transformation to a climate-neutral society.

comillas

EUROPEAN Climate + Energy Modelling Forum

January 2025

ECEMF Project Scope of the analysis

- Research question: What is the tradeoff between hydrogen and electricity for heat production?
- Scenario: DIAG-C400-lin, Target Year = 2050
- Target technologies (deployment and use to be optimized):
 - Hydrogen production (electrolyzers)
 - RES generation for heat
 - Transmission network
- Use of TYNDP 2022 Distributed Energy 2050 for data disaggregation

comillas

ECEMF Project Workflow

Convergence Criterion: Expansion results in two consecutive iterations

comillas

January 2025

DIAMOND Project

Connection of IAM models with a power sector model

 <u>Delivering the next generation of open Integrated</u> <u>Assessment MOdels for Net-zero, sustainable</u> <u>Development (DIAMOND)</u>, developed for the European Union. October 2022 - August 2025. S. Lumbreras, L. Olmos, A. Ramos

It will update, upgrade, and fully open six IAMs that are emblematic in scientific and policy processes, improving their sectoral and technological detail, spatiotemporal resolution, and geographic granularity. It will further enhance modeling capacity to assess the feasibility and desirability of Paris-compliant mitigation pathways, their interplay with adaptation, circular economy, and other SDGs, their distributional and equity effects, and their resilience to extremes, as well as robust risk management and investment strategies.

open

DIAMOND Project Scope of the analysis

 Interoperable interface of the openTEPES model will be developed for GCAM-Europe, OMNIA, and OPEN-PROM, allowing assessment of the network needs in IAM scenarios and identifying no-regret investments common among scenarios toward constituting the basic architecture of a European expansion plan

comillas.

- 1. Introduction
- 2. Modeling
- 3. Case studies
- 4. Modeling details

Modeling details

Generation. Special attributes

- **StorageType**: based on storage capacity
 - Daily storage type means the ESS inventory is assessed every time step. For the daily storage type, it is evaluated at the end of every hour; for the weekly storage type, it is evaluated at the end of every day; for the monthly storage type, it is evaluated at the end of every week; and yearly storage type is assessed at the end of every month.
- OutflowsType: based on the electricity demand extracted from the storage
 - Represents when the energy extracted from the storage must be satisfied (for daily outflows type at the end of every day, i.e., the energy consumed must equal the sum of outflows daily).
- EnergyType: based on the max/min energy to be produced by the unit
 - Represents when the minimum or maximum energy to be produced by a unit must be satisfied (for daily energy type at the end of every day, i.e., the sum of the energy generated by the unit must be lower/greater than the sum of max/min energy for every day)

comillas.<mark>ed</mark>

Hydro and Energy Storage Systems (ESS)

	Hourly profile					
Energy Storage System	Generation	Consumption	Max/min			Max/min
(modeled in energy units)	Discharge	Charge	Storage	Inflows	Outflows	Ramps
	[MW]	[MW]	[GWh]	[MWh/h]	[MWh/h]	[MW/h]
Conventional storage hydro	V		\checkmark	\checkmark		\checkmark
Open-loop Pumped-hydro Storage	~	\checkmark	\checkmark	~		\checkmark
Closed-loop Pumped-hydro Storage	✓	∧	\checkmark			\checkmark
Battery	~	\sim	\checkmark			\checkmark
Solar thermal	\checkmark		\checkmark	\checkmark		\checkmark
Demand Side Management	✓	✓	\checkmark			\checkmark
Electrolyzer		✓	\checkmark		\checkmark	\checkmark
Electric Vehicle (V1G)		\checkmark	\checkmark		\checkmark	\checkmark
Electric Vehicle (V2G)	→ 1	\checkmark	A ✓		\checkmark	\checkmark

ICAI						
Hydro basins	Turbine	Pump	Max/min	Inflows	Outflows	Max/min
(modeled in water units)	[MW]	[MW]	Storage	[m ³ /s]	[m ³ /s]	Ramps
			[hm ³]			[MW/h]
Hydropower plant	✓	~				✓
Hydro reservoir			\checkmark	✓		

comillas.ed

Thank you for your attention

January 2025

