

Asignatura: Investigación Operativa 2014-15

Andrés Ramos

Despacho: 103 en SCM 26

Teléfono: 915406150

Email: Andres.Ramos@upcomillas.es

Página web: www.iit.upcomillas.es/aramos/

Descripción

- □ Este curso está orientado a entender, definir y resolver problemas de ayuda a la toma de decisiones. Se mostrará el uso de métodos cuantitativos para tomar decisiones racionales por parte de las empresas (*Management Science*, *Business Analytics*, *Decision Science*). Se divide en cuatro partes:
 - ✓ Modelos de optimización
 - ✓ Modelos de decisión
- ☐ El objetivo de la asignatura es doble:
 - ✓ Entender cómo modelar un cierto problema de decisión y saber la técnica apropiada para obtener la solución óptima
 - ✓ Ser capaz de desarrollar modelos de optimización utilizando lenguajes profesionales de alto nivel

Objetivos

☐ Después del curso el estudiante debe poder:

- ✓ Reconocer las situaciones donde aplicar métodos matemáticos.
- ✓ Definir un modelo de ayuda a la toma de decisiones
- ✓ Comprender y aplicar técnicas empleadas para la toma de decisiones
- ✓ Escribir y resolver varios problemas prototipo
- ✓ Construir modelos de decisión a través de muchos ejemplos pequeños.
- ✓ Analizar e interpretar la solución
- ✓ Escribir un informe y presentar oralmente el modelo completo de ayuda a la toma de decisiones
- ✓ Aprender a trabajar en equipo en la realización de la práctica

Método de calificación

- ☐ La calificación consiste en tres partes:
 - ✓ Calificación continua (10 %)
 - ✓ Práctica (20 %)
 - ✓ Exámenes (70 %)
 - ✓ La calificación de exámenes debe ser ≥ 4.0 para considerar las calificaciones de la práctica y de la calificación continua.
- ☐ La calificación continua tiene en cuenta la asistencia y participación activa en clase, algunas asignaciones de problemas de modelado o la solución de problemas en clase
- ☐ Una práctica de optimización escrita en GAMS (informe 15 %) presentada en clase (presentación oral 5 %)
- ☐ Si la calificación de mayo es < 5 habrá un examen extraordinario que junto con la parte de calificación continua y práctica definirá la calificación final

Valoración de la calificación de Exámenes

- Valoración
 - ✓ Calificación: 20 % examen intercuatrimestral (marzo) + 50 % examen cuatrimestral (mayo)
- □ Durante el examen se puede consultar cualquier material docente
- Los exámenes de años anteriores están en la página web http://www.iit.upcomillas.es/aramos/IO.htm

Método docente

Las clases son una mezcla de teoría y problemas y se presentarán utilizando transparencias o pizarra
Las actividades diarias previstas se pueden encontrar en http://www.iit.upcomillas.es/aramos/IO.htm
Casi todo el material se ha compilado y se actualiza continuamente en varios documentos de apuntes que se pueden encontrar en http://www.iit.upcomillas.es/aramos/intro simio.htm
así como las transparencias utilizadas en clase
El caso práctico de optimización será escrito mediante un lenguaje algebraico de modelado llamado GAMS que está instalado en cualquier PC de la Universidad y se puede bajar de
www.gams.com

Bibliografía

Hillier, F.S. Lieberman, G. (2010) Introducción a la Investigación de Operaciones. 9ª edición. McGraw Hill.
Frederick S Hillier, Gerald J Lieberman Introduction to Operations Research, 9/e. McGraw-Hill Higher Education. 2014
Sarabia, A. (1996) La Investigación Operativa. Universidad Pontificia Comillas

■ BIBLIOGRAFÍA ADICIONAL

http://www.iit.upcomillas.es/aramos/MM/BibliografiaAdicional.pdf

Contenido (i)

1. Optimización y modelado

✓ El modelado en la investigación operativa. Modelos de programación lineal, de programación entera, de programación no lineal, de programación multiobjetivo o de programación por metas. Software de optimización.

2. Programación lineal: método Simplex

Resolución gráfica. Geometría de la programación lineal. Álgebra de la programación lineal. Algoritmo del Simplex. Variables artificiales. Múltiples óptimos.

3. Dualidad y sensibilidad

✓ Propiedades fundamentales de la dualidad. Simplex dual. Interpretación económica. Análisis de sensibilidad.

4. Programación lineal entera

✓ Método de ramificación y acotamiento

5. Teoría de la decisión.

 ✓ Teoría de la decisión. Decisión frente a incertidumbre. Procesos polietápicos. Teoría de juegos. Teorema de Nash. Juegos rectangulares de suma nula. Decisión multicriterio.
Conjunto eficiente o de Pareto. Programación de compromiso. Programación por metas.

Contenido (ii)

Módulo	Horas
Introducción	1
Modelado Optimización	14
Decisión multicriterio	3
Revisión examen intercuatrimestral	1
Optimización lineal (LP)	8
Optimización entera (MIP)	1
Presentación prácticas optimización	3
Teoría de la decisión	4
Teoría de juegos	4
Total	39

Con cada tema

- Nos debemos preguntar
 - ✓ ¿Para qué sirve? ¿Dónde y cómo se aplica?
 - ✓ ¿Cómo lo puedo aplicar como ingeniero en la realidad o en mi vida cotidiana? *Life itself is a matter of OR*
- ☐ Si de un tema no podemos contestar las preguntas anteriores se suprime

Lo que un universitario necesita saber y saber hacer:

- 1. Saber leer
- 2. Saber escribir
- 3. Saber hablar, hablar a una persona y hablar a 100
- Tener disciplina
- Tener una visión internacional
- 6. Ser creativo
- 7. Conocer las herramientas propias de su disciplina
- 8. Estar alfabetizado en las nuevas tecnologías
- 9. Tener una cultura general
- 10. Romper con los decálogos
- 11. Tener una visión ética

Fuente: J.R. Alonso <u>Una Universidad</u> nueva El País 12/01/2009

Primeras impresiones

☐ ¿Qué sabes de la asignatura?
☐ ¿Para qué crees que sirve?
☐ ¿Qué esperas obtener de ella?
☐ ¿Qué quieres aprender con esta asignatura?
☐ ¿Qué competencias queremos potenciar?
☐ Dar un ejemplo de uso de competencias de esta asignatura
☐ ¿Qué grado de dificultad (de 0 a 10) te han dicho que tiene?

