
 

  
Abstract-- This paper proposes a novel methodology to identify 

congestion problems under both “traditional” and “new” 
uncertainties such as generation costs, location and size of new 
generators, retirement of old ones, generation patterns, etc. The 
methodology allows not only identifying the transmission paths 
and corridors which will have congestion problems, but also the 
scenarios producing these critical situations. Thus, it can be used 
not only to simplify the study of new investments (reinforcement 
of existing lines), but also to facilitate the evaluation of hedging 
strategies and the design of proactive policies to avoid the 
detected congestion. 
 

Index Terms-- Transmission planning, congestion 
management, uncertainty, data mining, artificial intelligence 
techniques, automatic learning, decision trees. 

I. INTRODUCTION 
ongestion in a power system occurs when one line 
reaches its maximum transmission capacity. This means a 

limitation on the transfer capability between several locations 
on the network, which usually implies a generation redispatch 
in order to avoid load curtailment. Transmission planning 
aims at making decisions to increase the transmission capacity 
of the system in an optimal way so as to prevent the system to 
experience undesired situations, and in particular to avoid 
possible congestion problems in the future. As building new 
lines is almost impossible in most developed countries, 
transmission system investments focus on reinforcement of 
existing lines. 

Traditionally, utilities have planned, designed and operated 
their power systems as a whole. In this integrated approach, 
transmission planning involves technical and economic 
assessment of various generation and transmission expansion 
plans. Usually transmission planning has been formulated as a 
large scale optimization problem [1][2][3]. Because of the 

                                                           
E. F. Sánchez-Úbeda, J. Peco, P. Raymont and T. Gómez are with the 

Instituto de Investigación Técnológica (IIT), Universidad Pontificia Comillas, 
Alberto Aguilera 23, 28015 Madrid – SPAIN (e-mail: {Eugenio.Sanchez, 
Jesus.Peco, Paviel, Tomas.Gomez}@iit.upco.es). 

S. Bañales and A. L. Hernández are with the Power System Department 
Research & Development Division, Electricité de France (EDF), Avenue du 
Général de Gaulle, 92141 Clamart Cedex – FRANCE (e-mail: 
banales@alum.mit.edu, Anne-Laure.Hernandez@edf.fr). 

very large size of current power systems, the computational 
burden of this approach is in practice very high, therefore 
several artificial intelligence techniques (e.g. simulated 
annealing [4], genetic algorithms [5], heuristic search [6], 
decision trees [7]) have been used more recently. In this 
integrated approach, both generation and transmission options 
are controlled by the same utility so the number of 
uncertainties to be taken into account is small. Traditional 
sources of uncertainty are: demand growth, hydraulic 
conditions, fuel prices, as well as availability of lines and 
generators. 

However, today, with the full liberalization of the energy 
market, the future becomes much more uncertain. Now, in 
order to favor competition, the allocation of generation is a 
matter of independent decision making mainly based on 
business opportunities. Thus, the number of uncertainties that 
should be taken into account in planning studies has increased 
drastically, with new factors such as location and size of new 
generators, retirement of old ones, or generation patterns. 
Therefore, within this new environment, new planning 
approaches, methods and tools are required to cope with these 
new uncertainties [8][9]. 

In this paper we propose a novel methodology based on the 
application of Data Mining (DM) techniques to identify 
congestion problems under both classical and new 
uncertainties. DM techniques have emerged in the early 
nineties and they allow extracting meaningful information 
from data bases consisting of many different pre-analyzed 
scenarios [10]. DM has been successfully applied to various 
problems in power systems (e.g. see [11][12]). 

The paper is organized as follows. In Section II, the notion 
of congestion severity is introduced. In Section III the overall 
identification methodology is described. In Section IV an 
illustrative example of the proposed approach is provided. A 
real case study is shown in Section V. Finally, conclusions are 
pointed out at the end. Notice that we do not provide any 
details about Data Mining methods (see e.g. [11][10]). Rather, 
we show how they can be used to solve particular stages of 
the methodology proposed to identify congestion problems. 
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II. NOTION OF CONGESTION SEVERITY 
Two key issues arise when studying a particular scenario: 

(i) Is there a congestion?, and (ii) If so, how important is it?. 
To answer both questions, we propose appropriate congestion 
indicators as well as two types of numerical simulations. 

A. Congestion indicators 
The congestion indicators can be used to identify 

congestion problems in a particular scenario as well as to 
assess their severity. 

Two types of indicators can be used: local and global 
congestion indicators. The first ones provide information 
about the congestion of a particular line. However, sometimes 
an index of the global congestion of the network can be 
useful. The global congestion indicators summarize the local 
congestion problems into a more general index. Using these 
global indicators a network situation can be directly classified 
according to “its severity” in terms of congestion problems. 

Some of the proposed local congestion indicators are: 
Power flow/ transmission capacity Ratio (F/C), OPF dual 
variable associated with the transmission capacity of a line, 
non supplied energy of a bus, etc. 

Concerning global congestion indicators, we propose: Mean 
squared power flow / transmission capacity Ratio, difference 
between total dispatch costs with and without power flows 
constraints (redispatch costs, RC), Number of redispatched 
generators, Total redispatched generation, etc. In the 
illustrative example we have used the RC indicator because it 
provides directly an economic assessment of the congestion 
problems. 

B. Types of numerical simulations 
At first, a DC non-linear optimal dispatch without 

constraints on power flows will provide a first diagnosis of the 
situation, telling us if there are overloaded lines or not. 
Unfortunately, the results of this first simulation do not assess 
the severity of the congestion accurately. For example, a 
scenario with a heavily overloaded line could be less severe 
than other scenario with other lines being only slightly 
overloaded because, in the first case, the economic impact 
associated with the generation redispatch needed to solve the 
congestion could be much smaller than in the second situation. 

A second analysis, consisting in a DC non-linear optimal 
dispatch with transmission constraints will allow determining 
the congestion severity in terms of its economic impact more 
accurately.  

Notice that in transmission planning studies, several 
scenarios have to be considered. For example, when studying 
a new investment, the resultant network should perform 
successfully under every plausible scenario. Thus, the severity 
of a particular congestion depends not only on the analysis of 
an scenario but also on its importance. This importance is 
related to both its probability and its impact on the network. 

 
 

III. IDENTIFICATION METHODOLOGY 
The proposed identification methodology consists of two 

main steps (Fig. 1): (i) data base generation of possible 
scenarios, and (ii) data base analysis using data mining 
techniques. This approach can be repeated several times as our 
knowledge about the congestion problem increases. 
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Fig. 1.  Identification methodology 
 

A. Definition of the range of possible situations 
Uncertainties will be modeled as probability distributions. 

These distributions can be discrete or continuous, depending 
on the nature of the variable. The different network situations 
(scenarios) will be generated by sampling these distributions. 
This probabilistic model is flexible enough to reflect the 
intrinsic probabilistic nature of the uncertainties to be modeled 
(availability of lines and generators, hydraulic conditions, 
generation costs, location and size of new generators, 
retirement of old ones, etc). For example, for a given bus one 
can set a distribution for a given technology describing the 
probability of having zero, one or two units. 

This probabilistic model should incorporate all prior 
knowledge as well as the definition of the range of conditions 
which the study aims to cover. As the size of the network 
increases, both the number of possible scenarios and the 
computational requirements to simulate them grow 
exponentially. Thus, in order to deal with this curse-of-
dimensionality, the probability distributions of rare events 
with a significant impact (e.g. the failure of a nuclear unit) are 
biased to ensure that they will be sampled. 

B. Generation and simulation of scenarios 
The objective of this stage is to obtain a sufficiently rich 

data base (DB), which both contains plausible operating states 
and covers all relevant congested situations. These scenarios 
are randomly drawn from previous probability distributions. 
According to previous section, each scenario is simulated 
using a DC non-linear optimal dispatch with and without 
transmission constraints. All in all, from each scenario we 
save in the DB a set of parameters or attributes characterizing 
it. These attributes are mainly installed capacities of 
generators (by type and bus) and generation costs, together 
with congestion indicators. 



 

C. Analysis using Data Mining Techniques 
Traditionally, utilities have planned, designed and operated 

their power systems as a whole. In this integrated approach, 
sources of uncertainty were small and well known. Typically, 
with 20 scenarios all relevant situations were captured and the 
planer knew how to run the network under these 
circumstances. 

However, today, with the full liberalization of the energy 
market, the future becomes much more uncertain as both the 
allocation of generation is a matter of independent decision 
making and bilateral contracts between agents from different 
countries may change the traditional power flow patterns. 
Under this new situation, the number of scenarios is huge and 
previous knowledge about the network behavior is not enough 
to identify the possible congestion problems, their severity 
and their root causes. 

Data mining techniques allow dealing with this new 
situation (see e.g. [10][13]). In particular, these techniques are 
able to identify the possible congestion problems, their 
severity and their root causes by analyzing huge amounts of 
simulated scenarios in a systematic way. We have used a set 
of techniques, including decision and regression trees 
[11][10], clustering techniques and ORTHO models (e.g. see 
[14]). 

The proposed approach is depicted in Fig. 2. After defining 
the network model and the considered uncertainties, a large 
set of scenarios are generated and analyzed using data mining 
techniques.  

These techniques rely on the selection of suitable candidate 
attributes that are able to explain the root causes of network 
congestion. This topic is especially relevant when dealing 
with real sized networks, where it is necessary to identify 
clusters representing groups of buses (i.e. regions) as well as 
groups of lines connecting those regions (i.e. transmission 
paths) by finding similarities among physical parameters (see 
e.g. [11][15][16][17]). This step is needed to define global 
variables related to transmission paths and regions (e.g. the 
generation capacity in a region or the number of gas units in a 
region) instead of particular lines and buses. Note that these 
regions are a key issue as excesses or deficits in the generation 
capacity of different areas cause most congestion scenarios. 

The next step in our methodology is to perform a global 
approach to the congestion problem in order to answer two 
questions: (i) what scenarios, among all possible ones, present 
congestion problems and why?, and (ii) what are the 
congestion modes (i.e. congestion patterns and network 
behaviors) and what are the causes of these different modes?. 

First, one can get an idea of the possible congestion 
problems by building a supervised model such as a decision 
tree or an ORTHO model to estimate some global congestion 
indicators.  

Second, clustering techniques are used to identify 
congestion modes (i.e. congestion patterns and network 
behaviors), and supervised models to know when these 
patterns appear. 

Finally, one can focus on particular congestion modes, 

congested transmission paths or congested lines by building  
supervised model to estimate some local congestion 
indicators. 
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Fig. 2.  Identification methodology (detail) 
 

IV. ILLUSTRATIVE EXAMPLE 
In order to illustrate the proposed methodology, we use an 

academic network consisting of 11 buses and 14 lines (see 
Fig. 3). In each bus the demand is constant (shown in 
percentage of the total one), whereas the number of units of 
each technology can vary (figure shows the maximum 
installed capacity by technology, where: C is coal, H is hydro, 
N is nuclear and G is gas). Notice that the number of units 
could be related to new generators, retirement of old ones, or 
unit availability. The generation costs of nuclear, gas and coal 
are drawn from normal distributions N(0.3, 0.025), N(0.55, 
0.1) and N(0.6, 0.05), respectively. Finally, two types of 
hydraulic conditions (dry and humid) have been taken into 
account. 
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Fig. 3.  On-line diagram of the network used for illustration 
 

A large DB consisting of 40000 different scenarios have 



 

been built, where each scenario represents a different network 
situation generated by random sampling from the probability 
distributions used to model the uncertainties. Each scenario is 
described by 67 attributes, corresponding to parameters 
describing the electrical state (installed capacities per unit and 
technology, generation costs, number of units by technology 
and by bus, etc). Using clustering techniques, six regions have 
been identified (Fig. 3), e.g. region 6 consists of buses 9, 10 
and 11. Note that the total installed capacity of each region 
has been also used as an attribute characterizing each scenario. 

In order to obtain a first overview, we have built a decision 
tree (Fig. 4) to estimate the value of the global congestion 
indicator RC. We consider the network has no congestion 
problems if RC is zero (label ‘RC=0’), and it has congestion 
problems (label ‘RC>0’) otherwise. For example, this decision 
tree tells us that if we have enough installed capacity in region 
6 (ICReg6>34.5), then the network will be clearly congested 
if coal is cheaper than gas (costC-costG<-0.03), see node A in 
Fig. 4. To evaluate the generalization capability of these 
decision trees, they were tested on the basis of an independent 
test set of 8000 scenarios (i.e. not used for building the trees), 
yielding an overall error rate of 14.3% (i.e. 85.7% of correct 
classifications) 

 

 
Fig. 4.  Decision tree for the global congestion indicator RC 

 
After extracting global knowledge about the congestion 

problems of the network, we can study separately the 
congestion of each line. Lines 8-9, 5-9, 3-8, 7-10 and 9-11 
have congestion problems. For example, Fig. 5 shows a 
decision tree to estimate if line 3-8 is congested or not. We 
consider it is non-congested if the local congestion indicator 
F/C of line 3-8 is smaller or equal than 1 (N), congested (C) 
otherwise. For example, this tree tell us that line 3-8 is 
congested when the number of nuclear units of bus 8 is not 
maximum (NUBus8<3.5), the scenario is dry (ICBus8<30) 
and the total number of nuclear units is less than 6.5. This tree 
yields an overall error rate of 4.24% in the same test set (i.e. 
95.76% of correct classifications). Note that better decision 
trees, in terms of accuracy, can be obtained by allowing the 
expansion of some nodes. 

 
Fig. 5.  Decision tree for the congestion of line 3-8 
 

Furthermore, it is possible to estimate the exact value of 
F/C of line 3-8 by means of the ORTHO model (Fig. 4). This 
model provides us the sensitivity of the output with the 
different relevant input variables. For example, this model tell 
us that if the installed capacity of region 6 is large enough 
(ICReg6>47) then we can not decrease the power flow of line 
3-8 by increasing the installed capacity of this region, which is 
physically sound. According to this model, higher hydraulic 
capacity in bus 7 (ICBus7) leads to lower power flows in line 
3-8. On the other hand, this flow decreases when the 
availability of nuclear units in bus 8 (NUBus8) increases. 

 

0 10 20 30 40 50

−0.4

−0.2

0

0.2

0.4

0.6

0.8

IMP:1.000  (K=5)

ICBus7(1*h−4*h)

data
LHM 

1 2 3 4

−0.4

−0.2

0

0.2

0.4

0.6

0.8

IMP:0.855  (K=2)

NUBus8(1−4)

data
LHM 

0 10 20 30 40 50

−0.4

−0.2

0

0.2

0.4

0.6

0.8

IMP:0.541  (K=4)

ICReg6(3−50)

data
LHM 

−0.2 −0.1 0 0.1 0.2 0.3

−0.4

−0.2

0

0.2

0.4

0.6

0.8

IMP:0.368  (K=6)

costC−costG

data
LHM 

 
Fig. 6.  ORTHO model for the local indicator F/C of line 3-8 
 

V. REAL STUDY 
The proposed methodology has also been tested on a realistic 
problem. In particular we have used a detailed model of the 
real Spanish network consisting of 1140 nodes, 1500 lines and 
225 installed generators. It also includes interconnections with 
France, Portugal and Morocco. There are 5 different 
technologies: Coal, hydro, nuclear, and gas. 

Several uncertainties has been taken into account: the 
unavailability of 5 main nuclear units, the possibility of 19 



 

new gas plants comprising a number of units drawn from the 
uniform distribution U(0, 3); different generation costs of coal 
and gas technologies, see Fig. 7. Finally, two types of 
hydraulic conditions (dry and humid) have been taken into 
account. 
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A DB consisting of 6000 scenarios have been built by 
random sampling from previous probability distributions. In 
this case each scenario is described by 146 attributes, 
corresponding to parameters describing the electrical state (see 
Appendix). Note that this set of attributes also includes more 
general parameters summarizing the information of different 
regions (in this study 20 independent regions have been 
identified). 

The obtained models are simple, accurate and physically 
sound, providing physical understanding of the particular 
congestion problem. For example, Fig. 8 shows a decision tree 
to estimate if a line L is congested or not. We consider it is 
non-congested if the local congestion indicator F/C of line L is 
smaller or equal than 1 (N), congested (C) otherwise. 
According to this model, this line is congested in the next 
three cases (Fig. 9): (i) when there are no gas units in Bus 
1082 (GUBus1082<0.5) and it is a dry scenario; (ii) when 
there are no gas units in Bus 1082, the scenario is humid 
(Hcoef<0.92) and there is not enough installed capacity in 
region 11, and; (iii) when there are no gas units in Bus 1082, 
the scenario is humid, there is enough installed capacity in 
region 11 (ICReg11<17.65), but there are no gas units in Bus 
775 (GUBus775<0.5). 

 

 
Fig. 8.  Decision tree for the congestion of line L (real case study) 
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Fig. 9.  On-line diagram of the real case network (simplified) 
 

VI. CONCLUSIONS 
In this paper we have proposed a methodology to identify 

congestion problems under both “traditional” and “new” 
uncertainties such as uncertainty about generation costs, 
location and size of new generators, retirement of old ones, 
generation patterns, etc. The methodology allows not only 
identifying the transmission paths and corridors which will 
have congestion problems, but also the scenarios producing 
these critical situations. Thus, it can be used not only to 
simplify the study of new investments (reinforcement of 
existing lines), but also to facilitate the evaluation of hedging 
strategies and the design of proactive policies to avoid the 
detected congestion. 

Concerning future work, we are extending the proposed 
methodology to assess the economic impact of a congestion 
problem. This last step is required to propose and evaluate 
alternative investment plans. 

VII. APPENDIX - CANDIDATE ATTRIBUTES 
Here we provide a brief list of possible candidate attributes 
that has been used in our studies. 
 
- Installed capacities per unit and by technology 
- Generation costs by technology 
- Number of units by technology and by bus 
- The difference of cost between technologies 
- The total installed capacity by technology 
- The total installed capacity by bus 
- The cheapest technology by bus  
- The most expensive technology by bus 
- The global installed capacity by technology 
- The total installed capacity by region 
- The total installed capacity by region and by technology 
- Hydraulic conditions 
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